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1 Introduction 

Bicycling is becoming more and more popular in cities around the world. For instance, 

Copenhagen is going to invest from 1.1 to 1.8 bio. DKK in bicycle infrastructure by 2025 

(Municipality of Copenhagen, 2017). Due to this trend in urban cycling, bicycles are starting to be 

taken into account in transport modelling (e.g., Tønning and Vuk, 2017). However, bicycle transport 

is still included in a simplistic manner in most transport models, which could lead to a 

misunderstanding of cyclists' behaviours and preferences, as well as to bias when evaluating 

potential infrastructure investments. 

Several bicycle route choice models have been estimated based on stated preference (SP) data 

(e.g. Bovy and Bradley, 1985; Hunt and Abraham, 2007; Sener, Eluru, and Bhat, 2009). Recently, 

the development of the GPS technology have made it easier to observe actual route choices, and 

consequently more studies based on revealed preference (RP) data have been carried out in the 

recent years (e.g., Prato, Halldórsdóttir, and Nielsen, 2018; Bernardi, Paix-Puello, and Geurs, 

2018). Apart from the length of the trip, these studies found that steepness, turns, or cycling in the 

wrong direction have a significant negative effect. Furthermore, land-use attributes as well as the 

infrastructure also showed to have an influence on route choice preferences. 

Beside these traditional attributes, the literature suggests that individual stress levels can influence 

cyclists’ behaviour. Moreover, “bicycle stress level” is a theory developed by Geelong Bike Plan 

Team in Australia in 1978 (Harkey, Reinfurt & Knuiman, 1998; Sorton & Walsh, 1994). This theory 

assumes that cyclists, besides focusing on reducing travel time and physical effort, also to a great 

extent seeks to reduce their individual stress level e.g. caused by motor traffic. Since then, different 

concepts for cyclists stress level have been employed as indicators and used in simplified 

calculations when prioritising bicycling infrastructure projects – most often with the goal of being 

able to evaluate bicycling behaviour and prioritise bicycling projects with a minimum of input 

(Mekuria, Furth & Nixon, 2012). For example, Sorton & Walsh (1994) used the bicycling stress 

level theory to simplify complex physical and psychological information to basic classifications from 

1-5. However, the literature is missing examples of quantitative modelling of stress factors.  

The intention of our study is to contribute to the literature of bicycle behaviour by estimating how 

stress factors affect cyclist behaviour in a detailed route choice model. In particular, we seek to 

explain how bicycle congestion affects cyclists at an individual level. Especially in Copenhagen, 

there are many locations where cyclists experience congestion and this might mean that cyclists 
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avoid these locations if they feel less safe or the density of cyclists is too high. The route choice 

model is based on RP data and carried out in the Greater Copenhagen area, Denmark. While the 

GPS data is the same as the one used in Prato, Halldórsdóttir, and Nielsen (2018), the bicycle 

network has been through a major update. The structure of the paper is as follows. Section 2 

presents the data, while Section 3 presents the estimation methodology. Section 4 presents and 

discusses the results and Section 5 presents the conclusion and potential avenues for new 

research.  

2 Data 

2.1 Bicycle Network  

The bicycle network is comprised by 77,455 unidirectional bicycle links, 58,181 nodes, covers the 

Greater Copenhagen area, and contains very detailed information regarding different link 

attributes. For instance, although land-use information along the links was already included in 

previous studies (e.g., Prato, Halldórsdóttir, and Nielsen, 2018), this information only expressed 

the presence or not of each land-use category near to each link. Therefore, it was not possible to 

investigate differences in land-use distances within a link. In this new network, we count with the 

exact number of meters of each land-use category on both sides of each link. In addition, our 

bicycle network includes information regarding the hourly capacity and average flow of every link. 

Assuming that the relation between flow and speed accords with the Bureau of Public Roads 

(BPR)-formula, the differences in speed and travel time between the congested and the free flow 

scenarios can be calculated. Therefore, the links were classified in three different congestion levels 

using the relation between the congested and uncongested speeds.  

2.2 GPS data gathering, processing and map-matching 

The GPS data was gathered in the Greater Copenhagen area in 2012 and 2013 by giving GPS 

trackers to a total of 318 cyclists. The raw data was filtered and bicycle trips were subsequently 

map-matched to the bicycle network by applying the algorithm described in Nielsen and Jørgensen 

(2004). An additional filtering after the map matching to remove trips erroneously map-matched 

resulted in a dataset containing a total of 2,496,328 GPS points and 4,630 bicycle trips, made by 

301 different individuals. 

2.3 Similarity between most-used links and congested links 

In Figure 1a below we present the number of cyclists per link in order to show the links that are 

most used by the observed routes. Clearly, the most-used routes are following the larger main 

roads in the network. In Figure 1b, the level of congestion for each link is shown and it is clear that 

there is a strong overlap between busy links and congested links. This indicates that cyclists like to 

follow the most direct routes, maybe despite discomforts such as congestion. 
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Figure 1a - Busiest observed links 

 

Figure 1b - Level of congestion 

 
 

Due to this result, we found it necessary to include the motorised road type as part of the modelling 

to avoid implausible results due to correlation between road type and bicycle congestion variables.  

3 Model development and methodology 

3.1  Choice set generation  

The present study applied a doubly stochastic generation (DSGF) method (Bovy and Fiorenzo-

Catalano, 2007) with a multi-attribute cost function for generating the choice set. 

Apart from considering route length, the cost function includes link type (i.e., road, road with bicycle 

lane, road with bicycle path, bicycle path, footpath, steps), motorized traffic lanes (i.e., zero, one, 

two, three, and four), surface types (i.e., paved or unpaved), land-use information (i.e., nature or 

not nature), and cycling in the wrong direction or not. As a result, the link cost function was defined 

as follows: 

𝐶𝑎 = 𝛽𝑇𝑇𝑇𝑎 + 𝛽𝐷𝐷𝑎 + ∑ 𝛽𝑃𝑘

𝐾
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+ 𝛽𝑈𝑈𝑎𝐷𝑎 + 𝛽𝑊𝑊𝑎𝐷𝑎 + 𝜀𝑎(1) 
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where 𝐶𝑎 is the cost of link 𝑎 , 𝑇𝑇𝑎   is the total travel time of link 𝑎, 𝐷𝑎 is the length of link 𝑎, 𝑃𝑎𝑘 is 

equal to 1 when link 𝑎 is link type 𝑘 (𝑘 = 1, … , 𝐾), and 0 otherwise, 𝑆𝑎ℎ is equal to 1 when link 𝑎 is 

surface type ℎ (ℎ = 1, … , 𝐻), and 0 otherwise, 𝑅𝑎𝑙 is equal to 1 when link 𝑎 counts with l motorized 

traffic lanes 𝑙 ( 𝑙 = 1, … , 𝐿), and 0 otherwise, 𝑈𝑎   is equal to 1 when there is some kind of natural 

element (i.e., water, parks, forests, sand) at the right or left side of link 𝑎, and zero otherwise, 𝑊𝑎  is 

equal to 1 when cycling in the wrong direction, and 0 otherwise. Due to the doubly stochastic 

nature of the DSFG method, the different parameters(i. e. , 𝛽𝑇 ,  𝛽𝐷 , 𝛽𝑃𝑘
, which is different for each 

link type 𝑘, 𝛽𝑆ℎ
, which is different for each surface type ℎ, 𝛽𝑅𝑡

, which is different for each number of 

motorized traffic lanes 𝑡, 𝛽𝑈 and 𝛽𝑊) were log-normally distributed, while the error term 𝜀𝑎, was 

gamma distributed. 

3.2 Model formulation 

With the intention of accounting for similarity among alternatives, a Path-Size logit (PSL) model 

(Ben-akiva and Bierlaire, 2009) was estimated. Additionally, as all previous studies concluded that 

length is the attribute which affects route choices the most, the attributes defined by length were 

modelled in value of distance (VoD) space, obtaining the influence of such attributes with respect 

to the length (distance) of the route. The utility function is defined as follows: 

𝑈𝑛𝑗 =  𝛾(𝑑𝑛𝑗 + 𝜷𝒚𝒚𝒏𝒋) + 𝜷𝒛𝒛𝒏𝒋 + 𝜀𝑛𝑗         (2) 

where 𝑛 is the cyclist, and 𝑗 is a route alternative included in the choice set 𝐽. As the route length 

parameter was fixed to 1, 𝛾 is a parameter which represents the original preference space 

parameter for route length 𝑑𝑛𝑗. 𝒚𝒏𝒋 and 𝒛𝒏𝒋 are vectors of the attributes defined and not defined by 

length, respectively, while 𝜷𝒚 and 𝜷𝒛 are the corresponding parameters to be estimated, and 𝜀𝑛𝑗 is 

the error term. 

As a result, the probability 𝑃𝑛𝑗 that cyclist 𝑛 is going to choose route 𝑗 was defined as follows: 

𝑃𝑛𝑗 =
𝑒𝑥𝑝(𝛾(𝑑𝑛𝑗 + 𝜷𝒚 𝒚𝒏𝒋) + 𝜷𝒛 𝒛𝒏𝒋 + 𝜀𝑛𝑗 + 𝛽𝑃𝑆   ln 𝑃𝑆𝑗)

∑ exp(𝛾(𝑑𝑛𝑙 + 𝜷𝒚 𝒚𝒏𝒍){𝑙∈𝐶} + 𝜷𝒛 𝒛𝒏𝒍 + 𝜀𝑛𝑙 + 𝛽𝑃𝑆 ln 𝑃𝑆𝑙)
         (3)   

where the terms ln 𝑃𝑆𝑗 and ln 𝑃𝑆𝑙  are the path size factors of routes 𝑗 and 𝑙, respectively, while the 

𝛽𝑃𝑆 is the parameter related with them that has to be calculated.  

4 Results 

4.1 Generated route choice sets 

For a coverage threshold of 80%, the choice set was able to replicate the 60.91% of the observed 

routes. The maximum number of generated alternatives per observed route was defined as 100, 

obtaining an average of 83.59 and a standard deviation of 37.03. Comparing the observed routes 

to the generated alternatives, the observed routes are, reasonably, on average shorter, have less 

kilometres cycled in the wrong direction, less number of turns, and lower cumulative elevation gain.  
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4.2 Model estimation 

Initially, models including the path size term were tested. However, a negative estimate value for 

the path size term was obtained, contradicting the theoretically expected positive value (Ben-Akiva 

and Bierlaire, 2009). As a result, it was decided to not include the path size term, reducing the 

model estimated to a Multinomial Logit (MNL) model. 

When we included both road type and level of (bicycle) congestion in the model, we found that 

cyclists prefer larger roads and roads with more congestion. Furthermore, the latter result 

appeared to have the greatest effect, which we found implausible. Instead, we tested each variable 

in separate models and found that the model including road type obtained the best fit when looking 

at Log-likelihood. Also, we found it more plausible that the main roads were chosen due to practical 

features related to each road type (such as more direct routes, fewer stops, or bicycle path quality) 

rather than that they are congested. Thus, the model with road types was chosen for further work. 

Unfortunately, this means that we so far are not able to present a reliable result for bicycle 

congestion. 

Table 1 presents the estimates for the best model specification. The interpretation of the attribute 

parameters differs depending on if modelled in VoD space or in preference space. On one hand, 

VoD space estimates are the rates of substitution, so when the sign is positive (negative) the route 

is perceived as longer (shorter) because of the effect of that attribute. For instance, the estimated 

value of cycling in the wrong way for females is equal to 1.30, meaning that for females the route is 

perceived as 130% longer when cycling in the wrong direction. On the other hand, when the 

estimates are obtained by modelling in preference space, a positive (negative) sign means that this 

attribute affects route choices in a positive (negative) way. 

Table 1: Model estimates of the final Multinomial Logit (MNL) model 

Parameter Estimate St.err. t-test p 

Not modelled in VoD space 

Turns 

  Right turns -0.059 0.013 -4.65 0.00 

  Left turns -0.058 0.013 -4.29 0.00 

Cumulative elevation gain (m) 

  Above 35 vertical meters/km -0.032 0.009 -3.62 0.00 

Modelled in VoD space 

  Length (m) 1.000 - - - 

  Wrong way (m) 1.30 0.096 13.46 0.00 

  Wrong way-males (m) -0.267 0.089 -2.98 0.00 

Bicycle infrastructure type (m) 

  Road without bicycle facilities - - - - 

  Road with bicycle lanes -0.076 0.061 -1.24 0.21** 

  Road with segregated bicycle path -0.296 0.025 -11.67 0.00 

  Bicycle path in own trace 0.278 0.106 2.63 0.01 

  Bicycle path in own trace – medium cyclists -0.458 0.107 -4.27 0.00 

  Bicycle path in own trace – fast cyclists -0.382 0.110 -3.48 0.00 

  Footpath 0.233 0.146 1.59 0.11** 

  Steps 0.500 0.824 0.61 0.54** 

Number of motorised traffic lanes (m) 

  0 lanes 0.339 0.056 6.05 0.00 
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  1 lane -1.16 0.294 -3.94 0.00 

  2 lanes - - - - 

  3-4 lanes 0.115 0.038 3.03 0.00 

Motorised road type (m)     

Small roads - - - - 

Medium roads  - - - - 

Large roads 0.205 0.075 2.72 0.01 

Large roads – medium speed cyclists -0.260 0.082 -3.18 0.00 

Large roads – fast cyclists -0.452 0.0853 -5.30 0.00 

Land-use attributes / right side (m) 

  Hydro - - - - 

  Green restricted areas - - - - 

  Green areas/ Parks - - - - 

  Green areas/ Forests 0.644 0.157 4.11 0.00 

  Green areas/ Forests - males -0.086 0.187 -0.46 0.65** 

  Industrial and technical areas 0.145 0.066 2.20 0.03 

  Urban / High residential and centre areas 0.198 0.052 3.82 0.00 

  Urban / Low residential areas 0.263 0.059 4.43 0.00 

Model parameters 

  Gamma -0.002 0.0001 -19.61 0.00 

Number of estimated parameters 24 

Number of observations 3461 

Null log-likelihood -15,036.860 

Final log-likelihood -11,270.134 

Adjusted rho-square 0.250 

Note: * not significant at the 95% level; ** not significant at the 90% level. 

According to the results, turn frequency has a negative influence and cumulative elevation gain is 

also seen as a negative factor when the steepness is higher than 35 vertical meters per kilometre. 

Cyclists clearly dislike cycling in the wrong direction and especially females, who perceive the 

route as 130% larger, while for males this perception is 103.3%. 

With regard to the bicycle infrastructure, cyclists perceive routes as 29,6% shorter when cycling in 

roads with segregated bicycle paths, always in comparison to the reference (roads without bicycle 

facilities). Roads with bicycle lanes were not significantly different from the reference, which 

contradicts the findings of Prato, Halldórsdóttir, and Nielsen (2018). In addition, it was found that 

for slow cyclists (average cycling speed lower than 15.5km/h) bicycle paths in own trace are very 

unattractive (27.8% longer), while for medium and fast cyclists they are more attractive than the 

reference (18% and 10.4% shorter, respectively). 

In line with the preference for roads with segregated bicycle paths, it was found that roads with 2 

motor traffic lanes are preferred over paths without motor traffic lanes, showing a clear cyclists' 

preference for bicycle facilities next to roads. Besides, roads with two motor traffic lanes are 

considered less attractive than roads with one, but more attractive than roads with three or four, 

meaning that cyclists could be affected by motor traffic levels, as concluded by Prato, 

Halldórsdóttir, and Nielsen (2018). 

Only the land-use attributes at the right side showed a significant effect. Routes next to water, 

green restricted areas, and parks were used as reference and were shown to be the preferred 

ones over all the others. In addition, routes next to low residential areas, and high residential and 
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centre areas, are perceived as longer, but the latter in a lesser extent than the former (26.3% and 

19.8% larger, respectively). The reason could be that cycling in high residential and centre areas is 

usually more intuitive and attractive than in more remote areas. Finally, there is a clear gender 

heterogeneity regarding cycling next to forests, which could be explained by the generally poor 

lighting and surface condition in such places. 

Finally, the effect of motorised road type, which was found to be correlated with congestion, 

showed a fast cyclists’ strong preference (24,7% shorter), and a medium fast cyclists’ smaller 

preference (5,5% shorter), both for large roads compared to small and medium roads. In contrast, 

for slow cyclists the strong preference was for small and medium roads over large ones (20,5% 

shorter). The reason behind could be that the faster cyclists usually follow their mental maps 

composed by large and main roads. These cyclists could be fast due to individual characteristics or 

due to the purpose of the trip. We need to test further, whether other of the characteristics present 

in the data could explain this behaviour better than cycling speed. However, the results indicate 

that for this group, congestion seems not to be an issue. Also, the results show a clear 

heterogeneity across cyclists when it comes to the preference for road types. There seem to be a 

slower group of cyclists who prefer smaller roads which also often are less congested. 

5 Conclusion 

This study presents results from a bicycle route choice model based on RP data, which can be 

used by decision makers as a tool for evaluating the effectiveness of cycling-related investments 

and policies. Similar to previous studies, we find that cyclists prefer shorter routes, low turn 

frequency, less steepness and routes with good cycling infrastructure, especially roads with 

segregated bicycle paths. Based on improved land-use variables we also find that cyclists prefer 

green surroundings and that high residential and centre areas are preferred to low residential 

areas.  

The main goal of the study was to analyse whether also stress factors have an effect on cyclist’s 

behaviour and in particular how congestion in Copenhagen might affect route choice behaviour. As 

the initial analysis of the data indicated that the most used links in the network were also those with 

the most congestion, we found it necessary to control for road type in the model as the most used 

routes were following the larger (most direct) roads. Due to large correlation between road type 

and the level of congestion, we did not manage to include the congestion attribute in the final 

model. The modelling results confirm that cyclists overall prefer larger roads, but only for cyclists 

categorized as medium and fast speed. The speed of the cyclists might indirectly be related to 

individual characteristics but also to trip purpose, which we unfortunately do not have in the data. 

Fast cyclists might prefer the direct routes and better cycling conditions which are usually related to 

the main roads, and with the current modelling results they seem unaffected by congestion. This 

leaves us with the slowest group of cyclists, who associate large roads with a 20.5% addition in 

route length. Further analysis with more advanced models should indicate whether this behaviour 

is due to a congestion effect or other factors related with large roads. 
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