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Abstract 
 
We present a new approach to studying travel preference dynamics based on constructing a 
synthetic pseudo-panel (SPP) from repeated cross-sectional data. This is accomplished by creating 
a high-dimensional probabilistic model representation of the entire data set, which allows 
sampling from the probabilistic model in such a way that all of the intrinsic correlation properties 
of the original data are preserved. The key to this is the use of novel deep learning algorithms 
based on the Conditional Variational Autoencoder (CVAE) framework. We use the presented 
approach to reveal the dynamics of transport preferences for a fixed pseudo-panel of individuals 
based on a large Danish cross-sectional data set from 2006 to 2016. The model is utilized to 
classify individuals into 'slow' and 'fast' movers with respect to the speed of which their 
preferences change over time. It is found that the prototypical fast mover is a young woman who 
lives as single in a large city whereas the typical slow mover is a middle-aged man with high 
income from a nuclear family that lives in a detached house outside a city. 
 
 
Introduction 
 
Understanding preferences dynamics, whether these are related to transport or any other 
domain, is a fundamental research question which have impact not only for models and 
predictions but also for the way policies are designed and to whom they should be targeted. 
Examples include Vij et al. (2017) who consider modal preference shifts in the San Francisco area, 
the understanding of how value-of-time preferences change through a financial crisis as 
considered in Rich and Vandet (2019), understanding of technology uptake (Mau et al., 2008) and 
the dynamics of car ownership (Cirillo et al., 2016; Nolan, 2010) to mention a few. 
 
Two model approaches remain popular for estimating dynamic behaviour: (i) panel methods 
(Kitamura, 1990) and (ii) pseudo-panel (Deaton, 1985) methods. Whereas the native panel 
approach has a number of theoretical advantages over pseudo-panel methods, it is often faced 
with severe practical challenges related to the collection of data (Kaplan and Atkins, 1987; Golob 
et al., 1997). In the transport community, they have been used mainly to explore car ownership 
dynamics (Dargay and Vythoulkas, 1999; Huang, 2007). Whereas pseudo-panel methods overcome 
many of the challenges related to the collecting of panel data, they imply other limitations for the 
model framework (Deaton, 1985; Gardes et al., 2005).  
 
The aim of the paper is to facilitate the pseudo-panel analysis by constructing a synthetic pseudo-
panel (SPP) from repeated cross-sectional data. This is achieved by utilizing newly developed 
machine learning algorithms which can mimic the properties of high-dimensional data. The models 
adopt a deep generative modelling approach from machine learning based on the Conditional 
Variational Autoencoder (CVAE) (Kingma et al., 2014; Sohn et al., 2015). The benefit of this 
approach is that the model can act as a “sampler” of individuals in such a manner that all of the 



 

 

intrinsic correlation properties of the original high-dimensional data are preserved. This brings 
about a number of new possibilities in addition to the application to pseudo-panels and extents to 
a range of other application areas including, for instance, the generation of synthetic populations 
aimed at agent-based modelling and the tackling of data privacy issues. The approach can be 
applied to reveal transport preference dynamics over time from pure cross-sectional data on a 
very detailed level. It becomes possible to move a given pseudo-panel of individuals forward in 
time and investigate how their transport preferences evolve. 
 
 
Methodology 
 
A simple way of understanding the presented framework is alleviated by considering a definition 
of the data it applies to. Consider a repeated cross-sectional data with 𝑁" individuals defined by 
their socio-economic profiles 𝑠",% 	(𝑖 = 1. . 𝑁) and preferences 𝑣",%   for the time	𝑡	(𝑡 = 0. . 𝑇), where 
𝑇 + 1 represents the number of time periods for which the survey has been collected. Each 𝑠",% 
can be represented as a collection of 𝑀3 socio-economic attributes 𝑠",%,4	(𝑗 = 1. . 𝑀3) and 𝑣",% as a 
collection of 𝑀6 preference attributes 𝑣",%,4	(𝑗 = 1. .𝑀6). 
 
We use the assumption that the available data is a realization from an underlying joint 
distribution, 𝑠",% , 𝑣",%~𝑃(𝑆, 𝑉|𝑥",%, 𝑡), where 𝑆 and 𝑉 are random variables of socio-economic 
profiles and transport-related preferences and 𝑥",%  is a measure of external information for each 
individual. Knowing this joint distribution gives rise to a lot of opportunities when analyse (and 
synthesise) populations and their preferences over time. In this paper, we focus on the problem of 
generating pseudo-panel data for a number of individuals with the socio-economic profiles 𝑠=,% ≡
𝑠"?=,%  fixed at time 𝑡 = 0. The probabilistic framework allows analysing the entire distribution of 
preferences for each individual, 𝑃",%(𝑉) ≡ 𝑃(𝑉|𝑆 = 𝑠=,% , 𝑥",% , 𝑡). Clearly, this assumes that the 
conditional distribution 𝑃(𝑉|𝑆, 𝑥", 𝑡) can be estimated from the data in a sufficiently effective 
manner. When both 𝑀3 and 𝑀6 are small, several model approaches from generative modelling 
are available, for example, based on traditional probabilistic graphical models. However, when 
there are many dimensions, most approaches from machine learning cannot be applied due to 
scalability issues. To circumvent this problem, we propose the use of the Conditional Variational 
Autoencoder (CVAE) — a deep generative model which is briefly described below. 
 
The framework for generating an SPP is depicted in Figure 1 and can be summarized as follows. A 
CVAE model is used to 'learn' preferences distributions from the travel diary data for all the years 
conditional on socio-economic and external attributes. Then, the pseudo-panel can be created by 
sampling a number of the preference realizations for every year for a fixed pool of individuals from 
the reference year	𝑡 = 0, which in turn will form the corresponding preference distribution. 



 

 

 
 
Figure 1. Construction of a synthetic pseudo-panel. 
 
 
To model the conditional distribution 𝑃(𝑉|𝑆, 𝑥", 𝑡), we use a Conditional Variational Autoencoder 
(Figure 2), which is a latent variable model. The main purpose of the CVAE is to estimate the 
probability distribution of the data through a sequence of nonlinear transformations, which are 
usually represented as a deep neural network, applied to a low-dimensional latent space 𝑍 with 
simple Gaussian properties, 𝑍 = 𝒩(0, 𝑰). During the training phase, the original data go through 
an encoding network, which maps data to the latent space. In the second stage, the data are 
reconstructed back to the original form using a decoding network. The objective is to find such 
parameters of the encoder and the decoder which jointly minimize (i) the reconstruction error 
between the encoder input and the decoder output and (ii) divergence between the data 
distribution projected to the latent space and the Gaussian prior. Once the CVAE has been trained, 
samples that mimic the distribution of the original data can be generated by doing Gaussian 
random sampling in the latent space and transforming these samples back to the original data 
space using the decoder network. 
 
 

 
 
Figure 2. Conditional Variational Autoencoder (CVAE). 
 

Figure 3: Conditional Variational Autoencoder.

Commonly used functions include the hyperbolic tangent function, the logistic function and the rectified linear unit212

function, ReLU(x) = max(0, x). The output neurons in the final layer that correspond to numerical variables usually213

have a linear form, while the soft-max function is usually used for categorical variables. During the training of the214

neural network, the di↵erence between the output layer and the desired output, commonly referred to as the loss215

function L, is calculated and minimized by adjusting the ANN parameters (weights and biases). The optimization is216

usually guided by the gradients of the loss function, which can be e�ciently calculated using the chain di↵erentiation217

rule commonly known as ’back-propagation’.218

As the ’correct’ output from the autonecoder is its input itself, the training is performed in an unsupervised manner.219

In this case, the loss function is calculated as the di↵erence between original data points and their reconstructed220

counterparts, that is, it has the same form as the first term on the r.h.s. of Eq. (3). The loss is minimized by adjusting221
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, where Nl is the number of layers. Usually, the dimension222

of the latent space is chosen to be smaller than the original data (Dz < n) so the autoencoder has a butterfly shape.223

It leads to an information bottleneck in the latent space and forces the network to learn a compressed representation224

of the data as illustrated in Fig. 3. However, an alternative sparse version of the autoencoder with Dz > n is also a225

possibility (Ranzato et al., 2007).226

The architecture of the autoencoder is used as a ’backbone’ of the CVAE model, where Q✓(V |C,Z) and P�(V |Z,C)227

are modelled as the encoder and the decoder, respectively, with ✓ ⌘ We and � ⌘ Wd. The CVAE can be also228

interpreted as an autoencoder with a probabilistic structure assigned to the latent space. Constraining the latent229

variables to follow some known distribution P(Z|C) by the second term on the r.h.s. of Eq. (3) allows sampling230

from the model, where the decoder transforms known P(Z|C) to P�(V |C) via a chain of nonlinear transformations231

represented by the neural network.232

The way the CVAE processes the data is illustrated in Fig. 3. During the training (Fig. 3, left), the encoder Q✓

takes an input vector vk concatenated with the conditional variables sk, xk and tk (k is the data sample index in the
cross-sectional data used for the CVAE training) and outputs two vectors µk and �k which correspond to the mean
and the standard deviation of the Gaussian latent variable Z. Its realization zk then has to be generated by sampling
from N(µk,�k). However, as the sampling operation is not di↵erentiable, this makes it impossible to back-propagate
the errors. To overcome this problem, zk can be calculated indirectly as zk = µk + �k � ✏k, where ✏k ⇠ N(0, I)
and � denotes element-wise multiplication. This approach is also known as the ’reparametrization trick’ (Kingma
and Welling, 2013). Then, zk is concatenated with the conditional variables sk, xk and tk and passed through the
decoder P� to generate a reconstructed version of the original data point, v̂k. The output neurons in the decoder that
correspond to numerical components of the data point vk, vik (i 2 {num}), have a linear form, while the soft-max
function, exp

⇣
v

(m)
k j

⌘
/
PDj

m=1 exp
⇣
v

(m)
k j

⌘
, is used for categorical components vk j ( j 2 {cat}) taking one of the Dj possible

values within a “one-hot” representation. For example, the values in the k
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Case study 
 
The case study for generating a super pseudo-panel of preferences is based on the Danish National 
Travel Survey (TU) [http://www.modelcenter.transport.dtu.dk/english/tvu], which represents a 
large continuous cross-sectional data set. It contains socio-economic characteristics of the 
participants, their geographic location as well as a detailed description of travel preferences 
throughout the day of the interview. The estimated preference changes are also filtered, to the 
extent possible, from changes to the infrastructure including extensions to the road and public 
transport network. However, since accounting for these changes to the infrastructure at the local 
level over a period of 11 years is complicated, a simplified approach based on transport zone 
accessibility scores estimated from the Danish national transport model is used. After removing 
the records with missing values, the data set contains 67419 records in total: 4345 (2006), 7010 
(2007), 6606 (2008), 9885 (2009), 11966 (2010), 8354 (2011), 4783 (2012), 3600 (2013), 3541 
(2014), 3172 (2015), and 4157 (2016). 
 
 
Results and Discussion 
 
For the case study, the CVAE model is used to estimate the preference distribution 𝑃(𝑉|𝑆, 𝑥", 𝑔, 𝑡), 
where geographic location of the individuals 𝑔 is included on a zone level. The model is trained 
using the all data available, while its hyper-parameters are tuned using a grid search on a separate 
validation set. To evaluate the quality of the modelled preference distribution, we generate 
100,000 synthetic samples using the CVAE and compare their statistical properties to the 
properties of the observed data. The difference can be measured using standard metrics (e.g., a 
Standardized Mean Root Squared Error (SRMSE), Pearson correlation coefficient, Kullback-Leibler 
divergence, or Coefficient of determination) for the multidimensional histograms constructed for 
the synthetic and the observed distributions. The properties of the synthetic samples produced be 
the CVAE are in a very good agreement with the properties of the observed data (results are not 
shown). 
 
Since the 4345 observations for 2006 are only around a half of the observations as in 2007 (7010), 
we use the 7010 individuals from 2007 as a base population 𝑠=. This population, for which the 
socio-economic profiles and geographic locations 𝑔%  are known, is now moved forward to the 
years 2008 — 2016 and backward to 2006. For each individual 𝑖 we sample travel preferences 
1000 times for each year 𝑡 to numerically estimate the joint distribution 𝑃",%(𝑉). The sampled 
distributions also take into account changes in the infrastructure through the conditioning on the 
respective accessibility scores 𝑥",%  for each year. 
 
We use the constructed SPP to compare socio-economic profiles of people based on how much 
their travel preferences change during the observed period. The individuals are classified 
according to the speed by which their preferences change. In other words, a classification of 'slow' 
and 'fast' movers with respect to preference changes from 2006 to 2016. We do so by calculating 
the SRMSE distance between 𝑃"?D==E,%(𝑉) and 𝑃"?D=FE,%(𝑉) for all individuals. Then, we range the 
individuals by this distance and define slow movers as those belonging to the first decile of the 
distance distribution whereas fast movers are those that belongs to the last decile. The marginal 
distributions of different socio-economics attributes for these two groups are shown in Figure 3 
and described in Tables 1 and 2. According to the differences between these distributions, a few 
observations can be made. Firstly, the prototypical fast movers, defined by the distribution mode, 
are young single female adults living in cities, whereas slow movers are mainly represented by 



 

 

middle-aged men with high income that live in non-single households outside cities and in owned 
detached houses. It is also interesting to observe that elderly people over 70 years old change 
their preferences faster than middle-aged people. This can be related to the socio-economic 
developments (e.g., higher income) and accessibility improvements (e.g., better public transport). 
Secondly, personal income and household size are positively correlated with the probability of 
being a slow mover. To some extent, it is natural to expect people with high income to be less 
affected by societal and technological changes. Almost all students are fast movers, while 
employed persons are much more reluctant to change their preferences fast. Finally, almost all 
slow movers live in rural areas while fast movers are city dwellers. This is an expected observation 
given the highly dynamic changes in modern urban areas. Although no previous analysis has been 
carried out with the same degrees of details, it is the authors impression that the above results 
corresponds well with other findings from social science. 
 
 

 
 
Figure 3. Marginal distributions of socio-economic attributes of the fast (orange) and slow (green) 
movers in the travel preference space defined by the top / bottom deciles of the SRMSE distance 
between preference distributions of 2006 versus 2016. Young females in large cities changed their 
preferences most while old males in rural areas changed least. See more detailed description in 
Tables 1 and 2. 
 
  

Figure 10: Marginal distributions of socio-economic attributes of the fast (orange) and slow (green) movers in the travel preference space. Top /
bottom 10% of the SRMSE distance between preference distributions of 2006 versus 2016. Young females in large cities changed their preferences
most while old males in rural areas changed least. See more detailed description in Tables 4 and 5.

of the intrinsic correlation properties between attributes are preserved. However, the sampled individuals will not468

be strict copies but imputed and learned from the underlying distribution. There are many potential applications of469

detailed pseudo-panels within transport, medicine, bio-statistics, finance and economics. Moreover, the approach may470

also be relevant as a means to model population synthesis and to address data privacy issues.471

As a study case, we analyzed repeated cross-sectional data from the Danish National Travel Survey (TU). We472

show that the CVAE indeed captures statistical properties of the data and is a valuable tool for tracking detailed473

dynamic preferences. A thorough validation of the model is provided including early stop assessment, goodness-of-fit474

performance and bootstrapping of model performance in order to assess dependencies with respect to the ’held-in’475

data. It is shown that the choice of specific ’held-in’ data have little influence on model performance and that the476

bootstrapped variance is generally low and unsystematic. Moreover, the revealed dynamic travel preferences for the477

SPP are shown to conform well to that of the TU participants, with the exception that the trends revealed on the basis478

of the TU are more volatile due to the presence of sampling noise and fluctuations in the socio-economic variables479

that adhere from structural changes (e.g., the financial crisis or economic growth). The estimation of the preference480

probability distribution jointly for all years and geographic locations allows for di↵erent ways of data utilization481

because the data can be specifically aligned depending on the design and purpose of the study. Also, it makes it482

possible to explore very sparse data-spaces through the indirect imputation of data-points facilitated by the CVAE483

model.484

To illustrate the potential of the SPP approach, an analysis of ’fast’ and ’slow’ movers in the travel preference485

space is provided. The two groups are defined as those groups of people who changed their preferences the most486

and the least over the period of 11 years from 2006 to 2016. Through the heterogeneous description of individuals487

it is possible to reveal a very detailed socio-economic classification of fast and slow movers. It is found that the488

prototypical fast movers are young single females who live in cities, whereas slow movers are primarily represented489

by middle-aged men with high income who live in non-single households outside cities in privately owned detached490

houses. We also found the indication that elderly people over the age of 70 are changing their preferences faster than491
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Attribute Values Description Fast Slow 
RespSex  1 

2  
Male 
Female 

0.459 
0.540 

0.550 
0.449 

RespEdulevel  1 
2 
3 
4 
5 
6 
 
9 
11 
12 
13 
14 

1st-7th form 
8th form  
9th form 
10th form 
Upper secondary certificate, higher preparatory certificate 
Higher commercial certificate, higher technical certificate, business 
college  
Other schooling  
Vocational (certificate of apprenticeship, etc.) 
Short-term further education (1.5 - 2 years) 
Medium-term further education (2 - 5 years) 
Long-term further education (minimum 5 years) 

0.057 
0.022 
0.087 
0.099 
0.135 
0.032 
 
0.049 
0.179 
0.031 
0.174  
0.129 

0.101 
0.007 
0.025 
0.027 
0.014 
0.018 
 
0.075 
0.305 
0.078 
0.256 
0.089 

RespMainOccup  1 
2 
3 
10 
11 
12 
15 
20 
22 
30 
50 
52 

Pupil 
Student 
Apprentice, trainee 
Retired person, state pension, early retirement pension 
Unemployed 
Receiver of pre-retirement pay 
Social assistance, rehabilitation, long-term ill 
Full-time housewife/-husband, otherwise out of work 
National serviceman 
Employee 
Self-employed 
Assisting spouse (of self-employed person) 

0.111 
0.265 
0.021 
0.235 
0.018 
0.014 
0.018 
0.007 
0 
0.289 
0.018 
0 

0.081 
0.001 
0.001 
0.062 
0.001 
0.028 
0 
0.001 
0 
0.770 
0.051 
0 

HousehAccomodation  1 
2 
3 
4 
5 
6 

Detached single-family house 
Terraced house, linked house 
Block of flats 
Farm 
Student residence 
Other 

0.191 
0.104 
0.643 
0.002 
0.044 
0.014 

0.848 
0.098 
0.038 
0.012 
0 
0.001 

HousehAccOwnorRent  1 
2 
3 

Owner-occupied dwelling 
Rent 
Cooperative 

0.329 
0.522 
0.148 

0.895 
0.071 
0.032 

NuclFamType  10 
11 
20 
21 

Single 
Single with child/children 
Couple 
Couple with child/children 

0.358 
0.068 
0.281 
0.292 

0.185 
0.099 
0.262 
0.452 

PosInFamily  10 
11 
12 
20 

Single 
Older in couple 
Younger in couple 
Child in nuclear family (under 25 years of age) 

0.390 
0.221 
0.242 
0.145 

0.253 
0.358 
0.306 
0.081 

Table 1. Distributions of the categorical attributes of the fast and slow movers in the travel 
preference space. Modes are highlighted with bold font and underlined. Second and third most 
frequent values are highlighted with bold and italic fonts, respectively. 
  



 

 

Attribute Values Description Fast Slow 
RespAgeCorrect [0, 10) 

[10, 20 
[20, 30) 
[30, 40) 
[40, 50) 
[50, 60) 
[60, 70) 
≥ 70 

Age; years 0.001 
0.151 
0.263 
0.101 
0.121 
0.122 
0.091 
0.146 

0.031 
0.049 
0.064 
0.295 
0.239 
0.158 
0.129 
0.031 

IncRespondent2000 [0, 100) 
[100, 200) 
[200, 300) 
[300, 400) 
[400, 500) 
[500, 600) 
[600, 700) 
[700, 800) 
[800, 900) 
≥ 900 

The respondent’s gross income, price index 
2000; 1000 DKK 

0.350 
0.363 
0.164  
0.078 
0.022  
0.011  
0.004 
0.001 
0.001 
0.001 

0.099 
0.101 
0.356 
0.239 
0.085 
0.035 
0.032 
0.018 
0.018 
0.011 

HomeAdrCitySize [0, 20) 
[20, 40) 
[40, 60) 
[60, 80) 
[80, 100) 
[100, 120) 
[120, 140) 
[140, 160) 
[160, 180) 
≥ 180 

Home, town size; 1000 people 0.141 
0.062 
0.035 
0.007 
0 
0.054  
0 
0.041 
0 
0.657 

0.733 
0.095 
0.075 
0.019 
0 
0.019 
0 
0.024 
0 
0.031 

HomeAdrDistNearestStation [0, 10) 
[10, 20) 
[20, 30) 
≥ 30 

Home, distance to nearest station; km 0.984 
0.014 
0 
0.001 

0.770 
0.194 
0.025 
0.009 

HousehNumPers 1 
2 
3 
4 
≥ 5 

Number of persons in the household; persons 0.333 
0.319 
0.164 
0.115 
0.067 

0.185 
0.285 
0.174 
0.229 
0.125 

HousehNumAdults 0 
1 
2 
3 
≥ 4 

Number of adults (age ≥ 18) in the household; 
persons 

0 
0.368 
0.369 
0.216 
0.045 

0 
0.289 
0.706 
0.004 
0 

IncHouseh2000 [0, 100) 
[100, 200) 
[200, 300) 
[300, 400) 
[400, 500) 
[500, 600) 
[600, 700) 
[700, 800) 
[800, 900) 
≥ 900 

The household’s gross income, price index 
2000; 1000 DKK 

0.109 
0.295 
0.155 
0.116 
0.101 
0.082 
0.061 
0.031 
0.018 
0.027 

0.001 
0.047 
0.165 
0.122 
0.139 
0.164 
0.156 
0.065 
0.048 
0.088 

Table 2. Distributions of the discretized numerical attributes of the fast and slow movers in the 
travel preference space. Modes are highlighted with bold font and underlined. Second and third 
most frequent values are highlighted with bold and italic fonts, respectively. 
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