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Abstract: This paper illustrates a systematic sensitivity analysis experiment of the driving 

behavior models’ parameters in VISSIM. The aim is to explore their impact on selected 

macroscopic (average travel time and number of lane changes) and mesoscopic (distribution 

of lane change locations along the road) outputs. The experiment starts by a one-at-a-time 

screening technique to determine the initial key parameters set and their reliable ranges and 

effective variation steps. Next, the elementary effects screening technique uses the first round 

outputs for verification and to reveal the interaction between these parameters. Out of 22 

parameters related to car-following and lane changing models in VISSIM, 15 parameters 

showed various degrees of impact on the proposed macroscopic sensitivity measures. At the 

mesoscopic level, Maximum Look Ahead Distance, Safety Distance Reduction Factor, CC0, 

CC1, CC3, and CC4, and Lane Changing Distance were significant for free and discretionary 

lane changing maneuvers respectively. Although the same set of 15 parameters affects all 

sensitivity measures, their relative importance differs among those measures and there was no 

specific trend or correlation between their values and the magnitude of their influence. 

 

Keywords: “VISSIM”, “Sensitivity Analysis”, “Mesoscopic Analysis”, “Elementary Effects”  

 

1. Introduction 

 

Traffic flow simulators provide a flexible, safe, relatively cheap and simple research 

environment for scenario exploration in traffic engineering and transport planning. These 

simulators are composed of different operational models such as car-following, lane-changing, 

lateral motion, and emission models. Each model either individually or incorporated with other 

models has a specific role producing a certain traffic behavior. This behavior, i.e. the impact of 

the model parameters on the traffic conditions can be measured at different levels of aggregation 

namely: macroscopic, mesoscopic, and microscopic.  Calibrating a micro-simulator such as 

VISSIM is a challenging task since there are more than 30 parameters of various driving 

behavior sub-models that need to be tuned. Recently, automatic optimization techniques are 

used to perform this task. Nevertheless, this large number of parameters may mislead the 

optimization algorithm, possibly yielding only locally optimal solutions. Moreover, it 

substantially increases computation time.  

This work proposes a systematic Sensitivity Analysis (SA) experiment of the driving behavior 

models’ parameters in VISSIM. The impact of each parameter on the simulator output is 

explored on the macroscopic level presented by the vehicle Average Travel Time (ATT) and 

number of lane changes, and on the mesoscopic as the distribution of lane-changing locations. 

The experiment has two main parts. It starts by a One-At-a-Time (OAT) SA where the key 

parameters, effective range and variation step are identified using a one-way ANOVA test. The 
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outputs of the first screening is used as inputs for the second analysis, where the Elementary 

Effects (EEs) method (Morris, 1991) is applied to verify the explored key parameters set and 

investigate the interaction between these parameters. The following sections outline the 

motivation of this work, methodology, results, and conclusion.  

 

2. Motivation 

 

The literature provides a few examples on SA of VISSIM. Lownes and Machemehl (2006) 

addressed a multi-parameter SA study of the Wiedemann-99 car-following model parameters 

in VISSIM using a two-way ANOVA test where the average capacity of the US 75 NB and 

SH190 interchange is used as sensitivity measure of the model parameters. The results showed 

that the standstill distance (CC0) and time headway (CC1) are the most influential parameters, 

were their influence degree is affected by the interaction with standstill acceleration (CC8) and 

negative/positive following thresholds (CC4 and CC5) respectively. Habtemichael and Santos 

(2013) investigated the key parameters of the Wiedemann-99 car-following and lane-changing 

models in VISSIM by quantifying their impact on traffic safety and dynamics. The impact on 

traffic safety was quantified as the change in vehicle conflicts whereas the change in travel time 

was used to illustrate the impact on traffic dynamics. Relying on the student’s t-test, the key 

parameters affecting vehicle conflicts are CC1 to CC5, safety distance reduction factor, 

maximum deceleration of trailing vehicles, and lane changing position. The same parameter set 

showed various impacts on the travel time. Menendez and Ge (2012) applied an enhanced 

version of the elementary elements (EE) method to reduce the screening time for identifying 

the most influential parameters of  the Wiedemann-74 and lane-changing models in VISSIM.  

The key parameters were considered for calibrating the inner network of Zurich city, 

Switzerland. They concluded that Wiedemann 74 parameters were all effectively coupled with 

only two parameters of the lane-changing model namely: safety distance reduction factor and 

lane change distance. An intuitive interpretation for this result is that the model network serves 

urban traffic so lane-changing maneuvers are relatively unimportant compared to freeways.    

The calibration of VISSIM for freeway weaving sections is not an easy task, as because of the 

complex maneuvering all the driving behavior models are triggered. To measure the sensitivity 

of driving behavior models in VISSIM it is important to consider scenarios for SA that cover 

all possible traffic conditions that may occur on the freeway, both in congested and free flow 

states. However, previously mentioned studies relied on specific scenarios that may not produce 

all desired traffic conditions and that hence may not give the chance to some parameters to 

show their effect on the model output. Moreover, they did not specify the effective range and 

minimum perturbation step of each parameter, although this would be useful information to 

exploit in a calibration optimization algorithm (e.g. Genetic Algorithm) to provide a realistic 

optimal solution at less computation time. Finally, calibrating microscopic simulators to 

macroscopic output only may not be enough to reproduce realistic traffic flow characteristics 

on the mesoscopic and microscopic levels especially the distribution of lane changes locations. 

Therefore, besides the above mentioned points and as a key contribution of this work, we are 

aiming to find the driving behavior parameters that have a significant influence on the model 

output at the mesoscopic level in terms of lane changing distributions over the length of a 

freeway section.    

 

3. Methodology 

 

Since it is crucial to consider a scenario that triggers all the driving behavior models’ 

parameters, the modelled road section should be capable of producing all possible traffic 

conditions and maneuvers such as free and mandatory lane changing, a mixture of vehicles with 

different destinations, etc. One such scenario is a freeway section with an upstream on-ramp 
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and a downstream off-ramp, see Figure 1, and this is actually where practitioners find it difficult 

to calibrate VISSIM specifically on the mesoscopic level.   

 

 

Figure 1: Scheme of the section layout 

 

The One-At-a-Time (OAT) screening technique is applied to 22 selected parameters of the 

driving behavior models in VISSIM. Each parameter’s input space 𝑥𝑖 (𝑖 = 1, . . ,22) is explored 

over its initial range 𝑅 = [𝑥𝑖
𝑚𝑖𝑛 , 𝑥𝑖

𝑚𝑎𝑥]  by varying its default value 𝑥𝑖
𝑑 four times with a 

variation step 𝛼𝑖
𝑘 (𝑘 = 1, . . ,4), where in each step 𝛼𝑖 takes a different arbitrary value and 

direction, see Table 1. This is useful to identify the minimal effective variation step 𝛼𝑖
∗ that is 

needed to trigger an impact on the model output.  

 
Table 1: The considered parameters for SA with their initial ranges and variation steps 

Parameter Range 𝒙𝒊
𝒅 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 

Maximum look ahead distance  [200, 300] 250 -50.0 -20.0 10.0 40.0 

Maximum look back distance  [100, 200] 150 -50.0 -20.0 10.0 40.0 

Temporary lack of attention, duration  [0, 2.5] 0.00 0.50 1.00 1.50 2.00 

Temporary lack of attention, Probability  [0, 10] 0.00 2.00 4.00 6.00 8.00 

Standstill distance (CC0)    [0.5, 2.5] 1.50 -0.75 -0,25 0.25 0,75 

Following variation (CC2)   [2, 8] 4.00 -2.00 -1.00 2.00 4.00 

Threshold of entering following (CC3)    [-12, -4] -8.00 4.00 2.00 -1.00 -4.00 

Negative following threshold (CC4)     [-1.5, -0.01] -0.35 -1.15 -0.65 -0.15 0.34 

Positive following threshold (CC5)    [0.01, 1.5] 0.35 -0.34 0.15 0.65 1.15 

Oscillation acceleration (CC7) [0.1, 0.5] 0.25 -0.15 -0,05 0.05 0.25 

waiting time before diffusion  [10, 120] 60.0 -40.0 -20.0 20 40.0 

min. headway front/rare  [0.2, 1] 0.50 -0.30 -0,10 0.20 0.50 

Meso-React-Time [0.6, 2.5] 1.20 -0.60 -0,20 0.40 1.30 

safety distance reduction factor [0.1, 1] 0.60 -0,40 -0,10 0.20 0.40 

Maximum cooperative deceleration [-5, -1] -3.00 -2.00 -1.00 1.00 2.00 

Maximum deceleration Own [-6, -2] -4.00 -2.00 -1.00 1.00 2.00 

Maximum deceleration Trailing [-5, -1] -3.00 -2.00 -1.00 1.00 2.00 

Accepted deceleration Own [-1.5, -0.5] -1.00 -0.50 -0.25 0,25 0.50 

Accepted deceleration Trailing [-1, -0.5] -0.50 -0.50 -0.25 0.00 0.25 

Cooperative lane change – max. speed difference  [10.2, 11.4] 10.8 -0.40 -0.20 0.19 0.39 

Mean of time headway distribution (CC1) [0.5, 1.5] 0.90 -0.40 -0.20 0.30 0.60 

lane changing distance  [100, 300] 200 -80.0 -40.0 40.0 80.0 

 

For each parameter, we have 5 groups where the first group is common for all parameters 

because it is the output of default parameters values, so the total number of different groups is 

89. The change in ATT along the proposed section in free flow and congested traffic conditions 

separately is the (macroscopic) sensitivity measure of parameters. This choice is motivated by 

observing that travel time is affected by other traffic flow variables such as density, speed, 

headway, etc. Due to the interaction and the dependency between all these variables any change 

in them would lead to a change in the travel time. A one-way ANOVA test is used to identify 

the key parameters. Since the ANOVA test only tells if the groups’ means are significantly 

different or not, we need  Tukey’s Honest Significant Difference (HDS) test to determine which 
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groups are different so we can identify the minimum effective variation step 𝛼𝑚𝑖𝑛
∗  and the 

reliable range 𝑅∗ of each parameter1. Another consideration is the stochastic nature of VISSIM. 

The simulator has stochastic functions that take different values upon each function call, leading 

to random fluctuations in traffic flow, vehicle arrivals, etc. If the simulation time period is too 

short such that these fluctuations are not sufficiently averaged over time, this may bias our 

identification of the key parameters set. In order to determine an appropriate duration of the 

simulation, we systematically varied the time period and determined the key parameters after 

each simulation. In order to make sure that the traffic flow is still in the free flow conditions the 

initial ranges were corrected based on the average speed then 𝑅∗ is identified. The influential 

parameters are labeled (*) if the number of different groups is only 2 and (**) if it is greater 

than 2. This qualitative assessment helps to select the most proper simulation duration (a higher 

repetitions of **). For some parameters such as CC0 there was no specific 𝛼𝑚𝑖𝑛
∗  so it can take 

any value within its range. Tables 2 and 3 summarize key parameters, 𝑅∗, and 𝛼𝑚𝑖𝑛
∗  of the 

different simulation runs by considering free flow and congested traffic conditions respectively. 

It is clear that simulation durations of 40 and 60 minutes are appropriate for free flow and 

congested conditions scenarios respectively as they give the highest number of parameters 

which have more than 2 different group, see Tables 2 and 3.  

 
Table 2: Key parameters for free flow conditions  

Key Parameter 
Identified after simulation duration of 

𝑹∗ 𝜶𝒎𝒊𝒏
∗

 
10 min 20 min 40 min 120 min 

CC0 ** ** ** ** [0.75, 2.25] - 

CC1 ** ** ** ** [0.7, 1.5] 0.30 

CC2 * * ** ** [2, 6] 1.00 

CC3 ** ** ** ** [-12, -4] 1.00 

CC4 * * ** ** [ -1, -0.01] 0.10 

CC5 * ** ** * [0. 35, 1.5] 0.10 

CC7 ** ** ** ** [0.1, 0.5] 0.10 

lane changing distance * * ** ** [180, 280] 40.0 

Max. cooperative deceleration * * ** ** [-4, -2] 0.50 

Max. deceleration Trailing * ** ** * [-4, -2] 0.50 

Max. look ahead distance * * ** * [200, 300] 20.0 

Safety distance reduction factor * * ** ** [0.2, 0.8] 0.10 

Min. headway front/rare   * * [-0.5, -0.1] 0.20 

Waiting time before diffusion   * * [0.5, 1] 0.20 

Accepted deceleration Trailing   * * [20, 60] 20.0 

Max. look back distance    * [100, 150] 20.0 

Coop. lane change – max. speed diff.    * [10.6, 10.8] 0.20 

Max. deceleration Own    * [-3, -4] 0.20 

 
Table 3: Key parameters for congested conditions 

Key Parameter 
Identified after simulation duration of 

𝑹∗ 𝜶𝒎𝒊𝒏
∗

 
40 min 60 min 

CC0 ** ** [0.75, 2.25] 1.00 

Lane changing distance ** ** [120, 280] 40.0 

Safety distance reduction factor ** ** [0.2, 0.6] 0.20 

Waiting time before diffusion ** ** [20, 60] 20.0 

CC2  ** [2.0, 8.0] 1.00 

CC4  * [ -1.5, -0.01] 0.50 

Max. cooperative deceleration  * [-5, -1] 1.00 

Min. headway front/rare  * [0.5, 1]  0.20 

                                                 
1 𝛼𝑚𝑖𝑛

∗  and 𝑅∗are not generic values, they present the minimum variation step and reliable range for the proposed 

experiment setup.    
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The outputs of this first screening step are the initial key parameters set (first 15 parameters 

from Table 1 which also includes the key parameters of congested conditions scenario), 𝑅𝑖
∗,  

and 𝛼𝑖
∗. To verify this first screening and investigate the interaction between parameters, in a 

next step the EEs method is applied.  

 

4. Elementary Effects Method (EEs) 

 

Morris (1991) proposed a method to quantify the change in a model’s output related to change 

in its parameters values. The effect of a single parameter on the model output can take three 

different levels: negligible, linear and additive, or non-linear and/or involved in interactions 

with other parameters. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘) be a vector of normalized model parameters, 

hence 𝑥𝑖  , 𝑖 = 1, … , 𝑘, is uniformly distributed in [0,1] and it is divided into 𝑝 levels forming 

the set 𝐴𝑖 = {0,
1

𝑝−1
,

2

𝑝−1
, … . . ,1}, and a matrix  Ω → ℝ𝑝×𝑘 sampled from that set as the input 

space2.  

Ω =

[
 
 
 
 
 
 
𝑥1

1, 𝑥1
2, …… . . , 𝑥1

𝑘

𝑥2
1, 𝑥2

2, …… . . , 𝑥2
𝑘

.

.

.
𝑥𝑝

1, 𝑥𝑝
2, …… . . , 𝑥𝑝

𝑘]
 
 
 
 
 
 

 

 

By using the OAT screening technique with differencing step ∆ , the EEs of the ith parameter 

is computed by numerically approximating the derivative as a local sensitivity:   

𝐸𝐸𝑠𝑗
𝑖 = 𝑑𝑖(𝑋𝑗) = (

𝑦(𝑥𝑗
1, … , 𝑥𝑗

𝑖−1, 𝑥𝑗
𝑖 + ∆, 𝑥𝑗

𝑖+1, … , 𝑥𝑗
𝑘) − 𝑦(𝑋𝑗)

∆
) (1) 

Where: k is the number of parameters; and 𝑋𝑗,  j=1,…, p, is the jth row in Ω.  

The finite distribution of EEs (𝐹𝑖) associated with the ith parameter is obtained by randomly 

sampling different X from Ω. The following illustration gives a clearer image about the process, 

where each parameter value, 𝑥𝑗
𝑖 + ∆  ,at the level set 𝑋𝑗  is coupled with the other fixed 

parameters over all levels.   

 

𝐸𝐸𝑠𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ =

[
 
 
 
 
 
 
 
 
 ((𝑥1

1, … , 𝑥1
𝑖−1, 𝑥1

𝑖 + ∆, 𝑥1
𝑖+1, … , 𝑥1

𝑘) − (𝑥1
1, … , 𝑥1

𝑖−1, 𝑥1
𝑖 , 𝑥1

𝑖+1, … , 𝑥1
𝑘)) /∆

.

.

((𝑥𝑝
1, … , 𝑥𝑝

𝑖−1, 𝑥1
𝑖 + ∆, 𝑥𝑝

𝑖+1, … , 𝑥𝑝
𝑘) − (𝑥𝑝

1, … , 𝑥𝑝
𝑖−1, 𝑥1

𝑖 , 𝑥𝑝
𝑖+1, … , 𝑥𝑝

𝑘)) /∆

((𝑥1
1, … , 𝑥1

𝑖−1, 𝑥𝑝
𝑖 + ∆, 𝑥1

𝑖+1, … , 𝑥1
𝑘) − (𝑥1

1, … , 𝑥1
𝑖−1, 𝑥𝑝

𝑖 , 𝑥1
𝑖+1, … , 𝑥1

𝑘)) /∆
.
.

((𝑥𝑝
1, … , 𝑥𝑝

𝑖−1, 𝑥𝑝
𝑖 + ∆, 𝑥𝑝

𝑖+1, … , 𝑥𝑝
𝑘) − (𝑥𝑝

1, … , 𝑥𝑝
𝑖−1, 𝑥𝑝

𝑖 , 𝑥𝑝
𝑖+1, … , 𝑥𝑝

𝑘)) /∆]
 
 
 
 
 
 
 
 
 

 
(2) 

                                                 
2 The experiment space Ω within its boundaries contains all the possible values of each continuous variable 

(parameter input space), and the levels (rows) in Ω present the initial parameters vectors for the subsequent 

analysis.     
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The computational cost of this basic method is 2𝑚𝑘 where m is the number of EEs required for 

each parameter. Since m should be as large as possible to produce unbiased samples for 

performing the SA, this basic design is very costly especially if the number of parameters is 

large as in our case. Morris improved his approach with a better design to reduce the 

computational cost. The new design considers the initial values of parameters at the jth level, 

𝑋𝑗 → ℝ𝑘, 𝑋𝑗 ∈ Ω → ℝ𝑝×𝑘, and construct a trajectory 𝑇𝑗 , 𝑗 = 1, . . , 𝑝, of 𝑘 + 1 points3 where the 

parameters are consecutively perturbed by ∆. Consequently, each trajectory will give 𝑘 

elementary effects, one per parameter:   

 

𝑇𝑗 =

{
  
 

  
 

(𝑥1, 𝑥2, … . , 𝑥𝑘) → 𝑃1

(𝑥1 + ∆, 𝑥2, … . , 𝑥𝑘) → 𝑃2

(𝑥1 + ∆, 𝑥2 + ∆,… . , 𝑥𝑘) → 𝑃3

.

.

.
  (𝑥1 + ∆, 𝑥2 + ∆,… . , 𝑥𝑘 + ∆) → 𝑃𝑘+1

 

 

𝐸𝐸𝑠𝑖(𝑋𝑗) =
𝑃𝑖+1 − 𝑃𝑖

∆
 (3) 

The number of simulation runs required to construct one trajectory is k+1, therefore 

constructing r trajectories4 will require r(k+1) runs which is much cheaper than the basic design 

where in the first step computing one EE requires two simulation runs. The Latin Hypercube 

design  is used to sample Ω (input space which contains all levels) since it maximizes the 

distance between the sampled values for each parameter space (𝑅∗). The perturbation step ∆  is 

the same for all parameters so it is possible to rank them based on their influence.  The idea 

behind determining 𝛼𝑚𝑖𝑛
∗   (positive direction) in this experiment  is to make sure that ∆ is 

effective for all parameters :  

∆= 𝑚𝑎𝑥(𝛼𝑖,𝑚𝑖𝑛
∗ 𝑥𝑖

𝑑⁄ | 𝑖 ∈ 𝐻) (4) 

𝐻: the set of key parameters 

The resulting 𝐹𝑖 = (𝐸𝐸𝑠1
𝑖 , … . . , 𝐸𝐸𝑠𝑝

𝑖 ) provides three sensitivity measures: 1) absolute mean of 

EEs (𝜇∗) which quantifies the average magnitude of the impact of the parameter; 2) mean of 

EEs (𝜇) which differs more from the absolute mean as the direction of impact of the parameter 

has no consistent sign across the input space; 3) standard deviation of EEs (𝜎)  quantifies the 

parameter’s interaction with others. If 𝜎  is larger than 𝜇 , then the parameter’s effect is 

correlated with the values of other parameters. However, if 𝜎 is small or relatively equal to 𝜇∗, 

it means that most of the EEs are around the same value, therefore the parameter’s effect is not 

correlated with other parameters.  

5. EEs with Optimized and Quasi-Optimized Trajectories 

The previously mentioned design does not guarantee a maximum coverage of the  input space 

in a way that trajectories may overlap at some points. Campolongo, et al. (2007) enhanced the 

sampling strategy of the EEs method to have a wider screening of the input space and it is 

                                                 
3 In this paper a trajectory point defines a vector with variables correspond to the parameters’ values. 
4 The number of trajectories is equal to the number of levels p, as the level is the starting point for building up 

the trajectory.   
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referred as Optimized Trajectories (OT) based EEs. The enhanced sampling strategy considers 

the most spread set of n Morris trajectories sampled from a larger set containing  m trajectories 

where n<<m. The most spread set (most dispersed trajectories) is the set of trajectories with the 

maximum Euclidean distance between all trajectories in that set. The Euclidean distance 

between two trajectories 𝑇𝑎 and 𝑇𝑏  is computed by: 

𝑑𝑎𝑏 = {
∑ ∑ √(𝑃𝑙

𝑎 − 𝑃𝑞
𝑏)2        𝑎 ≠ 𝑏

𝑘+1

𝑞=1

𝑘+1

𝑙=1

                    0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

This gives:  

𝑑𝑠𝑛 = [
0 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 0

] 

The total distance:  

𝐷𝑠𝑛 = √0.5 × (∑ ∑ 𝑑𝑎𝑏
2

𝑛

𝑏=1

𝑛

𝑎=1
) (6) 

 

Where: 𝑃𝑙
𝑎 and 𝑃𝑞

𝑏 are the lth and qth points in the trajectories a and b respectively; 𝑑𝑠𝑛 the 

distance matrix of set  S  i.e., S ={ 𝑇1, 𝑇2,…., 𝑇𝑛}; and 𝐷𝑠𝑛 is the total distance of S.  

Models with a large number of parameters e.g. driving behavior models in VISSIM require a 

higher number of trajectories n in order to get an unbiased distribution 𝐹𝑖 since some parameters 

may have interaction between each other. In that case m should be as large as possible, however;  

this gives 𝑚!/[𝑛! (𝑚 − 𝑛)!] different sets which is unfeasible in our case.  

Ge and Menendez (2014) developed a Quasi-Optimized Trajectories based EEs method to 

overcome the combinatorial optimization problem of the OT based EEs. The idea is to 

enumerate m sets where each set has m-1 trajectories and written as 𝑆𝑚−1(𝑝), where p=1,…,m 

is the index of the eliminated trajectory 𝑇𝑝, e.g. {𝑆𝑚−1(1) , 𝑆𝑚−1(2),….., 𝑆𝑚−1(𝑚)}. The set 

with the highest total distance 𝑆𝑚−1(𝑝)
∗  is selected as the optimal set in this step: 

𝑆𝑚−1(𝑝)
∗ = max{𝐷𝑆𝑚−1(1), 𝐷𝑆𝑚−1(2), … . . , 𝐷𝑆𝑚−1(𝑝)}    (7) 

Where: 

𝐷𝑆𝑚−1(𝑝) = √𝐷𝑠𝑚
2 − ∑ 𝑑𝑧𝑝

2
𝑚

𝑧=1
 (8) 

Where: 𝐷𝑠𝑚 is the total distance of the set 𝑆𝑚 computed by (6); and ∑ 𝑑𝑧𝑝
2𝑚

𝑧=1  is the sum of all 

distances between the trajectories in 𝑆𝑚 and the eliminated trajectory 𝑇𝑝.   
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For example in in this study we selected m=500 then we enumerated 500 sets, each set has 499 

trajectories. In the next step, again we enumerated m-1 sets from 𝑆𝑚−1(𝑝)
∗  (499 sets) each set 

has 498 trajectories and again choosing the one with the maximum distance. Thus, in each step 

the number of trajectories in the new optimal set is reduced by one trajectory until the optimal 

set with n trajectories is reached after m-n iterations. A comprehensive comparison study with 

other sensitivity analysis techniques revealed the effectiveness and reliability of Quasi-OT 

based EEs method. Ge and Menendez (2014) evaluated its performance against the original OT 

based EEs (Campolongo et al., 2007) and another optimized sampling strategy-based EEs 

(Ruano, et al., 2012). The three methods gave relatively similar results however; the Quasi-OT 

based EEs method outperformed them in terms of the total computation time of 500 cases. In 

addition Ge et al. (2014) compared the performance of the Quasi-OT based EEs and Kriging-

based (variance-based) approach in finding the sensitivity indices (SIs)/rank of Aimsun and 

VISSIM models’ parameters. They conclude that the Quasi-OT EEs method was robust in 

finding the noninfluencial parameters in the case of high-dimensional interactions. However, 

the Kriging-based approach was better in ranking the key parameters. This study focuses on 

finding the set of influencial parameters and cluster them into groups based on their SIs and 

interactions where finding their ranking is left for further work.  

The literature does not mention any findings on the sufficient number of trajectories (EEs) n 

that would give an unbiased distribution of EEs. A practical way is to use a relatively high 

number of trajectories up to 100 especially when the model parameters interact with each other 

(Campolongo, et al., 2007; Ruano, et al., 2012). If the goal is to find the key parameters on the 

macroscopic output of VISSIM, by automating the process this will not be a difficult task e.g. 

we evaluated 1600 simulation runs (100 trajectories/EEs) of the proposed section in 

approximately 4 hours. However, if the goal is to find the impact on the mesoscopic output in 

which the data at the microscopic level should be also extracted and processed it is important 

to know the minimum number of EEs that will give an unbiased distribution. Recall that the 

approach by Morris provides two important measures: absolute mean (𝜇∗ ) and standard 

deviation (𝜎) of the EEs. Using 𝜎 and 𝜇∗ as the x-axis and y-axis respectively, the result plot 

represents the interaction-impact space and the location of the ith parameter in this space is 

defined by the coordinates (𝜎𝑖, 𝜇
∗
𝑖
).  

 

Figure 2: parameters dispersion evolution over the number of EEs 

Figure 2 presents the evolution of  Euclidean distance between the ith parameter’s coordinates 

and the origin point of the interaction-impact space over the number of EEs, the sensitivity 

measure is ATT. At number of EEs n=30, the distance from the origin starts to stabilize, giving 
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a reasonably stable absolute and relative position of the parameters in the impact-interaction 

space. 

Presenting the output of the Morris method in the interaction-impact space may detract the 

importance of some parameters especially the ones with higher interactions. For a clearer 

explanation let (𝜎1, 𝜇1
∗) and (𝜎2, 𝜇2

∗) the coordinates of CC1 and the Maximum Look Ahead 

Distance respectively. If 𝜎2>𝜎1 (485>467), and 𝜇2
∗>𝜇1

∗ (504>374) then CC1 has a higher impact 

and interaction compare to the Maximum Look Ahead Distance. However, the ratios 𝜎1/𝜇1
∗ 

=1.24 and 𝜎2/𝜇2
∗= 0.96 show that the interaction of the second parameter is higher. 

Consequently, measure (3) is rewritten so it computes the relative derivative in the way that 

both the impact and interaction relative weights are preserved:   

 

𝐸𝐸𝑠𝑖(𝑋𝑗) = (
𝑃𝑖+1 − 𝑃𝑖

∆
) /𝑃𝑖 (9) 

 

Figures 3, 4, and 5 depict the relationship between the investigated parameters in terms of 𝜇∗ 

and 𝜎 related to different outputs: the vehicle ATT, the number of free lane changes, and 

number of discretionary lane changes respectively. Regarding ATT all parameters (the 15 

parameters identified in the first round) are influential except AccDecelTrail. The degree of 

influence varies between these key parameters, for example, Safety Distance Reduction Factor 

is the most influential parameter on the ATT and its effect involves higher interaction with other 

parameters. The same set of parameters holds for the total number of free lane changes except 

AccDecelTrail and Waiting Time before Diffusing; however, their impact level varies where 

CC1 is the most influential while Maximum Look Ahead Distance has the highest interaction, 

see Figure 4. The number of discretionary lane changes is mainly affected by CC1 the impact 

of which is much higher than others’, see Figure 5.  

 

 
Figure 3: interaction-impact plot with respect to the ATT 
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Figure 4: interaction-impact plot with respect to the number of free lane changes 

 
Figure 5: interaction-impact plot with respect to the number of discretionary lane changes 

6. Mesoscopic Analysis 

As mentioned previously, this work aims to explore the influence of these parameters on traffic 

conditions at the mesoscopic level in terms of distribution of lane changing positions along the 

road length. We developed a MATLAB tool for identifying from VISSIM default detailed 

outputs the locations of lane changing maneuvers over the length of the section. Thus, for each 

parameter there are 60 different lane changing maneuvers locations data sets, i.e. each trajectory 

gives two sets (as a result of 𝑃𝑖 and 𝑃𝑖+1)for each parameter 5. This data were extracted from 

trajectories of vehicles as an output of the EEs method experiment simulation runs. A two-

                                                 
5 For the mesoscopic analysis we considered only 30 trajectories (which is sufficient as shown in Figure 2) rather 

than 100 in order to save computation time.  
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sample Kolmogorov-Smirnov test is used to check whether those two data sets have different 

distributions or not.  

 

Figure 6: spatial distribution of free lane changes corresponding to CC1= 1.051 and 1.325 s 

 

Figure 7: ECDF of free lane changes corresponding to different CC1 values 

On one hand, the results reveal that CC0, CC1, CC3, CC4, Safety Distance Reduction Factor, 

and Maximum Look Ahead Distance are the most influential parameters in terms of free lane 

changes position distribution. Figures 6 and 7 are spatial distribution and Empirical Cumulative 

Distribution Function (ECDF) of free lane changing positions respectively. By observing both 

figures, it is clear that the spatial distribution of free lane changing maneuvers responds to the 

change in CC1. On the other hand, Lane Changing Distance6 parameter is the only influential 

                                                 
6 The distance is measured from the starting point of the connector to the off-ramp. 

off-ramp 

off-ramp 
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factor on the distribution of discretionary lane changing maneuvers.. Figures 8 and 9 show that 

the smaller the lane changing distance the more discretionary lane changing maneuvers are 

postponed to positions more downstream.   

 

 
Figure 8: spatial distribution of discretionary lane changes of lane changing distance = 184 and 276 m 

 
Figure 9: ECDF of discretionary lane changes of different lane changing distance values 

7. Conclusion 

This paper conduces a systematic sensitivity analysis experiment on the parameters of the 

microscopic traffic simulator VISSIM considering macroscopic and mesoscopic outputs. The 

analysis starts by identifying the key parameters which affect the macroscopic outputs of 

VISSIM such as the ATT and the total number of lane changing maneuvers in free flow and 

congested traffic conditions. This produces a set of 15 key parameters that affect significantly 

both outputs; however, the order and magnitude of their impact varies depending on the 

off-ramp 

off-ramp 
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considered sensitivity measure. For example, Maximum Look Ahead Distance has a more 

significant impact on the number of free lane changes compared to ATT. The EEs method tells 

how much each parameter is important in terms of its impact and interaction which cannot be 

observed in the first screening output. For example, The Safety Distance Reduction Factor has 

the highest impact and interaction with other parameters when the ATT is taken as a sensitivity 

measure. The second step was to identify the key parameters that have impact on mesoscopic 

outputs like the distribution over the length of the road of free and discretionary lane changing 

maneuvers locations. Maximum Look Ahead Distance, Safety Distance Reduction Factor, CC0, 

CC1, CC3, and CC4 are the most significant for free lane changes, while the Lane Changing 

Distance is the only parameter that influences the spatial distribution of discretionary lane 

changes. Finally, there was no clear correlation to link the parameter’s value with its impact 

degree since this impact is involved with interactions with other parameters.  
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