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1 Introduction

Mobility as a Service (MaaS) and Park & Ride (P&R) initiatives are switfly gaining popularity
around the world as remedial measures to reduce traffic congestion. These schemes have in-
troduced major shifts in the interaction between travellers, transport infrastructure, and public
transport schemes. Several initiatives that promote the use of MaaS schemes to reduce pri-
vate usage already exist [Hesketh et al., 2017; Hellmann, 2014]. Their introduction has also
coincided with the increasing uptake of Electric Vehicles (EVs). While EVs are more envi-
ronmentally friendly [Uherek et al., 2010; Van Mierlo et al., 2006], they suffer from decreased
range (80 to 300 miles [Transport for London, 2019a]) capabilities compared to conventional
vehicles. Although current research efforts are primarily focused on new battery technologies to
increase their range [Kouchachvili et al., 2018], they are still potentially many years away from
widespread adoption. Charging speeds have been improving recently, but the number of rapid
chargers available for use is limited. The average time needed to charge a typical EV according
to the three most common charging levels (slow, fast, and rapid) are listed in Table 1.

Although new charging facilities are being installed continuously, the growth in the num-
ber of EVs is currently surpassing the growth in the number of charging points [Environment
Committee, 2018]. The issue intensifies if we take into consideration the charging demand by
Transport Network Companies (TNC) fleet. Most ride-sharing fleet operators have plans to
transition their fleets towards EVs in the near future, with many already operating a mix of
conventional, hybrid and electric vehicles. The average distance travelled in a ride-sharing ve-
hicle is around 1,000 miles per week [Takahashi, 2018], meaning that it needs recharging every
1-2 days. Adding up the time due to queue delays in charging points [Jung et al., 2014] the
problem worsens. Therefore, to maintain the current level of convenience provided by MaaS, the
supporting charging infrastructure needs to be sufficient to meet the demand.

Across London there are around 2,000 charging points [Mayor of London, 2018] and 150
rapid charging points [Transport for London, 2019a]. In comparison, the number of EVs in
the city is 12,000 [Environment Committee, 2018]. Considering that there are already more
than 80,000 private hire vehicle licences [Transport for London, 2019b] and that TNCs aim to
transition to fully EVs in the near future (e.g. Uber [Uber UK, 2018]), it is clear that the
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Charging level Charging rate Time to fully charge
Slow 3 kW 8 hours
Fast 7-22 kW 3-4 hours
Rapid 43-50 kW 30 minutes (80% charge)

Table 1: The rate and time to charge for various charging levels [Griffiths, 2019]

number of charging points must significantly increase. Given this shortage, the search for an
empty charging location is likely to reduce the efficiency of an EV-based ride-sharing platform,
and contribute to an increase in the number of overall empty vehicle-miles travelled, a commonly
used metric of fleet efficiency and a proxy for contribution to congestion.

London City Council supports the establishment of rapid charging points to be used by taxis
only [Transport for London, 2019a], with some TNCs already investing in installing their own
charging points [Lekach, 2018]. Despite this, a number of spatial and temporal parameters need
to be taken into account before installing new charging points. Firstly, the charging demand
across every zone, which varies throughout the day, needs to be met. Secondly, due to the
limited budgets for the charging infrastructure, the number of charging points to be installed is
bounded. In addition to the installation and maintenance costs, which depend on the type of
the charger, the cost of renting the parking spaces must also be considered.

On-street restrictions set by the council have to be taken into consideration. On-street
parking permits sold to TNCs for an extended period of time are limited as otherwise there
is not sufficient availability of spaces for residents and pay and display machines, negatively
affecting the public image of the local authority [Barter, 2017].

Many studies have focused on variations of the facility location problem. Xiong et al. [2018]
proposed a bilevel optimisation model for the placement of EV charging points. The objective
of the upper-level of the problem, set by the government, aims to minimise the social cost. In
the lower-level, a congestion game is formulated between the EV drivers, each of whom aims to
minimise his personal cost which is equal to the travel time to reach the station and the waiting
time in the station queue to recharge. Asamer et al. [2016] solved an optimisation problem
optimally to find the regions for the placement of charging stations used by taxi companies.
The objective of the problem was to maximally satisfy the charging demand of the taxis under a
predefined budget. The charging demand was predicted based on the customer origin-destination
trip data. In a similar setting but solely for taxis, Gopalakrishnan et al. [2016] predicted the
charging demand using supervised learning on road traffic data and points of interest to the
passengers (e.g. restaurants, shopping centres, etc.). Next, the authors implemented a heuristic
to solve a budgeted optimisation problem to determine the exact locations of the charging
stations that ensured all points of interest were covered. Jung et al. [2014] proposed a stochastic
bilevel optimisation formulation for the placement of stations with the upper-level objective of
minimising the empty miles travelled and the queue delays at charging stations. From a different
perspective with regard to the impact that large-scale EV charging can have on the power grid,
Luo et al. [2017] presented a game theoretic model and proposed a mechanism for the placement
of charging stations in a number of stages. At each stage, the charging demand of the customers
is predicted using a nested logit model and then the strategic interactions of the service providers
for the placement of stations are analysed using a Bayesian game. The authors considered three
charging providers, each being responsible for the installation of charging points of a specific type
of charging level (slow, fast, rapid). One limitation of these models is the lack of consideration
given to the placement of TNC charging facilities with council restrictions on on-street parking
and charging permits (over extended periods of time).

To address this omission, we propose a bilevel optimisation model for the Charging Facility
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Placement (CFP) problem similar to [Xiong et al., 2018] but from the viewpoint of TNC opera-
tors only. We assume that TNC drivers can relocate to any zone to charge the vehicle’s battery.
Although there may be some cases where the empty miles travelled will be substantial, there
are various reasons why a TNC driver will prefer to travel such a distance for charging. It could
be due to the reduced cost per hour compared to other charging points (due to low demand in
the area), the charging point is rapid and enables the EV to fully recharge in less than an hour,
or even that the driver uses a charging point in a zone with high customer demand [Garg and
Ranu, 2018]. However, to feasibly solve the CFP problem, the number of charging points in the
adjacent zones are able to satisfy the demand.

The upper-level objective of CFP is the minimisation of the total cost to install the charging
infrastructure and the time cost (converted into monetary units) induced when the TNC vehicle
does not serve a customer (idling time). The lower-level is a congestion game played by the
TNC drivers, each of whom aims to minimise his idle time which can either be the travelling
time to the charging point, the cruising time to find an available charging point, the waiting
time in a queue to charge the vehicle’s battery, or all together. The council restrictions on
the maximum number of spaces available on-street for dedicated long-term charging points for
TNCs are incorporated as constraints in the upper-level of CFP for every zone considered in
the problem. Contrary to previous work, the TNCs require a minimum number of rapid charge
points to be placed in each zone.

2 Model description

The objective of a TNC operator is to place off-street (parking facilities) or on-street (kerbside)
charging points that satisfy demand for the minimum total cost. The cost function in the
objective is the sum of the installation and maintenance costs and the cost of TNC driver idle
time. The integer variables si, fi and ri indicate the number of slow, fast, and rapid chargers
that should be installed in facility i and the cost of each of these chargers is csi , c

f
i , c

r
i respectively.

We assume that the candidate parking facilities where charging points can be placed are
given in the input of the problem and that the TNCs take into account the restrictions set by
the local authorities. Specifically, there is a limited number of on-street spaces where charging
points can be placed and used exclusively by TNCs for long periods of time.

The study is focused on the Greater London area and is divided into a fixed number of zones.
In order to satisfy the charging demand for a given zone, it is assumed that a sufficient number
of charging points are installed in not only the zone, but also in adjacent zones. We use the
adjacency matrix A to indicate the neighbouring zones, e.g. Azj = 1 if zone j is adjacent to
zone z. We assume that a zone is adjacent to itself.

Although the charging demand varies with time, the input parameter of zone demand, de-
noted by dz, takes the value of the maximum predicted demand on each zone. Each candidate
facility at location i is associated with a capacity CAPi denoting the number of available spaces
to install charging points and a binary parameter αi which denotes the type of the facility, i.e.
αi = 1 if i is located on-street and αi = 0 if it is located off-street. A binary matrix B is used to
indicate whether a facility belongs to a zone or not (e.g. Biz = 1 if facility i belongs to zone z
and Biz = 0 otherwise). Since TNCs need to charge their fleet as quickly as possible, we assume
that they demand a minimum number of rapid chargers to be installed, denoted by R.

We define the idling time tv, to be the total time that vehicle v serves no customer. That is
equal to total time from the vehicle’s latest drop-off location to the preferred charging point and
the time from the charging point to its next pick-up location, the cruising time spent to find an
available charging point or one with low waiting time, the waiting time in the (possible) queue
to recharge and the charging time.

The charging point located at position i is selected by driver v with probability pvi. The
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expected idling time of vehicle v to recharge at charging point i is denoted as Tvi. The bilevel
programming formulation of the CFP problem is presented below:

min
∑
i∈F

csisi + cfi fi + cri ri + λ
∑
v∈V

tv (1)

s.t
∑
j∈Z

Azj

∑
i∈F

Bijyi ≥ γdz, ∀z ∈ Z (2)

yi = si + fi + ri, ∀i ∈ F (3)∑
i∈F

ri ≥ R (4)∑
i∈F

αiBizyi ≤ Nz, ∀z ∈ Z (5)

yi ≤ CAPi, ∀i ∈ F (6)

yi, si, fi, ri ∈ N, ∀i ∈ F (7)

tv ∈ arg min
∑
i∈F

pviTvi, ∀v ∈ V (8)

s.t
∑
i∈F

pvi = 1, ∀v ∈ V (9)

0 ≤ pvi ≤ 1, ∀v ∈ V, i ∈ F (10)

where F,Z denote the sets of the candidate facilities and the set of zones, respectively. The
objective (1) minimises the total cost of slow, fast, and rapid charging points as well as the total
time cost when the vehicle remains idle. λ is a factor to convert the time into a monetary cost.
Constraints (2) ensure that the number of charging points installed per zone satisfies at least
a proportion of the maximum demand in the zone and surrounding zones, where γ denotes the
proportion of charging demand to be satisfied. Constraints (3) indicate that the total number
of charging points yi at location i is equal to the sum of the slow si, fast fi and rapid ri charging
points. Constraint (4) ensures that the minimum number of rapid charging points required
by the TNC operator is met. The limit on the number of spaces to place on-street charging
points per zone is given in constraints (5). Constraints (6) ensure that the spaces needed to
install charging points per facility cannot exceed its capacity. Constraints (7) indicate that the
variables yi, si, fi, ri must have integer values. The lower-level objective minimises the idle time
cost of each vehicle v denoted by its cost function Tvi. Equations (9) and constraints (10) ensure
that the probability rules are satisfied.

3 Expected results

We predict the charging demand for each zone in the Greater London area using a supervised
learning method with real road traffic flows, and points of interest data obtained from a publicly-
available source in a similar way to [Gopalakrishnan et al., 2016]. First, the single objective
optimisation problem is solved optimally using a greedy algorithm. The single objective is
derived from objective (1) by omitting the time cost of the vehicles and constraints (2) - (7).
Next, we solve the bilevel problem by relaxing the integrality constraints and rounding the
values in such a way that the feasibility of the resulting solution is preserved. We further
propose heuristics such as simulated annealing and genetic algorithms. We then compare the
value of the equilibrium of the underlying lower-level game to the optimal solution by computing
the price of anarchy [Koutsoupias and Papadimitriou, 2009]. Finally, agent-based mesoscopic
simulations are performed to investigate the sensitivity of various model parameters.
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Figure 1: Flowchart of the algorithm for the model described in this study
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