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Abstract

Traffic state prediction models based on 3D or bi-modal Macroscopic Fundamental Diagram
(MFD) is discussed in this work. The well known MFD-based models namely, accumulation-
based and trip-based models are extended to the case of multimodal traffic. In addition,
accumulation-based with outflow delay, which is studied in the context of link level traffic flow
dynamics is investigated. The results from MFD-based models is verified with the solution
of continuum space-time model, which is based on hyperbolic conservation equations. It is
concluded that accumulation-based model with outflow delay address the limitations of con-
ventional accumulation-based model and trip-based solution is most accurate among all the
considered MFD-based models.

1 Introduction

The urban network infrastructure is usually shared by multiple modes like private cars, buses,
taxis, bicycles, etc., and each mode has a different impact on the network state dynamics. For
instance, previous works (Boyac and Geroliminis, 2011, Chiabaut et al., 2014) suggest that
the buses and cars effect the network dynamics in different ways. However, usual MFD-based
simulators proposed in the literature employ the so-called single-mode or 2D-MFD, i.e., the
relation between density of all vehicles and the mean flow of all vehicles in the network. Geroli-
minis et al. (2014) is to address this issue and proposed a bi-modal or 3D-MFD for the area of
downtown San Francisco based on microsimulations. The 3D-MFD for bi-modal traffic relates
the accumulation of cars, buses to the total flow in the network. Ortigosa et al. (2015) analyzed
the 3D-MFDs of the cities of Zurich and San Francisco using microsimulations to study the
effect of dedicated bus lanes on the network performance. The first empirical study of 3D-MFD
is proposed by Loder et al. (2017) for the city network of Zurich. They had concluded that
adding a public transport bus to the network has much more negative impact on the speed
of the cars compared to adding a car. More recently, Loder et al. (2019) proposed a new
functional form for 3D-MFD based on the structure and topology of car and bus network. A
single parameter is used to model the interactions between cars and buses. Huang et al. (2019)
investigated the 3D-MFD using the GPS data of private cars, taxis and public buses for the
city of Shenzhen in China. Since, the existence of network level 3D-MFD is evident from recent
works, the applicability of this so-called 3D-MFD to the MFD based modeling framework needs
to be investigated. Hence, the primary objective of this work is to investigate the MFD-based
models formulation founded on a bi-modal or 3D-MFD.
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There are primarily two different types of MFD-based models proposed in the literature
namely, accumulation-based and trip-based models. Daganzo (2007) proposed the accumulation-
based model in the framework of single reservoir system. Despite the fact that accumulation-
based is relatively simple to resolve and computationally less demanding, it suffers from few
drawbacks as highlighted in Mariotte et al. (2017). Hence, trip-based model gained significant
attention in the recent past as it can address the issues of accumulation-based model. The idea
of trip-based model is proposed by Arnott (2013) and then it is revisited by Leclercq et al.
(2017), Daganzo and Lehe (2015), Lamotte and Geroliminis (2016). The hypothesis of this
approach is that all the vehicles travel at the same speed given by the MFD at a given time
and exit the reservoir once they finish the individually assigned trip lengths. Trip-based model
can account for the travel time of the vehicles by the virtue of its formulation, however, its
computationally more expensive and modeling congestion spill-backs is still a ongoing research
question. Recently, Leclercq and Paipuri (2018) showed that no model is perfect and a hybrid
model bridging both accumulation-based and trip-based approach gives more consistent results
both in free-flow and network saturated regimes.

In this work, both accumulation-based and trip-based models are considered with a bi-
modal 3D-MFD. This requires to extend the usual single flow formulation. In addition to
traditional MFD-based models, accumulation-based model with outflow delay is proposed. This
model is studied in the past (Friesz et al., 1989, Daganzo, 1995, Astarita, 1996) in the context
of link level traffic dynamics. This model is revisited in order to address the drawbacks of
accumulation-based model and it can be considered as the time-continuous model variant of
trip-based framework. Ampountolas et al. (2017) used accumulation-based model using 3D-
MFD in the context of perimeter control. However, their work focuses on control with fixed
composition of bi-modal traffic. This work provides a detailed investigation of MFD-based
models founded on 3D-MFD and proposes the appropriate entry and exit flow functions for
any composition of traffic states.

2 Functional form of 3D-MFD

For the sake of simplicity, the functional form proposed in Loder et al. (2017) is used in the
present work. The rationale behind the choice is that this functional form has a clear physical
interpretation. The notation of the parameters is adopted from their work. The mean speed of
the cars, vc, can be expressed as a linear function of accumulation of cars, nc, and accumulation
of buses, nb. The constant of the function, βc,0, can be treated as the free-flow speed of the
cars. Hence, the equation can be expressed as,

vc(nc, nb) = βc,0 + βc nc + βb nb. (1)

The coefficients βc and βb represent the marginal effect of each mode on the car speeds, i.e., the
amount by which the free flow speed of the cars is reduced by adding a vehicle of each mode.
On the other hand, the speed of the buses is assumed to be a function of speed of cars. The
speed of the buses is given as,

vb(nc, nb) = βb,0 + βc,b vc, (2)

where βc,b is typically less than 1, which shows that the buses travel slower than cars due to
frequent stops and βb,0 accounts for the case of dedicated bus lanes, where buses can travel
faster than cars during congestion times. By substituting eq. (1) in eq. (2), it is clear that the
mean speed of buses is also an implicit function of nc and nb. Now, the total production in the
network is sum of the production of cars, Pc, and production of buses, Pb. As the production
in the network is defined as product of accumulation and mean speed, the total production can
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Table 1: Coefficient values used to compute 3D MFD in the present work.

Cars Buses
Coefficient Value Coefficient Value

βc,0 15 βb,0 15
βc -0.015 βc,b 0.2
βb -0.3
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Figure 1: Production and velocity 3D-MFD surfaces.

be expressed as,
P = nc vc + nb vb. (3)

From the eq. (3), P can be expressed as v (nc + nb), where v is the mean speed of all vehicles
in the network. Using the definition of total production and eq. (3), the mean vehicular speed
in the network can be written as,

v = vc
nc

nc + nb
+ vb

nb
nc + nb

. (4)

In the work of Loder et al. (2017), the calibrated coefficients from Zurich empirical data
estimate βc,0 to be higher than βb,0, which means that the average free flow speed of cars
is higher than average free flow speed of buses. This is due to the fact that buses make
frequent stops to aboard and alight the passengers. However, two different free flow speeds for
cars and buses results in a sharp gradient close to the origin in velocity MFD surface. This
pose problems for numerical scheme of continuum space-time model and hence, in the present
work it is assumed that the free flow speed of cars and buses to be the same. However, this
assumption can be relaxed for accumulation-based, trip-based and accumulation-based with
outflow delay models. Table 1 presents the values of coefficients used in the present work
and Fig. 1 shows the production MFD and velocity MFD surfaces obtained. As shown in
Fig. 1a, when nb = 0 the critical accumulation of vehicles is 500 and maximum production
is 3 750 vehm/s. It can be observed that the maximum network production occurs at zero
bus accumulation and the maximum production decreases as number of buses increases in
the network. Moreover, the critical accumulation, ncr, is not anymore a constant value, but
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Figure 2: Production and velocity 3D-MFD contour plots.

depends on the partial accumulations of buses and cars in the network. Fig. 2 presents the
contour lines for both production and velocity 3D-MFDs. The black line in the production
3D-MFD corresponds to the line of critical accumulation. Mathematically, the equation of the
line of critical accumulation can be expressed as βc,0 + 2 βc nc + (βb + βc,bβc)nb = 0.

3 MFD-based models

3.1 Continuum space-time model
The system of hyperbolic conservation equations for each mode, m, can be represented as,

∂km
∂t

+ ∂km v(K)
∂x

= 0 ∀m, (5)

where km is the density of mode m and v(K) is the velocity defined by 3D-MFD, which is the
function of all densities, i.e., K = [k1, . . . , km]T . In the special case of m = 1 and flux computed
by fundamental diagram, eq. (5) becomes Lighthill–Whitham–Richards (LWR) model (Lighthill
and Whitham, 1955, Richards, 1956). The model presented in eq. (5) can be interpreted as
multimodal or multiclass traffic flow models. Different multiclass models proposed in literature
are well documented in Fan and Work (2015). Since in the present model all vehicles travel
at the same speed given by velocity MFD, this model is referred as homogeneous multiclass
model. The strict hyperbolicity of the homogeneous multiclass models can be proven when
m ≤ 2 (Benzoni-Gavage and Colombo, 2002, Keyfitz and Kranzer, 1980). System (5) can be
re-written as,

∂K
∂t

+ A
∂K
∂x

= 0, (6)

where A is the Jacobian matrix and for the present case of m = 2 it is given as follows,

A =
[
v + kc

∂v
∂kc

kb
∂v
∂kc

kc
∂v
∂kb

v + kb
∂v
∂kb

]
. (7)
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It can be shown that the eigen values of the Jacobian A has real and distinct values if ∂v
∂kc

< 0
and ∂v

∂kb
< 0. The functional form of 3D-MFD is chosen in such a way that this condition is

fulfilled.
A single reservoir system with two different trips, one each for cars and buses, is consid-

ered in this work. The numerical resolution of the system (5) using MFD as flux function is
discussed in-detail in Leclercq et al. (2015). Similar approach is used here, albeit, 3D-MFD is
used to define the flux function and hence, numerical scheme details are omitted. In brief, the
time derivative term is discretized using first-order Euler scheme and the space derivative is
discretized using first-order finite volume method. The flux at the cell interface is computed
using HLL approximate Riemann solver (Harten et al., 1983). The wave speeds are estimated
directly from the maximum and minimum eigen values of the Jacobian matrix in each cell.
A constant CFL number of 0.5 is used along with adaptive time stepping scheme in all com-
putations. As stated earlier, the solution of this model is used as reference to compare the
accumulation-based, accumulation-based with outflow delay and trip-based results wherever
possible.

3.2 Accumulation-based and trip-based models
Essentially, accumulation-based model is the simplification of hyperbolic conservation, where
space derivative of flux is neglected. The resulting conservation equation (Daganzo, 2007) to
resolve the reservoir dynamics is given as,

dnm
dt = qm,in(t)− qm,out(t) , ∀m, (8)

where nm is the space-averaged accumulation in the reservoir for mode m, qm,in(t) is the total
effective inflow and qm,out(t) is the total effective outflow. The main advantage of this model (8)
compared to hyperbolic system (5) is that this system is well-defined for any number of modes,
m. As the system (8) comprises of only Ordinary Differential Equations (ODE), the numer-
ical resolution is quite straightforward and simple. On the other hand, accumulation-based
model propagates the information with infinite speed, i.e., outflow reacts instantaneously to
the changes in the inflow of the reservoir.

The theory of single reservoir and multi-reservoir accumulation-based model is discussed
in-detail in Mariotte et al. (2017), Mariotte and Leclercq (2018). A first-order forward Euler
scheme with a time step, ∆t, of 1 sec is used in the present work to numerically resolve
accumulation-based model.

Now considering the trip-based formulation, mathematically it can be expressed as,

Lm =
∫ t

t−Tm(t)
v(n(s)) ds ∀m. (9)

Consider Tm(t) is the travel time of a user for mode m who entered the reservoir at time t.
The speed at each time instant depends on the total accumulation, n, in the reservoir, which
is defined velocity 3D-MFD. Hence, the area under the speed-time curve between the times,
t−Tm(t) and t gives the total travel distance, which is trip length Lm. The significant modeling
difference in trip-based model compared to accumulation-based model is that the trip-based
framework considers the traveled distance explicitly. Hence, the model is more accurate during
the transition compared to accumulation-based. Event-based resolution proposed in Mariotte
et al. (2017) is used in the present work.

3.3 Accumulation-based model with outflow delay
The idea of the accumulation-based model with outflow delay is that the outflow is delayed in
the reservoir by the order of the travel time at the time instance, t. Consider vehicles that enter
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the reservoir at time, t, has an inflow of qm,in(t). They leave the reservoir at time, t+τ(t), where
τ(t) is the travel time inside the reservoir. Under the assumptions of vehicle conservation and
FIFO rule, the vehicles that enter at time t must be equal to vehicles that leave the reservoir
at time t+ τ(t). Mathematically, it can be expressed as,∫ t

−∞
qm,in(s) ds =

∫ t+τ(t)

−∞
qm,out(s) ds. (10)

Differentiating the eq. (10) with respect to t and rearranging yields,

qm,out(t+ τ(t)) = qm,in(t)

1 + dτ(t)
dt

. (11)

Since, the time derivative of travel time is not known a priori, dτ(t)
dt can be computed using

chain rule as follows,

dτ(t)
dt =

∑
m

dτ(nm(t))
dnm

dnm(t)
dt ≡

∑
m

dτ(nm(t))
dnm

(qm,in(t)− qm,out(t)). (12)

The travel time function can be computed from velocity MFD, i.e., τ(nm, n) = Lm
v(nm, n) . This

model ensures that the travel time inside the reservoir is taken into account. From eq. (11), it is

evident that the outflow at time t+ τ(t) is non-negative if and only if dτ(t)
dt > −1. Physically,

this restriction translates to strict FIFO behavior inside the reservoir. However, it is already
shown in Carey and McCartney (2002) that certain inflow profiles may result in dτ(t)

dt ≤ −1
and hence, violation of FIFO. Daganzo (1995) proved that FIFO is preserved in this model if
and only if travel time function is a linear. This can be regarded as a strong restriction in this
modeling framework. However, this work addresses this limitation by proposing a weak FIFO
discipline. This is achieved by re-arranging the outflow cumulative curve locally whenever there
is a violation of FIFO rule.

4 Results and discussion

Firstly, a free-flow scenario is considered to demonstrate the essential differences between dif-
ferent MFD-based models. The trip lengths of cars and buses, Lc and Lb, are assumed to be
{1050, 2025} m, respectively. 3D-MFD is computed based on the values presented in Table 1.
Since the free-flow speeds of cars and buses are assumed to be same, which is generally not
the case in real networks, the increase in free-flow speed of buses is compensated by longer trip
length. A total simulation time of 10 000 sec is considered with the first 1 000 sec being the
warm-up period. A step demand case is assumed for the inflow profile according to following
definition,

[λc λb]T =
{

[0.1 0.01]T if 0 < t ≤ 1000 or 6000 < t ≤ 10000
[1.3 0.06]T otherwise. (13)

where λc and λb are the demand for cars and buses in veh/s, respectively. These flows are
chosen in such a way that the accumulations of cars and buses stay on the left hand side of the
critical accumulation line on the MFD surface shown in Fig. 2a.

Figure 3 shows the evolution of accumulation with time for cars and buses. According to
the assumed demand profile (13), there is a sharp increase in the demand at t = 1 000 sec
and correspondingly, there is a sharp decrease at t = 6 000 sec. Even though all the models
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Figure 3: Evolution of accumulation with time for cars and buses for all MFD-based models
considered.

presented in the plots reach the same equilibrium, it is interesting to observe the transition
region to evaluate the accuracy of the models. Consider the demand surge at time t = 1 000 sec
highlighted in Figs. 3a and 3b. Since the continuum space-time model is the reference solution,
it is evident from the plot that trip-based model follows the reference solution more closely
following by accumulation-based model with outflow delay and finally, accumulation-based
model is least accurate. Since there is no explicit space variation term in the accumulation-
based model, only space averaged solution is obtained at each time step and hence, more
diffused solution. On the other hand, trip-based model accounts for the wave propagation
inside the reservoir to a good accuracy, which can be noticed from the plot. Accumulation-
based with outflow delay is in between these two models, i.e., this model cannot account for
wave propagation like trip-based, however, the delay in the outflow introduces an average effect
of wave propagation. The essential difference between trip-based and accumulation-based with
outflow delay is that trip-based can account for the variation of travel time during the trip,
whereas delay outflow model cannot account for this variation within the trip. The same
applies during the demand drop, i.e., at t = 6 000 sec, albeit, the transition to the equilibrium
is rather fast and hence, the differences in models is less obvious. However, the trend can
be observed clearly in the cases of buses in Fig. 3b, where trip-based is more accurate and
accumulation-based is least accurate.

Figure 4 presents the evolution of outflow with time for different MFD-based models con-
sidered. The inflow demand is shown in dotted lines in the plot, where demand surge and
drop can be observed. At t = 1 000 sec, it is clear from the plot for both cars and buses,
the outflow in the accumulation-based model increases immediately. On contrary, both trip-
based model and accumulation-based model with outflow delay produces a sharp increase in
the outflow with travel time inside the reservoir considered. In the accumulation-based with
outflow delay, a step wise increase in the outflow is observed and this phenomenon is discussed
in-detail in Carey and McCartney (2002). Similarly, during the demand drop at t = 6 000 sec,
the outflow in the accumulation-based model starts to decrease gradually, whereas trip-based
and accumulation-based with outflow delay produces a sharp decrease after accounting the
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Figure 4: Evolution of outflow with time for cars and buses for all MFD-based models consid-
ered.

travel times. An increase in the outflow in trip-based model can be observed just before the
demand drop. This is due to the causality effect that is discussed in-detail in Leclercq and
Paipuri (2018). Similarly, a small increase in outflow in the buses is noticed at the end of high
demand period. This is due to the fact that cars finish their trip faster than buses owing to the
smaller trip lengths. Hence, the demand drop occurs in cars sooner than buses, which makes
more outflow capacity available for buses and hence, an increase in outflow for buses is noticed.
The differences between different models during transition period can be clearly noticed by
monitoring the mode share ratio, i.e., ratio of outflow of cars to buses. Fig. 5a presents the
mode share ratio evolution with time. During the demand surge, the ratio increases sharply
and then converges to the equilibrium state. This sharp increase is due to the fact that the
outflow of cars increase prior to the buses (owing to the shorter trip length of cars). Once
the outflow of buses reacts to inflow surge, the ratio tends to the equilibrium state. However,
accumulation-based model unable to predict this phenomenon.

In conclusion, it is clear that trip-based model is most accurate and accumulation-based
is least accurate during the transition period. Interestingly, accumulation-based model with
outflow delay partially address the key issues of accumulation-based model and computationally
less demanding. The remaining work includes testing the stated modeling frameworks in high
demand scenarios. It is noticed that using the conventional entry flow functions with 3D-
MFD has unseen consequences. Hence, to address this issue a FIFO disciplined entry flow is
proposed. As stated earlier, accumulation-based with outflow delay encounters various issues
when modeling congestion inside the reservoir. Those issues are demonstrated and addressed
in this work.
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