
Learning online combinatorial stochastic policies

with deep reinforcement

Teo Stocco & Alexandre Alahi*

Abstract We study on-demand delivery services in stochastic environments and propose one repre-
sentation of the online vehicle routing problem that can be learned with supervised and reinforcement
learning. Using a simulation framework with topology projections, we evaluate different models and
show that stochastic policies can be learned. Fine-tuning the models through the use of the REINFORCE
rule and with a deterministic critic suggests that this approach can lead to promising policies to solve
the problem.

1. Introduction

The last decade has seen a rapid growth of on-demand delivery services such as Uber (people),
Deliveroo (food) and Glovo (groceries). These services are usually characterized by a time-varying
number of parties involved (drivers, restaurants/shops, customers) and face strong asymmetries. The
customers tend to share the same behaviors, triggering congestions and peaks as they order similar
items at the same time. These environments are also under strong stochastic influences due to periodic
traffic conditions and meteorological events. All of these raises an interesting online combinatorial
challenge.

Each time a new task fires, a decision needs to be taken in order to match it with the best agent
according to an established objective. In the setting where all tasks are known in advance (also
known as offline), you may have recognized the classical Vehicle Routing Problem (VRP, Dantzig and
Ramser 1959). The VRP tries to find the optimal delivery routes for a fleet of vehicles and a set of
places, generalizing the famous Traveling Salesman Problem (TSP) to multiple agents and constraints.
Solutions to this NP-hard problem usually rely on greedy approaches, linear integer programming
relaxations, heuristics and meta-heuristics (Kumar and Panneerselvam 2012). Among the dozens of
VRP flavors studied in the literature, the followings characterize our case of study: capacited (CVRP),
with time windows (VRPTW), with pickup and delivery (VRPPD), with heterogeneous fleet (HFVRP),
online/dynamic (OVRP/DVRP) and stochastic (SVRP) (Pillac et al. 2013).

We are interested in the online VRP optimization with multiple agents and tasks. Each task requires
the agent to pickup and dropoff some items at targeted times. The agents have different capacities
and are affected by stochastic delays at both the pickup and the dropoff points. They cannot refuse a

*VITA laboratory, École Polytechnique Fédérale de Lausanne, EPFL.

1

task, and all the tasks have the same level of priority. According to the previous nomenclature, this
configuration can be characterized as O-C-HF-S-VRP-PD-TW in the operation research taxonomy.
Although we relax the capacited and heterogenous fleet constraints by having a single item to pickup
and the same type of vehicle (with a capacity of one), all the methodology and principles we suggest
can be extended to the fully featured case.

Formally we have a stream T = 〈t1, t2, . . . tm〉 of m time-order tasks and a set of n agents
A = {a1, a2, . . . , an} for an episode E = (T, A) in an original metric space M . Each task i can be
written as a tuple ti = (pup ,wup , po f f ,wo f f ,τc ,τd) where:

• pup ∈ M a pickup location;
• wup a vector of pickup features (e.g. mean pickup time at this location, item types, etc.);
• po f f ∈ M a dropoff location;
• wo f f a vector of dropoff features (e.g. dropoff estimated distance, customer types, etc.);
• τc the time at which the task was created;
• τd the time at which items should be delivered.

The agent i can be described as a tuple a(k)
i = (p(k)

a ,w(k)
a ,τ(k)

a) at evolving step k where:

• p(k)
a ∈ M current or future agent position, initialized at random;

• w(k)
a a vector of agent current or future features (e.g. agent rating, distance driven, etc.);

• τ(k)
a the next time at which the agent is available for next task.

The goal is to find a matching stream P = 〈(t1, a(1)
j), (t2, a(2)

k), . . . , (tm , a(m)
l)〉 such that the average delay

τ(i)
a j

−τdi is minimized in a stochastic environment.

Although there are many possible applications, relatively few pieces of work combining both stochastic
and online VRP have been done yet (Pillac et al. 2013). Traditional solutions involve heuristic, meta-
heuristic and evolutionary strategies (Garrido and Riff 2010). Looking for an alternative and avoiding
hand-crafted or general strategies, we propose a framework for learning online policies both in
supervised and reinforced settings. Our contributions are threefold:

1. we explore how the spatial structure of the problem can be exploited to transpose the online
VRP into an easily extendable and learnable representation;

2. we show that deterministic policies can be approximated using the suggested representation;

3. we investigate how learned policies can take advantage of reinforcement while evolving in a
simulated stochastic environment based on real data.

2. Related work

The operation research community has extensively studied the vehicle routing problem. Ascheuer,
Krumke, and Rambau (2000) compared the IGNORE strategy that ignores new requests until current are
completed and the REPLAN (also known as REOPT) strategy that replans everything as soon as a new
request arrives. They showed that both are 5/2-competitive and proposed the SMARTSTART strategy
which combines the two previous ones, assuming the requests do not last too long. The latter has a
competitive ratio of 2 that matches their lower bound. Lipmann (2013) extended the analysis to cases
with incomplete ride information (e.g. final destination not known) and suggested a case-specific
3-competitive algorithm for these situations.

In the stochastic variant, various configurations having either stochastic demands or requests have
been reviewed, and near-optimal heuristics developed (Gendreau, Laporte, and Séguin 1996). Bertsi-
mas and Van Ryzin (1991) studied the stochastic and online VRP in the Euclidean plane. They propose

2

case-specific policies that try to capture the dynamics of the environments and compare them with the
nearest neighbors policy which they show performing well in all situations. Bent and Van Hentenryck
(2004) investigate later the problem with service guarantees where some requests can be rejected and
avoid sub-optimal choices. They showed improved performance over the nearest neighbors in such
examples.

The recent advances in neural combinatorial optimization show that deep learning and deep rein-
forcement learning are promising tools for tackling the offline VRP. The pointer network architecture
was introduced by Vinyals, Fortunato, and Jaitly (2015) to solve discrete combinatorial problems. This
new approach is length-invariant and allows to learn a sequential output with each element pointing
to a corresponding input through a RNN encoder/decoder architecture. They applied it successfully
to the planar TSP (n ≤ 20) and other discrete problems. Bello et al. (2016) built on the top of this to
present a deep reinforcement learning approach based on policy gradient and thus avoiding the cost
of labeling. They showed near-optimal results on bigger instances of TSP (n ≤ 100).

Choosing Q-learning instead of policy gradient Dai et al. (2017) used graph embeddings to provide
a more natural way to deal with these discrete problems and obtain results as good as deterministic
policies for even larger TSP instances (n ≤ 300). While simplifying the pointer network architecture by
removing RNN dynamic in the encoder layers, Nazari et al. (2018) proposed a network invariant to
the input sequence and applied it to the offline VRP with attention mechanism. They showed close to
optimal results using the REINFORCE rule on instances up to 50 customers. Finally, Kool, Hoof, and
Welling (2019) showed how to beat the best offline TSP-baseline known as the farthest insertion by
combining graph, attention and policy gradient with a greedy baseline.

3. Methods

The previously mentioned machine learning literature evaluates their algorithms in cases where
positions are sampled from the Euclidean plane. The coordinates are then used either as raw feature
or transformed into a distance matrix encoding the pairwise distances. This approach requires the use
of length invariant models as the number of agents is likely to evolve (due to the natural dynamics of
demand/offer or unpredictable events such as incidents and network connectivity loss) and invariant
to the input sequence as there is no clear motivation why the agents should be ordered. Additional
complexity might also occur when having a broader set of agents (e.g. j ≥ 100) as in real cases.

Another approach would be to feed the network directly with the full environment in a representation
space S. Assuming all the agents a(k)

i only have a single position p(k)
a and a task ti two positions

pup , po f f one can project them from the original metric space M directly to S. The hard thing is
to design such spaces by keeping the bijectivity, as multiple agents could share the same projected
positions. Surjectivity can nonetheless be enough, as agents projected onto the same spot can be
assumed to be fairly equivalent when the distance is more impactful than other features. The policy
can then use the projection map to find which position is the best and select the agents arbitrarily
within the shared position.

Representation An effective way of projecting features is to take advantage of images and tensors
structures. We first define a bounding box containing the area of interests and use the projection
φp : M 7→ S as the Mercator projection1 (EPSG:3857). This transformation preserves angles but might
distort distances and areas. While keeping bounding box small (dozens of kilometers), those effects

1The Mercator projection was chosen as it is the defacto standard to maps on the web and phones. Distance preserving
projections (geodesic to planar) for all the points in the bounding box is geometrically not possible. However, the gnomonic
projection can preserve the shortest route property and replace the Mercator one.

3

should not be significant. Each projected points are then clipped into the projected bounding box to
give a rectangular W ×H (width x height) plane as shown in fig. 1.

The planar representation suggests efficient use of 2D convolution to derive translation invariant
model. The agents can be shaped into sparse tensors of size (|w(k)

a |, H ,W) and tasks into a pickup tensor
of size (|wup |, H ,W) and another dropoff tensor of size (|wo f f |, H ,W). The additional features are only
set on projected positions, the rest being zeroed. Stacking all three together gives an input tensor of
size (|w(k)

a |+ |wup |+ |wo f f |, H ,W), which can be considered as an image with multiple channels.

(a) (b)

Figure 1: (a) 391 road crossings in Geneva projected onto the image representations. (b) 11 agents
projected leading to 10 active sites on the image.

Policy modeling Now that we have tensorial representations of the full environment and invariant
to the number of agents, we can focus on learning architecture. To keep results comparable with
potential future work, we only make use of blocks composed of standard 2D convolution (Krizhevsky,
Sutskever, and Hinton 2012) followed by batch normalization (Ioffe and Szegedy 2015) and rectified
linear units (Nair and Hinton 2010). The model (3′203 parameters) consists of 3 successive blocks of
5×5 convolutions with 5 channels followed by 3 successive blocks of 5×5 de-convolution to go back
to the original input shape.

Reinforcement When lacking labeled data, reinforcement learning can be an exciting alternative. By
defining a positive or negative signal/reward Rt at the end of each action or simulation, the process can
be viewed as a Markov decision process that improves the estimate of state-action-values (dynamic
programming/Q-learning) or directly action-values (policy gradient, Arulkumaran et al. 2017). The
reward is especially interesting for combinatorial problems as it allows to model soft constraints by
penalizing the reward, which is usually hard to define in deterministic policies.

Inspired by Silver et al. (2016), we investigate further to see whether reinforcement learning can
improve on a previously learned supervised policy. More recently Kool, Hoof, and Welling (2019)
suggested that the use of a deterministic baseline as a critic can also help to find better policies. The
REINFORCE rule can thus be generalized to integrate the feedback of a deterministic or previously

4

learned policy as shown in algorithm 1.

Algorithm 1: REINFORCE with baseline

Input: epochs E , batch size B , differentiable policy θ, baseline policy b, discount factor γ

1 for epoch in 1, . . . ,E do
2 `← 0
3 for run in 1, . . . ,B (parallel) do
4 generate episode S0, A0,R1, . . . ,ST−1, AT−1 from π(· | S,θ)
5 for step t = 0, . . . ,T −1 do
6 r ←∑T

k=t+1 Rk

7 δ← r −b(St , At)
8 `← γtδ∇ lnπ(At | St ,θ)

9 end

10 end
11 θ← ADAM(θ,`)

12 end

4. Experiments

All the experiments were run on an Intel Xeon 24x2.60GHz E5-2690v3 with 220Go of RAM and 4xTesla
M60 8Go. Models were trained with PyTorch (Paszke et al. 2017) using the ADAM optimizer (Kingma
and Ba 2014) with default parameters (β1 = 0.9, β2 = 0.999 and no weight decay) and later specified
learning rates.

Supervised policies While the original problem has been defined with any number of tasks and agents
features, we will concentrate our efforts on 4 simple channels. Each agent has an indicator variable
for its position and another indicator variable to know whether they already are handling a task or
not wup = (1 1 f r ee)>. The features for task pickup and dropoff also have each an indicator variable for
their locations wup = wo f f = (1)>.

To compare2, we apply a deterministic policy and label the historical demand data lend by a local
delivery company. The policy selects the nearest neighbor to the pickup location in the original metric
space. After projection, we reach better results with noticeably higher accuracies and interesting
distances. Tbl. 1 indicates that about at least 25% of the information is lost or cannot be learned due
to the projection. This loss might be more important as counterbalanced by the accuracy gained
through agents collisions. However, the distances give satisfactory results and show that our proposed
architecture can indeed learn from these representations.

Table 1: Experimental data relabelled with the nearest neighbor strategy. Batch size 128, learning rate
0.001.

Topology Accuracy ± 0.3% Distance ± 0.2

Image 30x27 75.0% 1.0 pixel
Image 50x45 77.0% 1.2 pixel
Image 80x72 72.9% 2.5 pixel

2One could also compare those policies to an open source offline solver such as Google or-tools (Omme, Perron, and Furnon
2014), but it is not clear how the objective of minimizing the total completion time should relate to minimizing the average
delay, especially under soft constraints and stochasticity which characterize our case of study.

5

Reinforcement While learning a policy for imitation might be useful in some cases, the ability to learn
something without previous data and potentially more powerful strategies is appealing. As previously
stated, the reinforcement learning approach opens a way of integrating soft constraints by modulating
the reward signal. One such constraint could be to penalize order delivered too early and too late.
However this kind of goal would require the ability to delay the task assignment (e.g. not immediately
selecting an agent for a given task) and a more complex simulation, we thus focus on minimizing the
delivery delay for each task.

In order to compare within the original metric space, we define 3 deterministic policies based on
the same features used in learned policies that will serve as a baseline. More complex policies are
also possible but they might use more features, and the comparison would not be as fair as with the
following ones:

1. Random policy (dt-random): selecting an agent at random
2. Parallel policy (dt-parallel): selecting the free agent first
3. Parallel duration policy (dt-parallel-duration): selecting the free agent which is the closest

travel time-wise

The number of agents in a policy trained by reinforcement from scratch can slightly vary because it
has to generalize over the projected collisions. However, obtaining a true invariance in the number of
agents require advanced fine-tuned training with a mixed and evolving number of agents. Pre-training
first the policy in the supervised setting can avoid these struggles and give superior results as shown in
tbl. 2 and illustrated in fig. 2.

Table 2: Average delay (in minutes) of all policies over 50 simulations. The policies are ordered by best
mean. dt prefix stands for deterministic and dl for deep learning (supervised). 40 tasks for 4 agents,
batch size 16 and learning rate of 0.0005.

Policy Min Q25 Mean Median Q75 Max

dt-parallel-duration -36.24 -26.97 -24.54 -25.14 -21.76 -8.67
rl-image-critic -34.94 -26.42 -23.57 -23.57 -21.34 -11.25
rl-image-pretrained -36.00 -26.26 -23.41 24.01 -20.91 -6.06
dt-parallel -35.58 -25.91 -22.92 -23.30 -20.14 -6.83
dl-image-data -35.82 -26.35 -22.79 -23.22 -21.33 -1.76
rl-image -34.18 -25.35 -20.11 -22.10 -17.62 7.70
dt-random -26.63 -17.69 -11.10 -10.56 -6.37 23.80

The performance of policies is more or less what we expected. All learned policies are by far smaller
than noise and close to the deterministic parallel policies. The ones learned from scratch tends to be
less complete as the supervised one and pre-training lead to even better-performing ones. Reinforced
ones seem to manage better some good task combinations but also lack some performance in the
worst cases.

The best-learnt policy rl-image-critic was trained first using supervised learning and then using
reinforcement learning with the best policy as feedback. As previously suggested, it forces the policy to
take risks and finding strategies that are better than deterministic ones. Not to mention that there must
be some loss due to the projections, this shows that a mix of training can lead to promising results.

6

Figure 2: Results from tbl. 2 illustrated as violin plots. The symmetric shape represents the distribution
of delays (in minutes) for the given policies. Dashed lines represents the quartiles.

7

5. Conclusions

We explored how structured representation can be learned by policies both from using supervised
and reinforcement learning in a stochastic environment. Although there is an inherent loss due
to the projections and training might be non-trivial, these learned policies show promising results.
Nonetheless, further analysis and evaluations are needed to provide evidence in other contexts. The
generalization allowing multiple tasks being delivered by the same agent in parallel might be one of
the many potential future directions to study.

7. References

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. “A Brief
Survey of Deep Reinforcement Learning.” arXiv Preprint arXiv:1708.05866.

Ascheuer, Norbert, Sven O Krumke, and Jörg Rambau. 2000. “Online Dial-a-Ride Problems: Minimizing
the Completion Time.” In Annual Symposium on Theoretical Aspects of Computer Science, 639–50.
Springer.

Bello, Irwan, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. 2016. “Neural Combina-
torial Optimization with Reinforcement Learning.” arXiv Preprint arXiv:1611.09940.

Bent, Russell, and Pascal Van Hentenryck. 2004. “Online Stochastic and Robust Optimization.” In
Annual Asian Computing Science Conference, 286–300. Springer.

Bertsimas, Dimitris J, and Garrett Van Ryzin. 1991. “A Stochastic and Dynamic Vehicle Routing Problem
in the Euclidean Plane.” Operations Research 39 (4): 601–15.

Dai, Hanjun, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. “Learning Combinatorial
Optimization Algorithms over Graphs.” arXiv Preprint arXiv:1704.01665.

Dantzig, George B, and John H Ramser. 1959. “The Truck Dispatching Problem.” Management Science
6 (1): 80–91.

Garrido, Pablo, and María Cristina Riff. 2010. “DVRP: A Hard Dynamic Combinatorial Optimisation
Problem Tackled by an Evolutionary Hyper-Heuristic.” Journal of Heuristics 16 (6): 795–834.

Gendreau, Michel, Gilbert Laporte, and René Séguin. 1996. “Stochastic Vehicle Routing.” European
Journal of Operational Research 88 (1): 3–12.

Ioffe, Sergey, and Christian Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” arXiv Preprint arXiv:1502.03167.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.” arXiv
Preprint arXiv:1412.6980.

Kool, Wouter, Herke van Hoof, and Max Welling. 2019. “Attention, Learn to Solve Routing Prob-
lems!” In International Conference on Learning Representations. https://openreview.net/forum?id=
ByxBFsRqYm.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “Imagenet Classification with Deep
Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, 1097–1105.

Kumar, Suresh Nanda, and Ramasamy Panneerselvam. 2012. “A Survey on the Vehicle Routing Problem
and Its Variants.” Intelligent Information Management 4 (03): 66.

Lipmann, Maarten. 2013. On-Line Routing.

8

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

Nair, Vinod, and Geoffrey E Hinton. 2010. “Rectified Linear Units Improve Restricted Boltzmann
Machines.” In Proceedings of the 27th International Conference on Machine Learning (Icml-10), 807–14.

Nazari, MohammadReza, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. 2018. “Reinforcement
Learning for Solving the Vehicle Routing Problem.” In Advances in Neural Information Processing
Systems, 9861–71.

Omme, Nikolaj van, Laurent Perron, and Vincent Furnon. 2014. “Or-Tools User’s Manual.” Google.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. “Automatic Differentiation in Pytorch.” In
NIPS-W.

Pillac, Victor, Michel Gendreau, Christelle Guéret, and Andrés L Medaglia. 2013. “A Review of Dynamic
Vehicle Routing Problems.” European Journal of Operational Research 225 (1): 1–11.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, et al. 2016. “Mastering the Game of Go with Deep Neural Networks and Tree
Search.” Nature 529 (7587): 484.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. 2015. “Pointer Networks.” In Advances in Neural
Information Processing Systems, 2692–2700.

9

	1. Introduction
	2. Related work
	3. Methods
	4. Experiments
	5. Conclusions
	7. References

