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ABSTRACT

City-scale traffic prediction is an important task for public safety, traffic management, and deploy-
ment of intelligent transportation systems. Many approaches have been proposed to address traffic
prediction task using machine learning techniques. In this paper, we present a framework to help on
addressing the task at hand (density-, traffic flow- and origin-destination flow predictions) considering
data type, features, deep learning techniques such as Convolutional Neural Networks (CNNs), e.g.,
Autoencoder, Recurrent Neural Networks (RNNs), e.g., Long Short Term Memory (LSTM), and
Graph Convolutional Networks (GCNs). An autoencoder model is designed in this paper to predict
traffic density based on historical data. Experiments on real-world taxi order data demonstrate the
effectiveness of the model.

1 Introduction

Traffic prediction, mainly at the city-scale is a very important task for public safety and traffic management [1] and
deployment of intelligent transportation systems (ITS) [2]. Traffic prediction models require traffic data as input.
However, traditional data collection approaches such as on-road sensors (inductive loop, magnetometer, visual camera)
are not sufficient due to their limited coverage and the high cost of implementation and maintenance [3]. Therefore,
taxi and bus companies have been collecting GPS data and make it available for research purposes [4, 5]. Similarly,
mobile network operators (MNOs) collect their subscribers’ mobile phone activities known as Call Detail Records
(CDRs) for billing and business purposes. Using anonymized CDR is possible to derive for instance population density
[6, 7, 8], origin-destination (OD) matrix flows [9, 10, 11], traffic volume [3, 12], travel time and speed [13] which are
very important information for the road and traffic management sector.

Many methods have been developed and proposed to support long-, medium- and short-term traffic predictions.
Autoregressive model [14], autoregressive integrated moving average (ARIMA) model and its variants [15, 16] have
been used to address long-term traffic prediction task. Recursive least-square model [17] and probability tree based
on dynamic Variable-order Markov Model [18] have been proposed to deal with medium-term traffic prediction. In
recent years, many researchers have been focusing on the development of short-term traffic prediction models to support
ITS applications [19]. These models use statistical techniques to minimize or capture stochasticity in the observed
data [20]. The statistical techniques used for the problem of traffic flow prediction can be classified as non-parametric
(include non-parametric regression and artificial neural network) or parametric (include linear and nonlinear regression,
historical average algorithms, smoothing techniques, and autoregressive linear processes) [21].

Recently, the problem of short-term traffic prediction has been addressed using deep learning [22]. Deep learning is a
form of machine learning which provides a good short-term prediction of traffic flows by exploiting the dependency in
the high dimensional set of explanatory variables. Deep Learning uses Artificial Neural Networks (ANNs) models to
create intelligent machines that work and react like humans. The most common types of ANNs are Feedforward Neural
Network, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) [23]. In Feedforward Neural
Network the data moves in one direction from the input layer to the hidden layer to the output layer. CNN and RNN
are usually referred to as Deep Learning Techniques due to the multiple hidden layers structured in their architectures
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[23]. RNN and its variant LSTM can learn temporal dependence well and achieve better prediction results. However,
they ignore the spatial dependence, so that the change of traffic data is not constrained by the urban road network and
thus they cannot accurately predict the traffic state on the road. CNN has been used to model spatial dependence and
made great progress in traffic prediction tasks. However, CNN is suitable for Euclidean space, such as images, regular
grids, etc., and has limitations on traffic networks with a complex topological structure, and thus cannot essentially
characterize the spatial dependence. To overcome such limitation Graph al Network (GCN) model has been used to
capture structural feature of graph network.

While many researchers are focusing on using a specific model to address long-, medium-, or short-term traffic
prediction, in this paper, we gather different deep learning techniques such as CNN, RNN, and GCN to propose a
framework for short-term traffic prediction. The proposed framework is a road map for researchers that helps to identify
different possible research paths. To demonstrate its usability, we use one path to perform traffic density prediction
using autoencoder and taxi trips data covering part of Chengdu from DiDiChuXing, China.

The rest of this paper is organized as follows. Section 2 presents the traffic prediction related work. Section 3 describes
the proposed traffic prediction framework and density prediction process using autoencoder. Section 4 presents and
discusses the preliminary results and finally, Section 5 concludes and presents the future direction of this research.

2 Related work

Traditionally, the traffic prediction problem has been addressed as long-term prediction using time series analysis
applying autoregressive model [14] and the ARIMA model and its variants [15, 16]. For the medium-term traffic
prediction, Cremer and Keller [17] applied recursive least-square estimation for the online prediction and recently, Yuan
et al. [18] proposed medium-term prediction model using probability tree which is based on dynamic Variable-order
Markov Model and Genetic Algorithm. However, for short-term, Deep Learning techniques have been proposed as
alternatives approach for traffic prediction due to the stochastic nature and nonlinear characteristics of this phenomena
[24]. Lv et al. [2] proposed the first stacked autoencoder (SAE) model to learn generic traffic flow features for prediction,
which is trained considering the spatial and temporal correlations. Moreover, Goves et al. [25] used data from Highways
England’s Motorway Incident Detection and Automatic Signalling (MIDAS) system to build a short-term prediction
model using artificial neural networks which forecasts traffic conditions in next 15 minutes given current / historic
traffic information and autoencoder to reduce the complexity which comes from the number of input dimensions. Zhang
et al. [26] proposed a deep-learning based Spatio-Temporal Residual Networks approach, called ST-ResNet to predict
in-flow and outflow of crowds in each and every region of study areas. The experimental results in Beijing and New
York City demonstrate that the proposed ST-ResNet outperforms six well-known methods namely ARIMA, Sazonal
ARIMA (SARIMA), Highways Agency Models (HA), Vector Auto-Regressive (VAR), Spatio-Temporal Artificial
Neural Network (ST-ANN), and deep neural network (DNN)-based prediction model for spatio-temporal data called
DeepST. Wang et al. [27] used online car-hailing order data of Didi Chuxing to predict the gap between the car-hailing
supply and demand. They designed an architecture to concatenate blocks built from multiple data sources such as
car-hailing orders, weather and traffic data. Recently, Yao et al. [28] proposed a spatio-temporal Deep Learning
framework called DMVST-Net (Deep Multi-View Spatial-Temporal Network) to model spatial and temporal relations
using both al Neural Network (CNN)- and Long-Short Term Memory (LSTM) Models. The experimental study was
conducted using real taxi demand big data from Didi Chuxing (in China) and the results showed the effectiveness of
their approach over state-of-the-art.

3 Methodology

3.1 Traffic prediction framework

The proposed prediction framework is composed of four layers namely data, features, methods and tasks. Three
common data sources in the data layer are floating car (trajectory), taxi order (e.g. origin-destination) and CDRs which
have different spatial-temporal characteristics and refer to the movement of objects of different types that are in different
spatial context. These data sources are transformed into four mobility feature types such as density map, sequence, OD
matrix and graph which in turn encode density and flow information and have different characteristics. The mobility
features representations are used as input data for different deep learning techniques namely RNN and CNN which
defer on the type of hidden layers each consists of. In addition, RNN is suitable to capture temporal dependence and
CNN for spatial dependence. To capture the structural feature of graph mobility features GCN is used. With these
models, different tasks of short-term traffic prediction such as density, traffic flow, and OD flow predictions can be
carried out. The prediction framework is shown in Figure 1. In Figure 1, the elements in gray show an example of path
selection from the framework. In this path, an autoencoder is trained to predict the density map based on historical data.
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Figure 1: Framework of traffic prediction

Table 1: The architecture of autoencoder for density prediction.

Component Layer Configuration Output Shape (H,W,C) Parameters

Input Input Layer - (28, 28, 5) -

Encoder 32 x 3 x 3 (28, 28, 32) 1472
Max Pooling 2 x 2 (14, 14, 32) -

16 x 3 x 3 (14, 14, 16) 4624
Max Pooling 2 x 2 (7, 7, 16) -

Decoder 16 x 3 x 3 (7, 7, 16) 2320
Up-Sampling 2 x 2 (14, 14, 16) -

32 x 3 x 3 (14, 14, 32) 4640
Up-Sampling 2 x 2 (28, 28, 32) -

1x 5 x 5 (28, 28, 1) 801

Output - (28, 28, 1) -

Sum 13,857

3.2 Traffic density prediction with autoencoder

The architecture of autoencoder is presented in Table 1. It takes 5 images as input representing the previously observed
5 density maps and exports a single image as the predicted density map for the current time. The encoder contains
2 layers while the decoder consists of 2 de layers to extrapolate the features. The final layer contains a single filter,
which maps the features to an image with a single channel. The autoencoder also ensures that both the input and output
images have the same width and height of (28,28).

As for training of the autoencoder, the mean-squared-error (MSE) is adopted as the loss function. Let Dk
i,j denote the

true density at the grid or pixel (i, j) of the k-th density map in the training data with size of K. Let D̂k
i,j denote the

predicted density of that grid. The MSE loss is calculated from the training data as:

L =
1

K

K∑
k

W∑
i

H∑
j

(Dk
i,j − D̂k

i,j)
2 (1)

where W and H denote the width and height of the density map respectively. The loss is minimized in the training
process using the Adam optimization algorithm [29].

4 Preliminary results

In this section, a case study is presented where the autoencoder is evaluated with a publicly available taxi order dataset
collected by DiDiChuXing,China 1. It contains taxi trips observed in part of Chengdu, China covering one-month

1The data can be downloaded at https://outreach.didichuxing.com/research/opendata/en/
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Figure 2: Hourly density map of taxi trip origins in one day. Each map is in shape of 28× 28.

Figure 3: Loss of linear regression (LR) and autoencoder (AE) during the training process

period in November, 2016. On each day, there are about 235,000 trip observations. Each observation records the vehicle
ID, timestamp and location of the origin and destination of a taxi trip.

The training and test data are created using four weeks’ taxi order data as follows. The taxi trip origins are firstly
aggregated temporally by hour. In each hour, a density map is generated by aggregating these points to a fixed grid
space with width and height of (28,28), as shown in Figure 2. From the four weeks’ data, 672 (28× 24) images are
obtained, which are split into two sets: training and test. Since the prediction takes input from previously observed 5
density maps, it is important to avoid overlapping of samples in the training and test set. To achieve that goal, training
samples are only drawn from these images observed in the first 22 days while test samples are only drawn from the
remaining 6 days. During the sampling, an image is randomly drawn first, which is treated as the label. At the same
time, its previous 5 images are retrieved as input. The input and the label collectively form a single sample in the
training and test data. Consequently, the training data contains 523 samples and the test data contains 139 samples,
which are shuffled before training. It ensures that the model can learn different patterns from a batch set of samples.

The training process is designed with 500 epochs where in each epoch the model is trained with a batch set of 64
randomly selected samples. The autoencoder is compared with a linear regression (LR) model, which performs a
global pixel-wise regression over the same training data. Therefore, the size of training data for LR model is 410,032
(523× 28× 28) and that of test data is 108,976 (139× 28× 28). The losses of these two models are shown in Figure 3.

4



A PREPRINT - FEBRUARY 28, 2019

24 12 24 12 24 12 24 12 24 12 24 12 24 12
Hour of day

0

20

40

60

80

100

120
M

SE

t1

t2

t3

t4 2k

4k

6k

8k

10k

12k

To
ta

l c
ou

nt

Auto-eoncoder MSE Linear regressor MSE Total count

Figure 4: Prediction error for each sample in the test data containing 139 samples
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Figure 5: Comparison of autoencoder and linear regression. The samples t1-t4 are labeled in Figure 4

As can be observed, the loss of autoencoder converges consistently during the training and finally stays around 60% of
the LR model.

To get more detailed comparison of the two models, MSE is computed from the true and the predicted image for each
sample in the test data. That prediction error and the total count of taxi trip origins in the ground truth image are shown
in Figure 4. It can be observed that the errors for both models follow a daily pattern, which is also highly correlated
with the total number of observations in each hour. The errors in the time period from 8:00 to 22:00 are higher than
the rest of the day. Four representative samples labeled from t1 - t4 are further selected with their prediction result
displayed in Figure 5. It shows that autoencoder tends to predict more accurate density map than conventional LR
model and its superiority is more apparent in specific hours, e.g. 8:00 and 24:00.
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5 Conclusion and future work

In this paper, a traffic prediction framework was described and an autoencoder was designed for predicting traffic
density map using historical data. Experiments on real-world taxi trip data demonstrated the advantage of autoencoder
over conventional linear regression model. Future work is planned in integrating additional information (e.g., time of
prediction) to further improve the accuracy. In addition to that, a spatial error metric mechanism will be incorporated
into the model during training to better assess the predictions.

References
[1] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts, methodologies, and applications.

ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):38, 2014.
[2] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, Fei-Yue Wang, et al. Traffic flow prediction with big data:

A deep learning approach. IEEE Trans. Intelligent Transportation Systems, 16(2):865–873, 2015.
[3] Noelia Caceres, Luis M Romero, Francisco G Benitez, and Jose M del Castillo. Traffic flow estimation models

using cellular phone data. IEEE Transactions on Intelligent Transportation Systems, 13(3):1430–1441, 2012.
[4] Marco Veloso, Santi Phithakkitnukoon, and Carlos Bento. Sensing urban mobility with taxi flow. In Proceedings

of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pages 41–44. ACM,
2011.

[5] Ivan Derevitskiy, Daniil Voloshin, Leonid Mednikov, and Vladislav Karbovskii. Traffic estimation on full graph
of transport network using gps data of bus movements. Procedia Computer Science, 101:207–216, 2016.

[6] Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R Stevens, Andrea E Gaughan, Vincent D
Blondel, and Andrew J Tatem. Dynamic population mapping using mobile phone data. Proceedings of the
National Academy of Sciences, 111(45):15888–15893, 2014.

[7] Rex W Douglass, David A Meyer, Megha Ram, David Rideout, and Dongjin Song. High resolution population
estimates from telecommunications data. EPJ Data Science, 4(1):4, 2015.

[8] Ghazaleh Khodabandelou, Vincent Gauthier, Mounim El-Yacoubi, and Marco Fiore. Population estimation from
mobile network traffic metadata. In 2016 IEEE 17th International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pages 1–9. IEEE, 2016.

[9] Joanna White and Ivan Wells. Extracting origin destination information from mobile phone data. 2002.
[10] Francesco Calabrese, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti. Estimating origin-destination flows using

opportunistically collected mobile phone location data from one million users in boston metropolitan area. 2011.
[11] Md Shahadat Iqbal, Charisma F Choudhury, Pu Wang, and Marta C González. Development of origin–destination

matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40:63–74, 2014.
[12] M Demissie, GH Correia, and C Bento. Traffic volume estimation through cellular networks handover information.

In 13th World Conference on Transportation Research, 2013.
[13] Rainer Kujala, Talayeh Aledavood, and Jari Saramäki. Estimation and monitoring of city-to-city travel times

using call detail records. EPJ Data Science, 5(1):6, 2016.
[14] H Kawashima. Long term prediction of traffic flow. In Control in Transportation Systems 1986, pages 75–82.

Elsevier, 1987.
[15] Billy M Williams and Lester A Hoel. Modeling and forecasting vehicular traffic flow as a seasonal arima process:

Theoretical basis and empirical results. Journal of transportation engineering, 129(6):664–672, 2003.
[16] Shashank Shekhar and Billy Williams. Adaptive seasonal time series models for forecasting short-term traffic

flow. Transportation Research Record: Journal of the Transportation Research Board, (2024):116–125, 2008.
[17] M Cremer and H Keller. A new class of dynamic methods for the identification of origin-destination flows.

Transportation Research Part B: Methodological, 21(2):117–132, 1987.
[18] Chengjue Yuan, Dewei Li, and Yugeng Xi. Medium-term prediction of urban traffic states using probability tree.

In Control Conference (CCC), 2016 35th Chinese, pages 9246–9251. IEEE, 2016.
[19] S Vasantha Kumar and L Vanajakshi. Short-term traffic flow prediction using seasonal arima model with limited

input data. European Transport Research Review, 7, 09 2015.
[20] Steven Chien, Xiaobo Liu, and Kaan Ozbay. Predicting travel times for the south jersey real-time motorist

information system. Transportation Research Record: Journal of the Transportation Research Board, (1855):32–
40, 2003.

6



A PREPRINT - FEBRUARY 28, 2019

[21] Bidisha Ghosh, Biswajit Basu, and Margaret O’Mahony. Bayesian time-series model for short-term traffic flow
forecasting. Journal of transportation engineering, 133(3):180–189, 2007.

[22] Nicholas G Polson and Vadim O Sokolov. Deep learning for short-term traffic flow prediction. Transportation
Research Part C: Emerging Technologies, 79:1–17, 2017.

[23] Rusul Abduljabbar, Hussein Dia, Sohani Liyanage, and Saeed Bagloee. Applications of artificial intelligence in
transport: An overview. Sustainability, 11(1):189, 2019.

[24] Hongbin Yin, S_C Wong, Jianmin Xu, and CK Wong. Urban traffic flow prediction using a fuzzy-neural approach.
Transportation Research Part C: Emerging Technologies, 10(2):85–98, 2002.

[25] Carl Goves, Robin North, Ryan Johnston, and Graham Fletcher. Short term traffic prediction on the uk motorway
network using neural networks. Transportation Research Procedia, 13:184–195, 2016.

[26] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks for citywide crowd flows
prediction. In AAAI, pages 1655–1661, 2017.

[27] Dong Wang, Wei Cao, Jian Li, and Jieping Ye. Deepsd: supply-demand prediction for online car-hailing services
using deep neural networks. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages
243–254. IEEE, 2017.

[28] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and Zhenhui Li.
Deep multi-view spatial-temporal network for taxi demand prediction. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

7


	Introduction
	Related work
	Methodology
	Traffic prediction framework
	Traffic density prediction with autoencoder

	Preliminary results
	Conclusion and future work

