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Seo et al. (2017) proposed a fundamental diagram (FD) of urban rail transit to describe the interaction 

between passenger demand and train operation, in a simple manner. This paper investigates their proposed 

FD and its variants by using empirical data from the Boston subway system. Specifically, three FD models, 

which are based on different assumptions of the train dwelling time, are calibrated and evaluated using 

subway operation and passenger arrival data. The results show that the free-flow regime of the FD models 

can explain the empirical data well. In addition, train dwelling time monotonically increasing with the 

number of boarding passengers might be sufficient to describe passenger congestion influence on transit 

operation. 
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1. Introduction 

Urban rail transit generally serves as the primary solution for commuters’ travel demand in metropolises, 

owing to its high capacity and punctuality (Vuchic, 2017). However, passengers typically suffer from severe 

congestion and frequent delays, especially during the rush hours. For example, during the morning rush hours 

in the Tokyo metropolitan area, more than 40 rail transit lines observed congestion rates over 150% (the 

number of passengers divided by designed car capacity > 150%) and 29 lines reported delays of more than 5 

minutes, occurring on over 50% of the weekdays in a month (Ministry of Land, Infrastructure, Transport and 

Tourism, 2017a,b). Moreover, studies have shown that 96 of 311 metro stations adopted ordinary entry 

restriction in Beijing, China (Sohu News, 2018) and only 58.1% of weekday trains arrived on time in New 

York City (Hu, 2018). To relieve congestion during rush hours and to prevent the occurrence of delays, 

engineering efforts have been attempted, such as physically increasing capacity, or enhancing the reliability of 

equipment. These approaches are undoubtedly effective, but limitations widely exist. On the other hand, severe 

congestion and most delays appearing in urban rail transit are essentially caused by surging demand and the 

improper behavior of passengers (Ministry of Land, Infrastructure, Transport and Tourism, 2017a). Therefore, 

it is crucially important to understand congestion and the delay mechanisms that are caused by passenger 

influence.  

In general, congestion and delay can easily develop into a vicious circle during the rush hours. This effect 

is comprehensively reviewed by Tirachini et al. (2013). On the subject of rail transit, due to growing demand 

during rush hours, more passengers accumulate on the platform. Then, the dwelling time of trains is extended 

because of both in-vehicle and on-platform congestion. Next, the longer dwelling time leads to a delay in the 

following trains (also known as “knock-on delay”, see Carey and Kwieciński, 1994), especially in a high-

frequency rail transit system. Once the delay occurs, it propagates such that travel time and headways increase, 

which finally causes further accumulation of passengers on the platform.  

To describe the interaction between passenger demand and train operation in a high-frequency rail transit 

system in a simple manner, Seo et al. (2017) proposed a fundamental diagram (FD) of urban railway transit 

that expresses the train flow as a function of the train density and passenger arrival flow. The FD is analytically 

derived from the basic operation principles of trains. Seo et al. (2017) also discussed the applicability of the 

FD to a macroscopic simulation of rail transit operation dynamics through comparison with a microscopic 

simulation model.  

This study aims to investigate their proposed FD and its variants using empirical data. Specifically, the three 

FD models, which are based on different assumptions of the train dwelling time, are calibrated and evaluated 
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using Boston subway operation and passenger arrival data, provided by the Massachusetts Bay Transportation 

Authority (MBTA). The results show that the free-flow regime of the FD models can explain the empirical 

data well. In addition, the dwelling time monotonically increasing with the number of boarding passengers 

might be sufficient to describe passenger congestion influence on transit operation. 

This paper is structured as follows: the second section introduces the Boston subway data and depicts the 

relation among the train flow, density, and passenger arrival flow, based on the extracted data. The third section 

formulates the three FD models and provides numerical examples for each FD. Finally, the fourth section 

calibrates and evaluates the models using the empirical data, and a brief discussion on future work is provided. 

 

2. Boston Redline Operation Data 

To properly investigate passenger influence on railway operation, the data should include both the 

movements of trains and the arrival of passengers. Fortunately, the MBTA recently published a substantial 

amount of required data through its APIs. The raw data includes per minute turnstile entry counts at each 

station, as well as subway operation conditions in Google’s GTFS format (Barry and Card, 2014). Here we 

choose the busiest section of the Redline (from Alewife to JFK/Umass with 13 stations) as the analysis target. 

The flow and density of the railway system are calculated by employing Edie’s definition (Edie, 1963) of 

traffic flow as shown in Eq. (1). 
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where A is the measurement time-space area and |𝐴| = 𝐿 × ∆𝑡, and 𝑑𝑛 and  𝜏𝑛 are the total travel distance and 

travel time of vehicle n in A, respectively. The total length of the selected railway line section 𝐿 = 14.4 𝑘𝑚 

and the time unit ∆𝑡 = 10 𝑚𝑖𝑛. This implies that one data point in the FD represents the 10 min average flow 

and density of the railway system. Accordingly, the per minute passenger entry data is also aggregated into 10 

min average entries at each station, and is then converted to arrivals per hour (𝑝𝑎𝑥/ℎ). The calculation utilizes 

data from 18 normal weekdays from 6:00 to 24:00. Figure 1 shows the time evolution of train flow 

(southbound) and the passenger arrival rate within-day, where the curve represents the mean values and the 

shadow indicates the variation. It can be observed that during the rush hours, the train flow declines after the 

peak of the passenger arrival rate, which implies that passenger congestion influences railway operation. 

To obtain relatively steady state data, we filter out the unsteady data by judging the adjacent train flow 

change over 20%. Finally, the FD of the Boston Redline is depicted in Figure 2. The color used represents the 

value of the passenger arrival rate, as illustrated in the color bar (𝑝𝑎𝑥/ℎ). 
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Figure 1: Train and passenger flow transition during one day 



 
Figure 2: Weekday FD of the Boston Redline (southbound) 

3. Train Fundamental Diagram 

In this section, we present three different train FD models. One is proposed by Seo et al. (2017) and the 

others are slightly modified versions of the former, based on different train dwelling time assumptions.   

(1) Assumptions on railway operation 

The operation of the railway system basically depends on the dwelling and cruising behaviors of each train. 

With regard to the dwelling behavior at stations, we assume that the dwelling time 𝑡𝑏 is determined by the 

number of boarding passengers 𝑁𝑝 on the platform. Here, three assumptions for dwelling time are considered: 

(a) 𝑡𝑏 keeps constant at 𝑡𝑏𝑐𝑜𝑛 regardless of 𝑁𝑝, which indicates that passenger congestion does not affect 

railway operation; 

(b) 𝑡𝑏  monotonically increases with 𝑁𝑝  from a minimum value 𝑡𝑏0  (buffer time), which is the same 

assumption made in Seo et al. (2017); 

(c) 𝑡𝑏 keeps constant until a critical passenger number 𝑁0 is reached. It then starts increasing. This idea is 

inspired by the empirical work on passenger boarding by Kariyazaki et al. (2015). 

We also assume that all of the waiting passengers can always board the next approaching train, which means 

𝑁𝑝 = 𝑎𝑝 ∙ 𝐻, where 𝑎𝑝 is the passenger arrival rate at stations and 𝐻 is the time headway of successive trains. 

Now, the three assumptions of 𝑡𝑏 can be expressed as Eq. (2) - (4), respectively. 𝛾 here can be interpreted as 

the dwelling time growth rate with increase in the number of boarding passenger. 
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On the other hand, the cruising behavior of a train is modeled using Newell’s simplified car-following model 

(2002). More specifically, the position 𝑥𝑚(𝑡) of train m at time t is expressed as: 

( ) ( ) ( ) 1min ,m m f mx t x t v x t   −= − + − −                                                 (5) 

where m-1 indicates the preceding train, 𝜏 is the minimum time headway of successive trains, and 𝛿 is the 

minimum spacing. The first term represents the free-flow regime where the train cruises with desired speed 

𝑣𝑓 . The second term indicates the congested regime where the train decreases its speed to maintain the 

minimum headway and spacing. For clarity, hereinafter, we refer to each model, based on assumptions (a), (b) 

and (c), as model A, B, and C, respectively. 

(2) Derivation 

To derive a train FD, we consider railway operation under the steady state (also known as equilibrium state). 

Specifically, the following conditions are considered: 

∙ parameters 𝑡𝑏𝑐𝑜𝑛, 𝑡𝑏0, 𝛾, 𝑎𝑝, 𝑁0, 𝜏, 𝛿 are time-independent 

∙ headway 𝐻 and desired cruising speed 𝑣𝑓 are also time-independent 

Also, for simplicity, we assume a homogeneous railway system, which indicates: 

if   𝑎𝑝𝐻 ≤ 𝑁0 

if   𝑎𝑝𝐻 > 𝑁0 



∙ trains stop at each station 

∙ 𝑎𝑝 for each station is the same 

∙ distance between any two adjacent stations is the same, referred as 𝑙 

Now, the train FD as expressed in Eq. (6) can be separately derived in free-flow and congested regime by 

combining the above-mentioned assumptions.  

( ), pq Q k a kv= =                                                                          (6) 

where 𝑞 is the steady state train flow (tr/h) and 𝑞 = 1/𝐻, 𝑘 (tr/km) is the average density of the railway line, 

and 𝑣̅ is the average traveling speed of a train (or system), which can be described by Eq. (7). 

/b

l
v

t l v
=

+
                                                                               (7) 

where 𝑣 is the average cruising speed of a train. In the free-flow regime, 𝑣 = 𝑣𝑓 so that the explicit expression 

of 𝑞 for model A, B and C can be easily derived by substituting Eq. (2) - (4) and Eq. (7) into Eq. (6).  

In the congested regime, the headway 𝐻 should satisfy: 
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By taking the equal boundary condition of Eq. (8) and employing 𝑞 = 1/𝐻, Eq. (2) - (4) can be substituted 

into Eq. (8) so that 𝑞 can be described as a function of 𝑣 and 𝑎𝑝: 

( )1 , pq f v a= .                                                                               (9) 

Then, by inserting Eq. (7) and Eq. (9) into Eq. (6), we can also obtain 𝑘 as a function of  𝑣 and 𝑎𝑝: 

( )2 , pk f v a=                                                                               (10) 

By using Eq. (9) and Eq. (10), the slope of the FD in the congested regime 𝑑𝑞/𝑑𝑘 can be derived since 

𝑑𝑞/𝑑𝑘 = (𝑑𝑞/𝑑𝑣) ∙ (𝑑𝑣/𝑑𝑘). Finally, employing the critical state train flow 𝑞∗ : 
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as a boundary condition, the FDs of model A, B and C can be formulated in Eq. (12) (see also, Seo et al, 2017, 

for the details of the derivation of the FD).   
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Model A is expressed by Eq. (12c) by taking 𝛾 = 0, 𝑁0 = 0 and 𝑡𝑏0 = 𝑡𝑏𝑐𝑜𝑛. Model B is also expressed by 

Eq. (12c) by taking 𝑁0 = 0. For model C, the equation has to be separately written, depending on the relation 

between 𝑎𝑝/𝑁0 and 𝑞1
∗𝑐. 

Eqs. (12a) and (12b) actually describe the situation when 𝑎𝑝 is not large enough to force a condition in 

which the dwelling time is always larger than 𝑡𝑏0. More specifically, when 𝑘1
𝑐 ≤ 𝑘 ≤ 𝑘2

𝑐, the dwelling time 

𝑡𝑏 = 𝑡𝑏0, which implies that operation under this condition can guarantee the dwelling time is not extended 

due to passenger influence. While out of this range, dwelling time would be extended either because trains in 

operation are insufficient or abundant (train bunching). On the contrary, Eq. (12c) describes the situation when 

𝑎𝑝 is large enough so that dwelling time is always larger than 𝑡𝑏0.  

For a better understanding of passenger influence on train flow, we present two numerical examples of the 

FDs for model B and C, as shown in Figure 3, based on the parameters in Table 1. From the comparison of 

Figures 3(a) and (b), it can be observed that under the same 𝑎𝑝, model C can achieve higher train flow due to 

a relatively short dwelling time. 

 
Table 1: Parameters used in the numerical example 

 

 
                                         (a)                                                                              (b) 

Figure 3: Numerical examples of the FDs, (a) model B, and (b) model C 

 

 

4. Model Calibration and Evaluation 

In this section, we calibrate and evaluate the proposed models employing data from the Boston Redline. 

(1) Calibration based on enumeration method 

The three models are calibrated using the enumeration method. Specifically, we begin by preselecting the 

variation range for each parameter, and we then build a parameter set by accounting for all possible 

Parameter Value 

𝑡𝑏0,  𝑁0,  𝛾 30/3600 ℎ,  500 𝑝𝑎𝑥,  0.1/3600 ℎ/𝑝𝑎𝑥 

𝑙,  𝑣𝑓 ,  𝛿,  𝜏 1.5 𝑘𝑚,  40 𝑘𝑚/ℎ,  0.4 𝑘𝑚,  1/60 ℎ 

𝑎𝑝 [0, 30000] 𝑝𝑎𝑥/ℎ 



combinations. The parameter set is then sorted based on root mean square error (RMSE), which is calculated 

by Eq. (13):  
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where 𝑞𝑖
𝑚, 𝑘𝑖

𝑚, 𝑎𝑝,𝑖
𝑚

 are, respectively, train flow, density, and passenger arrival rate, measured from the Boston 

Redline FD (southbound), while 𝑞𝑖
𝑒 is the train flow estimated from the three models (calculated by Eq. (12)). 

Finally, the parameter vector with the smallest RMSE will be regarded as the best fitting one, denoted by 

𝜷̂. Since we found that almost all of the datapoints from the Boston Redline lay in the free-flow regime of the 

FD (as shown in Figure 2), parameters 𝛿 and 𝜏 cannot be calibrated using this data source. In addition, the 

average distance between adjacent stations can be measured from Google maps as 𝑙 = 1.2 𝑘𝑚. Therefore, 

there are two (𝑡𝑏𝑐𝑜𝑛, 𝑣𝑓), three (𝑡𝑏0, 𝛾, 𝑣𝑓), and four (𝑡𝑏0, 𝑁0, 𝛾, 𝑣𝑓) parameters that need to be calibrated for 

models A, B, and C, respectively. The variation range and number of combinations for the three models are 

listed in Table 2. ∆ is the increment. 

 
Table 2: Variation range of the calibrated parameters 

Model A: 

116 × 71 = 8236 

Model B: 

56 × 100 × 71 = 397,600 

Model C: 

56 × 50 × 100 × 71 = 19,880,000 

𝑡𝑏𝑐𝑜𝑛: [5,  120,  ∆= 1] 𝑠 𝑡𝑏0: [5,  60,  ∆= 1] 𝑠 𝑡𝑏0: [5,  60,  ∆= 1] 𝑠 

𝑣𝑓:      [10,  80,  ∆= 1] 𝑘𝑚/ℎ 𝛾:    [0.01,  1,  ∆= 0.01] 𝑠/𝑝𝑎𝑥 𝑁0: [5,  250,  ∆= 5] 𝑝𝑎𝑥 

 𝑣𝑓:  [10,  80,  ∆= 1] 𝑘𝑚/ℎ 𝛾:   [0.01,  1,  ∆= 0.01] 𝑠/𝑝𝑎𝑥 

  𝑣𝑓:  [10,  80,  ∆= 1] 𝑘𝑚/ℎ 

 

As can be seen from Table 2, the number of combinations increased from around eight thousand, to nearly 

twenty million, when two more parameters were added. The smallest RMSE and 𝜷̂ for the three models are 

listed in Table 3. From Table 3 we can see that model A has a larger RMSE than both model B and model C. 

Also, in model A, the values of 𝑡̂𝑏𝑐𝑜𝑛  and 𝑣̂𝑓  appear to be rather unrealistic, considering the actual travel 

experience of the authors, in a practical subway systems. On the other hand, identical RMSE and 𝛾̂, and similar 

values of 𝑣̂𝑓 and 𝑁0 (model B can be considered as a special case of model C with 𝑁0 = 0) all imply that 

model B and C perform quite similarly, yet better than model A. 

 
Table 3: Calibration results 

Model A: 

𝑅𝑀𝑆𝐸 = 1.041 

Model B: 

𝑅𝑀𝑆𝐸 = 0.940 

Model C: 

𝑅𝑀𝑆𝐸 = 0.940 

𝑡̂𝑏𝑐𝑜𝑛 = 101 𝑠 𝑡̂𝑏0 = 27 𝑠 𝑡̂𝑏0 = 18 𝑠 

𝑣̂𝑓 = 80 𝑘𝑚/ℎ 𝛾̂ = 0.16 𝑠/𝑝𝑎𝑥 𝑁̂0 = 5 𝑝𝑎𝑥 

 𝑣̂𝑓 = 38 𝑘𝑚/ℎ 𝛾̂ = 0.16 𝑠/𝑝𝑎𝑥 

  𝑣̂𝑓 = 35 𝑘𝑚/ℎ 

 

(2) Sensitivity analysis and Evaluation using the Akaike information criterion (AIC) 

To show the sensitivity of the parameters, we draw the contour maps of the RMSE with respect to the 

variation of parameters for the three models in Figures 4-6. On the contour maps, color is used to represent the 

value of the RMSE. 

In Figure 4, low RMSE values appear as a blue strip. Because 𝑡𝑏𝑐𝑜𝑛  and 𝑙/𝑣𝑓  in Eq. (12c) are linearly 

combined, the calibration just ensures that the sum of these two terms remains constant. In other words, only 

two parameters cannot be separately determined by minimizing the RMSE of the train flow. However, for 

model B and C, RMSEs derived from the relations between 𝛾 - 𝑡𝑏0 and 𝑙/𝑣𝑓  −  𝛾 minimize in the enclosed 

area (blue ellipses in Figures 5(b) - (c), Figures 6(e) - (f)), which yields realistic estimates for the parameters. 

Here, other parameters in Figures 5 and 6 take the corresponding values of 𝜷̂ in Table 3. From Figure 6(b), we 



can conclude that the RMSE is not sensitive to the change of 𝑁0, since 𝑙/𝑣𝑓 dominates the denominator of Eq. 

(12a) when 𝑡𝑏0 = 𝑡̂𝑏0  and 𝛾 = 𝛾̂. In addition, the RMSE in the blank area of Figure 6(c) is not available 

because the product of 𝛾 and 𝑁0 approaches 𝑡̂𝑏0 + l/𝑣̂𝑓, causing the denominator of Eq. (12a) to become zero. 

To compare the performance of the three models, we adopt the AIC to assess the trade-off between goodness 

of fit and parsimony. The fitness of a model generally increases with the number of free parameters. However, 

a simple form of the model is always desirable and over-fitting should be avoided. A model with a smaller 

AIC value is better, and the AIC is generally defined as Eq. (14): 

2ln 2AIC L p= − +                                                                        (14) 

where 𝐿 is the maximum likelihood (MLE) and 𝑝 is the number of estimated parameters. Here we assume that 

the measured train flow 𝑞𝑚 obeys the normal distribution of 𝑁(𝑞̂𝑒 , 𝜎2). Then, 𝐿 can be derived by Eq. (15) - 

(17). 
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Finally, submitting Eq. (15) - (17) into Eq. (14), the AIC can be obtained by Eq. (18). The calculation 

results for the AIC of the three models are listed in Table 4. 

𝐴𝐼𝐶 = 𝑛𝑙𝑛(2𝜋) + 𝑛𝑙𝑛 (∑(𝑞𝑖
𝑚 − 𝑞̂𝑖

𝑒)2

𝑛

𝑖=1

/𝑛) + 𝑛 + 2𝑝                                           (18)
 

 

Table 4: Calculation results 

 Model A Model B Model C 

𝑛𝑙𝑛 (∑(𝑞𝑖
𝑚 − 𝑞̂𝑖

𝑒)2

𝑛

𝑖=1

/𝑛)
 

116.63 -180.58 -180.62 

2𝑝 4 6 8 

𝐴𝐼𝐶 4286.64 3991.42 3993.39 

 

The calculation results show that model B produces the smallest AIC, although it is quite similar to model 

C. The AICs of both models are much smaller than that of model A. Therefore, it can be concluded that models 

that consider the influence of passenger congestion on railway operation perform much better. 

 

 

  



 
Figure 4: Parameter sensitivity of model A 

   

 

 

 

 

 

 

 

 

 

 

 
(a)                                                              (b)                                                               (c) 

Figure 5: Parameter sensitivity of model B 

 

 

 

 

 

 

 

 

 

 

 

                      

                       (a)                                                         (b)                                                         (c) 

 

 

 

 

 

 

 

 

 

 

 

(d)                                                         (e)                                                        (f) 
Figure 6: Parameter sensitivity of model C 

 

 

 

  



5. Discussion 

This study investigated three models for train FDs, which are based on different assumptions of train 

dwelling time, by employing operation data from the Boston Redline. The conclusion indicates that passenger 

congestion influence on urban rail transit system operation was significant, and that train dwelling time 

monotonically increasing with the number of boarding passengers, might be sufficient to describe this 

influence. However, since the Boston subway system lacked data in high-frequency operation, open questions 

remain for future work on the verification of congested regime of the train FD. 
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