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ABSTRACT

In the dynamic Dial-a-Ride Problem (DARP) a fleet of vehicles provide door-to-door trans-
port to on-line requests. The problem typically aims at minimizing the total operational cost while
maximizing the company revenue, measured by means of the number of served trip requests. In
its standard version, the dynamic DARP considers time-window, capacity, maximum ride time,
and maximum route duration constraints. The dynamic electric Autonomous Dial-a-Ride Problem
(e-ADARP) extends the dynamic DARP by considering the employment of electric autonomous
vehicles (e-AVs). Differently from human-driven vehicles, e-AVs can be diverted as often as de-
sired in the course of the operations and operated on a non-stop schedule. Given the electric nature
of the vehicles, the planning process needs to continuously re-optimize the vehicle battery levels,
decisions regarding detours to charge stations, recharge times, together with the classic dial-a-ride
features.
In this work, we propose a two-phase heuristic approach to solve the dynamic e-ADARP. The first
phase consists of an insertion heuristic that efficiently modifies both vehicle routes and schedules
with the arrival of new transportation requests. We propose an exact scheduling algorithm for the e-
ADARP, which efficiently provides optimal vehicle schedules in quadratic time. The second phase
introduces a new Learning Large Neighborhood Search (LLNS) algorithm that re-optimizes both
vehicle plans and schedules through intra- or inter-route customer exchanges. The LLNS utilizes
multiple neighborhoods defined from problem-specific characteristics. We formulate the choice
of the operator by a classification problem, where the operator represents a class and selected
characteristics of the problem instances or solutions represent the features. Numerical results are
produced from an event-based simulation based on existing benchmark instances and real-world
data from ride-hailing services.

Keywords: Dial-a-Ride Problem, Dynamic problem, Electric Autonomous Vehicles, Metaheuris-
tics, Machine Learning, Classification And Regression Trees
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1. INTRODUCTION

In the Dial-a-Ride Problem (DARP), minimum cost routes and schedules are defined for a
fleet of vehicles exiting known depots and serving a set of customers with given pickup and dropoff
locations [1]. The optimization can take into consideration multiple criteria and can include mul-
tiple type of users and destination depots (e.g. [2],[3]). Typical operational constraints include
vehicle capacities, maximum vehicles-route duration, and maximum user ride times. In addition,
service start times at pickup and dropoff locations are usually limited by time-window constraints.
Recently, multiple companies and research institutions started developing test tracks using elec-
tric autonomous vehicles (e-AVs) and considering their use to provide transportation services (e.g.
[4]). A recent work in [5], has considered a new mathematical model for the DARP with the use
of e-AVs (e-ADARP). The objective of the e-ADARP minimizes a weighted-sum objective con-
sisting of the total vehicle travel time and user excess ride time. Integrated operational constraints
include battery management, decisions regarding detours to charging stations, recharging times,
and destination depots.
The DARP literature can be divided into two main streams, namely, static and dynamic DARP.
In the first case, demand is fully known in advance, whereas, in the second case, demand is re-
vealed online. This study focuses on the development of a metaheuristic approach for the dynamic
e-ADARP. For a review on dynamic DARP studies, the reader is referred to Section 6 in [6].
The operation of e-AVs introduces new opportunities that must be taken into account in real-time
planning processes. First, e-AVs offer more flexibility to modify vehicle plans in real-time accord-
ing to changing conditions. Such changes do not only correspond to the arrival of new transporta-
tion requests but also to unexpected increases in traffic conditions and modified availabilities at
recharging facilities. That is, differently from human-driven vehicles, the dispatching system can
easily divert e-AVs as often as desired in the course of operations. Second, e-AVs can operate non-
stop. While this feature might help saving vehicle deadhead miles to decentralized depots, service
quality aspects can arise in a multi-period context. The employment of e-AVs also introduces new
challenges that need to be tackled on-line. That is, the planning process needs to continuously
re-optimize the vehicle battery levels, decisions regarding detours to charging stations, recharging
times, and destination depots together with the classic Dial-a-Ride features.
In this work, we propose a two-phase heuristic approach to solve the dynamic electric Autonomous
Dial-a-Ride Problem (e-ADARP). In the first phase, an insertion heuristic algorithm is designed
to efficiently introduce new transportation requests into vehicle routes. The vehicle schedules and
recharging times are obtained through a new exact scheduling algorithm for the e-ADARP, which
solves in quadratic time. Current work is focusing on the implementation of the second phase,
in which an improvement heuristic re-optimizes the vehicle plans after the insertion of new cus-
tomers, and on computational experiments. For these latter, we introduce an event-based simulated
environment to generate dynamic scenarios from existing benchmark instances and real-world data
from ride-hailing services.
The rest of the paper is organized as follows: Section 2 presents the first phase and the exact
scheduling algorithm for the e-ADARP, Section 3 conceptually describes the second phase, Sec-
tion 4 presents our preliminary results.
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2. FIRST PHASE: INSERTION HEURISTIC

A new transportation request is represented by a generation time, a pickup/dropoff location,
and a time-window around the pickup or dropoff location. Note that the time-window around
the pickup can be easily computed from its dropoff by consideration of the user maximum ride
time. Furthermore, the time-windows can be further tightened by considering the vehicle current
locations and times. As a result, the earliest arrival at the newly generated request is vehicle-
dependent. Vehicles that cannot arrive to the customer pickup by its latest arrival time are not
candidates for the insertion.
Given a number of candidate vehicles for the insertion, operational costs need to be computed
for each vehicle. A first screening to find feasible insertions for the new transportation request
(both in terms of its pickup and dropoff) and a particular vehicle can be performed through time-
window considerations. That is, having computed the forward and backward time slacks for the
users scheduled in a vehicle (as proposed in [7]), it is possible to identify segments of its static plan
where the insertion of the pickup or the dropoff of the new request might be time-window feasible.
In consideration of precedence and capacity constraints, such segments can be further restricted.
That is, knowing the vehicle maximum capacity and loads from the static plan, the newly generated
request cannot be inserted when the vehicle is planned to travel at capacity. Note that time-window
and battery feasibility for the complete insertion of the newly generated request (i.e. both in terms
of its pickup and dropoff location) cannot be ensured by the simple screening presented so far and
instead needs more advanced scheduling algorithms, which are presented next. Finally, for each
candidate vehicle, multiple insertions of the new transportation request can be evaluated against a
given objective function. The chosen insertion is then the one resulting in the lowest operational
cost.

2.1 Exact scheduling and battery management algorithm for the e-ADARP

Scheduling problems in the standard Dial-a-Ride Problem (DARP) are typically heuris-
tically solved by employing the forward and backward time slacks and by delaying the pickup
time of the customers [8]. Note that such a procedure does not provide excess-time optimal solu-
tions and does not guarantee battery feasibility. In this work we propose an efficient procedure to
optimize schedules based on the excess time objective subject to time-window and battery consid-
erations.
Consider a candidate insertion satisfying pairing, precedence, and capacity constraints of a se-
lected vehicle. The insertion determines a new sequence of locations I = {1, . . . ,M} that must
be visited by the vehicle. Then, the remaining problem may be stated as a linear program aiming
at minimizing the total user excess time while satisfying time-window and maximum ride time
constraints (LP1). Denote by P the set of pickups andD the dropoffs of the pickups P in sequence
I. Let Ti represent the service-start time at node i ∈ I, di represent the service duration time, ti,j
the travel time between nodes i and j ∈ I, [arri, depi] represent the time-window of node i ∈ I,
and uPi

represent the maximum ride time of customer Pi ∈ P ⊂ I. Then, the remaining problem
can be stated as:

(LP1) min
∑
i∈P

(TDi − TPi − dPi − tPi,Di) (1)

Subject to:
Ti + ti,i+1 + di ≤ Ti+1 ∀i ∈ {1, 2, . . . ,M − 1} (2)
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TDi − TPi − dPi ≤ uPi ∀i ∈ P (3)
arri ≤ Ti ≤ depi ∀i ∈ {1, 2, . . . ,M} (4)

Given that the sequence is fixed, then it is possible to calculate the earliest time ETi and latest time LTi at
which service can start at node i by using the following recursive formulas:

ETi = max{arri, ETi−1 + ti−1,i + di} ∀i ∈ {2, . . . ,M}, ET1 = arr1 (5)
LTi = max{depi, LTi+1 − ti,i+1 − di} ∀i ∈ {1, . . . ,M − 1}, LTM = depM (6)

Hence, LP1 can be re-formulated into an equivalent but tighter linear program (LP2), as follows1:

(LP2) min

M∑
i=1

Liwi (7)

Subject to:
i∑

j=1

wj ≥ ETi −
i−1∑
j=1

tj,j+1 +

i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . ,M} (8)

i∑
j=1

wj ≤ LTi −
i−1∑
j=1

tj,j+1 +
i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . ,M} (9)

Di∑
j=i+1

wj ≤ ui −
Di−1∑
j=i

tj,j+1 −
Di−1∑
j=i+1

dj ∀i ∈ P (10)

Where Li represents the vehicle load and wi the waiting time at location i ∈ I. Denote by ∆i and
by Θi the right-hand side of constraints (8) and (9) respectively. Then, the following procedure is
proposed to solve (LP2):

(ALG1)

1. Set wi = 0 ∀i ∈ {1, 2, . . . ,M}

2. Set Ω = ∅

3. For i = 1 to M

(a) Set Ω = Ω ∪ {i}

(b) While
i∑

k=1

wk < ∆i

i. Set j = argmink∈Ω Lk

ii. Setwj = min{mink∈{P |k≤j & Dk≥j} uk−
Dk−1∑
l=k

tl,l+1−
Dk−1∑
l=k+1

dl−
j−1∑

l=k+1

wl−
Dk∑

l=j+1

wl; Θi−

j−1∑
k=1

wk −
i∑

k=j+1

wk; ∆i −
j−1∑
k=1

wk −
i∑

k=j+1

wk}

iii. If
i∑

k=1

wk < ∆i, set Ω = Ω \ {j}

4. Return wi

1For brevity reasons, the steps demonstrating the equivalence between LP1 and LP2 are omitted in this short paper
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The algorithm is initialized at a basic non-feasible solution (assuming ∆M > 0). Each execution
of step 3.(b) represents a move to a neighboring basic solution. Constraints (9)-(10) are satisfied
at any step of ALG1 and the algorithm terminates when all the constraints in (8) are satisfied.
That is, the algorithm terminates with a basic feasible solution. In step 3.(b).i., if several values
minimize Lk then the one with the lowest index can be taken. Note that the complexity of ALG1
is O(M2) since in the worst case, step 3. may be executed M times and the minimization term in
3.(b) contains less than M components2.

Next, one needs to demonstrate that there is a schedule which maximizes battery levels and
minimizes total user excess time. Observe that, if the schedule that maximizes battery does not
satisfy battery restrictions, the given sequence is not feasible. However, if battery-feasible sched-
ules do exist, at least one of them is excess-time optimal. In addition, note that battery levels can
be seen as an inventory which can only decrease with traveling. Then, for feasibility purposes, it
is always better to recharge as much as possible, as early as possible. Denote by N the number
of charging stations contained in sequence I. Let Q represent the nominal capacity of the e-AVs,
αs the charging rate and Bs the battery inventory level at charging facilities s ∈ {s1, s2, . . . , sN}.
Then, the following procedure is proposed for battery management:

(ALG2)

1. Divide the sequence into H sub-sequences delimited by charging facilities s1, s2, . . . , sN

2. For each charging station i in {1, . . . , N − 1}

(a) Compute the charging time at station i as min{LTj −ETj ; (Q−Bs)/αsi} where j is the first
node of the following sub-sequenceHi+1

(b) Re-compute the earliest start times ETj for all nodes following station i (i.e. j ∈ {i +
1, . . . ,M}) by considering the computed recharging time

(c) If the state of charge Bsi+1 is negative, the sub-sequence up to node si+1 is infeasible

In step 2.(c), the recharging times can be computed iteratively, starting from the first station. At
each facility, recharging time is bounded by: i) the service start time at the preceding node and
the latest service start time at the following node ii) the time needed to fully recharge. To ensure
feasibility, the recharging time at the station needs to be set to the minimum of the two. Observe
that for each station, if for the following sub-sequence we have Θ1 ≤ ∆M , recharging more at the
current station might imply that we reduce the available recharging time at the following station.
If for the following sub-sequence Θ1 > ∆M , the earliest time in which recharging can begin at the
next station is not influenced by the decisions made in the current station (i.e. recharging can begin
as early as possible at the next station).

3. SECOND PHASE: IMPROVEMENT HEURISTIC

Given that no information about future demand is available during the first phase, vehi-
cle plans might be improved once a number of myopic insertions have been performed. To this
end, we are currently developing an improvement metaheuristic approach to re-optimize vehicle
plans through intra-route and inter-route customer exchanges and charging plan modifications (i.e.

2For brevity reasons, the optimality proof for ALG1 is omitted from this short paper
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the second phase). Multiple works in the dynamic DARP have considered metaheuristic solution
approaches based on Large Neighborhood Search (LNS) ([9],[10],[11]). In this work, we pro-
pose a new metaheuristic approach for the dynamic e-ADARP in which multiple neighborhoods
are defined from problem-specific characteristics and the search mechanism is ruled by a machine
learning approach. During the search, the neighborhood operators are selected according to a pre-
diction scheme derived from Classification And Regression Trees (CART) [12]. CART recursively
partition the input space through a series of binary splits which are chosen through a mathematical
model which maximizes a goodness of split function. The depth of the tree is typically controlled
by a parameter which provides an upper bound on the maximal number of splits and, consequently,
sub-regions. The class of each sub-region is decided by computing the largest number of represen-
tative samples in the sub-region (the “majority vote”). The predicted class for a new input point
is then obtained by passing the point through the tree until a final node (or sub-region) is reached.
In order to increase the accuracy of the prediction, multiple decision trees are typically combined
through a technique called bagging, which essentially generates multiple models based on boot-
strap samples of the input space. The final prediction is the aggregation of the predictions of all
models. For a classification task, the aggregation corresponds to the most frequently-predicted
class. In the context of the e-ADARP, we introduce the Learning Large Neighborhood Search
(LLNS) metaheuristic. We formulate the choice of the operator by a classification problem (i.e.
CART) in which each operator represents a class, while selected characteristics of the problem
instances and solutions represent the features. Therefore, an instance of class i is an instance for
which operator i is the best. Finally, the training data is a collection of examples of problem
instances for which the best operator is known.

4. COMPUTATIONAL TESTS

Computational experiments are performed on benchmark instances from literature and in-
stances based on ride-sharing data from Uber Technologies Inc. in 2011 [5]. In order to generate
dynamic scenarios, an event-based simulated environment is employed. The simulated events
consider vehicle departures, arrivals, recharges, customer pickups, dropoffs and generation times.
Given a cumulative density function, customer generation times are drawn through the inverse
transform method [13]. New visits to recharging stations can be triggered after the generation of
new customer requests. We are currently testing the first phase of the two-phase heuristic approach
(Section 2). In this short paper, we only provide preliminary results on a single instance composed
of 10 vehicles and 100 dynamic requests received during a planning horizon of about 30 minutes.
In particular, given a candidate insertion, we either employ a customary scheduling algorithm from
literature ([8]), which minimizes completion time and the excess time of the inserted customer, or
the scheduling algorithm ALG1 (Section 2). Note that ALG1 optimally solves LP2 and therefore
provides equivalent results3. Figure1 shows the number of request arrivals, as well as the number
of accepted requests through ALG LIT and ALG1. As it can be shown, even through a myopic in-
sertion heuristic, ALG1 provides a higher acceptance rate with respect to ALG LIT. We expect the
difference in the number of accepted requests between ALG LIT and ALG1 to increase as intra-
and inter- route exchanges will allow to modify previously-made routing decisions (i.e. the second
phase). The second phase is currently under development and preliminary results are therefore
omitted from this short paper. For both the first and second phase, we are currently developing

3A thorough comparison between LP2 and ALG1 is currently under testing



Bongiovanni, Kaspi, Cordeau, and Geroliminis 7

FIGURE 1 Accepted requests using ALG LIT or ALG1

tests (of variable size and up to 2500 requests) which consider several request generation times to
produce statistically significant results. We are also planning to employ different cumulative den-
sity functions to analyze the impact of advanced time on the service quality and cost. Furthermore,
different dynamic scenarios (i.e. ratio of static versus dynamic requests) will be employed to test
the limits of the proposed framework. Collected statistics will include the ratio of accepted and
rejected requests, static and dynamic customer excess ride times, vehicle idle times, recharging
times, travel times, and end battery levels.
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