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Abstract1

One of the key questions for Macroscopic Fundamental Diagram traffic models lies2

in the calibration of the trip lengths, i.e. the travel distances of vehicles in the3

regions. Few studies in the literature have attempted to propose methodological4

frameworks to calibrate the trip lengths. Batista et al. (2019) propose a framework5

to explicitly calculate trip length distributions. However, they do not consider the6

influence of the traffic conditions on the trip lengths. In this paper, we propose7

to extend their methodological framework to determine time-varying trip length8

distributions according to the changes in the traffic conditions.9

1 Introduction10

Aggregated traffic models at the city network level were early introduced by God-11

frey (1969) and later reconsidered by Daganzo (2007) and Geroliminis & Daganzo12

(2008). These traffic models, although designed for urban areas require the partition13

of the city network (Figure 1 (a)) into regions (Figure 1 (b)) (see e.g., Saeedmanesh14

& Geroliminis, 2016, 2017, Lopez et al., 2017, Casadei et al., 2018, Ambühl et al.,15

2019), where the traffic conditions are approximately homogeneous. Figure 1 (c)16

shows the regional network that corresponds to the city network partitioning. Let17

X be the set of regions that define the regional network. In each region, the traffic18
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Fig. 1 – (a) City network. (b) Partition of the city network. (c) Regional
network.

states are regulated by a Macroscopic Fundamental Diagram (MFD). An MFD is1

a relationship between the average circulating flow of vehicles and the average den-2

sity. The traffic dynamics for a single region r ∈ X are governed by a conservation3

equation, where the vehicles’ accumulation nr(t) depends on the balance between4

the inflow (Qin,r(t)) and the outflow (Qout,r(t)):5

dnr

dt
= Qin,r(t)−Qout,r(t), t > 0 (1)

There are two kinds of MFD models that can be distinguished in the liter-6

ature, depending on the assumptions made on Qout,r(t): the accumulation-based7

model (Daganzo, 2007, Geroliminis & Daganzo, 2008); and the trip-based model8

(Arnott, 2013, Lamotte & Geroliminis, 2016, Mariotte et al., 2017, Mariotte &9

Leclercq, 2018).10

One of the main components of MFD models is the setting of the vehicles’11

trip lengths, i.e. the travel distances in the regions. Most applications of the MFD12

models have been designed for testing control algorithms and strategies, where13

the authors consider a constant average travel distance for all vehicles in the same14

region (see e.g., Daganzo, 2007, Keyvan-Ekbatani et al., 2012, Ekbatani et al., 2013,15

Haddad, 2017, Zhong et al., 2017, Yang et al., 2018). Aboudolas & Geroliminis16

(2013) and Kouvelas et al. (2017) tested perimeter control strategies in real city17

networks, but the authors also consider a constant average travel distance for all18

vehicles traveling in the same region. Up to now, little attention has been paid in19

the literature to the challenging task of the trip lengths calibration for MFD models20

applications.21

Figure 2 depicts the scale-up of trips in the city network into paths in the22

regional network as well as the associated challenges. One can observe that the23

green and blue trips cross a different sequence of regions, following the definition of24

the city network partitioning. This ordered sequence of crossed regions by a trip is25

called regional path. The green and blue trips have different travel distances inside26

each crossed region. This leads to different travel distances associated to the same27

regional path. They are then characterized by distributions of trip lengths inside28

each crossed region. An example is depicted in Figure 2 for the green regional path29

inside the gray region. In fact, the trip length distribution associated to the green30

regional path in the gray region contains the information of the plausible travel31
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distances of the green trips in the city network. The question is how to properly1

calibrate the trip lengths distributions based on the information of trips in the city2

network. Yildirimoglu & Geroliminis (2014) proposed a methodological framework3

to implicitly estimate time-varying average trip lengths. Recently, Batista et al.4

(2018) and Batista et al. (2019) went one step further and proposed a methodology5

to explicitly calculate distributions of trip lengths for the calibration of dynamic6

MFD models. The methodology is based on trip patterns in the city network and7

different levels of information from the regional network. Since the true trip patterns8

in the city network are unknown and change over time, the authors constructed a9

virtual set of trips. For this, they randomly sampled a large number of origin-10

destination (od) pairs in the city network and calculated the shortest-paths in11

terms of distance for each pair. These virtual trips were then filtered according to12

different levels of information from the regional network. The latter ranged from13

no information about the previous and next regions to be traveled by the trips, to14

their associated regional path. The first level of information calculates trip length15

distributions considering the travel distances of all trips that cross one region. It16

assigns a common average trip length for all vehicles traveling in the same region,17

independent of their regional path. The most detailed level only considers trips18

that define the same regional path. This allows to determine a different trip length19

distribution for all regional paths that cross the same region. The authors showed20

that the first level of information is not able to capture the trip length variability21

of all regional paths crossing the same region. Moreover, they also showed that22

the trip lengths calibration clearly influences the modeled traffic dynamics in the23

regions. The authors concluded that filtering the trips by their associated regional24

path to explicitly calculate the trip length distributions should be considered.25

Yildirimoglu & Geroliminis (2014) and Leclercq et al. (2015) showed that26

the vehicles’ trip lengths are influenced by the traffic states. In this paper, we27

revisit the methodological framework proposed by Batista et al. (2018) and Batista28

et al. (2019) to explicitly determine trip length distributions for the calibration of29

MFD models. We propose to extend this framework for time-varying trip length30

distributions. In Sect. 2, we review in more detail the methodological framework31

proposed by Batista et al. (2018) and Batista et al. (2019). We also discuss the32

extension of this methodological framework to determine time-varying trip length33

distributions. In Sect. 3, we test the proposed extesion on the 6th district Lyon34

network, that is divided into four regions. We discuss some preliminary results for35

two regional paths. In Sect. 4, we outline the conclusions of this paper.36

2 Methodological framework37

One of the key questions for the application of MFD-based models is the calibration38

of the trip lengths. We start this section by briefly introducing the methodological39

framework (Sect. 2.1) proposed by Batista et al. (2018) and Batista et al. (2019)40

to calculate static trip length distributions considering the most detailed level of41

information. In Sect. 2.2, we discuss the extension of this methodological framework42

to determine time-varying trip length distributions.43
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Fig. 3 – (a) Internal path. (b) Regional path.

2.1 Static trip length distributions1

Batista et al. (2018) and Batista et al. (2019) proposed a methodological framework2

to explicitly calculate trip length distributions. The methodology utilizes a repre-3

sentative set of trips in the city network as well as its partitioning. Let G(N,A) be4

a graph that represents the city network, where N is the set of all nodes and A is5

the set of all links. To partition the city network, one can use one of the different6

techniques described in the literature (see e.g., Saeedmanesh & Geroliminis, 2016,7

2017, Lopez et al., 2017, Casadei et al., 2018, Ambühl et al., 2019). Since the full8

set of true trips in the city network is not known and very difficult to estimate, the9

authors propose to construct a set of virtual trips by randomly sampling several10

origin-destination nodes in the city network and then calculate the shortest-path in11

distance for each pair. Let Γ be this set of virtual trips. The trip length distribu-12

tions are determined based on four levels of information from the regional network.13

In this paper, we focus on the most detailed level that filters the virtual trips by14

their associated regional path. Generically, a regional path p is defined as:15

p = (p1, . . . , pm, . . . , pR),∀m = 1, . . . , R ∧m ∈ X (2)

where R is the number of regions that define p. p1 and pR are the Origin (O) and16

Destination (D) regions, respectively. In this paper, we distinguish between internal17

and regional paths (Batista & Leclercq, 2018). Figure 3 depicts these differences.18

A regional path crosses an ordered sequence of different regions. An internal path19

is defined by virtual trips that travel only within the same region.20

The set of trip lengths Lp
r of regional path p in region r is (Batista et al.,21

2018, 2019):22

Lp
r = {δp

rklrk},∀k ∈ Γ (3)

where lrk is the length of virtual trip k that occurs in region r; and δp
rk is a binary23

variable that equals 1 if virtual trip k defines regional path p, or 0 otherwise.24

The average trip length Lp

r of regional path p in region r is:25

L
p

r =
∑

k δ
p
rklrk∑

k δ
p
rk

,∀k ∈ Γ (4)

This level of information has two limitations (Batista et al., 2019). First,26

the average trip length Lp

r (see Eq. 4) is strongly influenced when the set size Lp
r is27

small, i.e. there is a low number of virtual trips associated to the regional path p.28
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Let Np be the number of virtual trips associated to regional path p. Second, the1

trip length distributions for the Origin and Destination regions of regional path p2

depend on the spatial distribution of the sampled od pairs inside these regions.3

2.2 Time-varying trip length distributions4

The set of trip lengths Lp
r (see Eq. 3) is calculated from virtual trips that represent5

shortest-paths in terms of distance, independent of the traffic conditions in the re-6

gions. However, Yildirimoglu & Geroliminis (2014) showed that the trip lengths7

depend on the traffic conditions and consequently change over time. In this pa-8

per, we propose to extend the methodological framework described in the previous9

section to calculate time-varying trip length distributions for MFD traffic models.10

Generically, the set of trip lengths Lp
r depends on the traffic conditions:11

Lp
r = f(v1(n1), . . . , vm(nm)),∀m ∈ X (5)

where vm(nm) is the speed-MFD that regulates the traffic conditions inside a generic12

region m ∈ X. For a generic regional path p, Lp
r is a multi-dimensional function13

where the number of variables depend on the number of regions that define X, with14

vehicles’ accumulation nm.15

The speed-MFD of a region r ∈ X ranges between 0 and the free-flow speed16

vff
r (nr), i.e. vr(nr) ∈ [0, vff

r (nr)]. The first step of the proposed extension consists17

in building the multi-dimensional numerical grid, by discretizing the speed vr(nr)18

of each region r ∈ X:19

ωr(nr) = {v1
r(nr), . . . , vNr

r },∀r ∈ X (6)

where Nr is the total number of speed samples for region r; and ωr(nr) is the set20

of discretized speeds for region r.21

For each regional OD pair, we sample a set of origin and destination nodes in22

the city network that are in the Origin and Destination regions, respectively. Note23

that this set is fixed for each OD pair. Then, for each point of the multi-dimensional24

numerical grid, we calculate the time-dependent shortest path connecting each od25

pair in the city network using the classical Dijkstra algorithm. The travel time of26

link a is:27

ta = laδar

vh
r (nr) ,∀a ∈ A ∧ ∀h = 1, . . . , Nr (7)

where la is the length of link a; and A is the set of links that define the city network.28

We filter the time-dependent virtual trips following the regional path they29

define and calculate the average trip lengths Lp

r (see Eq. 4). Let ΩOD represent the30

set of all regional paths gathered that connect the regional OD pair. This step allows31

to determine the Lp

r values in the multi-dimensional grid. There are two challenges32

to implement this methodology. First, we need to sample a significant number of od33

pairs in the city network for each regional OD pair. Second, the calculation of the34

time-dependent virtual trips for each point in the multi-dimensional numerical grid35

requires a large computational burden. To bypass these challenges, we make use of36

the Latin hypercube technique (Tang, 1993) for sampling the od pairs. This allows37

to gather a representative subset of all possible connections between the origin38

and destination nodes. In one hand, using this approach significantly reduces the39
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Fig. 4 – (a) 6th district Lyon network divided into four regions. (b) Produc-
tion MFDs. (c) Speed-MFDs.

computational cost required. On the other hand, it also solves the question of the1

sample size of od pairs we should consider, i.e. the number of od pairs that we2

should sample to calculate the virtual trips set (Batista et al., 2019).3

Suppose that L̂p
r is the average trip length that we aim to estimate given4

a set v∗r ,∀r ∈ X of average speeds in the regional network. That is L̂p
r =5

f(v∗1(n1), . . . , v∗m(nm)),∀m ∈ X. To estimate L̂p
r , we first find the location of6

v∗r ,∀r ∈ X in the numerical grid ωr(nr) (see Eq. 6). We then gather the 2Nr clos-7

est points as well as the corresponding calculated average trip lengths Lp

r . We fit a8

multi-dimensional linear regression model defined as:9

L
p

r = α0 +
∑
i∈X

αivi +
∑
j∈X
i 6=j

αijvivj ,∀r ∈ p ∧ ∀p ∈ ΩOD (8)

where vi are the predictors and represent the speed samples of region i previously10

gathered from ωr(nr); α0, αi and αij are the regression coefficients to be deter-11

mined; and ΩOD is the set of all regional paths connecting the regional OD pair.12

The average trip length L̂p
r is then estimatd as:13

L̂p
r = α0 +

∑
i∈X

αiv
∗
i +

∑
j∈X
i 6=j

αijv
∗
i v
∗
j ,∀r ∈ p ∧ ∀p ∈ ΩOD (9)

3 Results and discussion14

We now discuss the implementation of the methodological framework introduced in15

the previous section. The test network is the 6th district of Lyon (France) depicted16

in Fig. 4 (a). It is composed by 757 links and 431 nodes. This city network is17

partitioned into four regions, for which we fitted the production-MFD and speed-18

MFD functions depicted in Fig. 4 (b) and Fig. 4 (c), respectively. We assume a19

bi-parabolic shape for the MFD (one parabola for the increasing and one for the20

decreasing part of the MFD, with a first derivative equal to zero for the critical21

accumulation that maximizes production). The free-flow speeds for regions 1 to 422

are vff
1 = 5.2 (m/s), vff

2 = 6.4 (m/s), vff
3 = 6.2 (m/s) and vff

4 = 5.8 (m/s).23
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We first analyze how the average trip lengths Lp

r are influenced by the traffic1

states (i.e. their relation with the regional mean speeds vr(nr),∀r ∈ X) for an2

internal path p = {1} and a regional path p = {124}. To construct the multidi-3

mensional numerical grid, we discretize the speed-MFDs (see Fig. 4 (c)) of the four4

regions as ω1(n1) ∈ [0.4 : δv : 5.2], ω2(n2) ∈ [0.4 : δv : 6.4], ω3(n3) ∈ [0.2 : δv : 6.2]5

and ω4(n4) ∈ [0.2 : δv : 5.8], where δv = 0.4 (m/s).6

Fig. 5 depicts the evolution of the number of time-dependent virtual trips7

(Np) as well as of the average trip length L
p

1 = {1} as function of the speeds v28

and v3. We show the results for four values of v1 = 5.2, 2.8, 1.6, 0.8 (m/s). We9

observe that under free-flow conditions of regions 1, 2 and 3, the number of time-10

dependent virtual trips that define regional path p = {1} is Np ∼ 1800. A similar11

trend is observed when the three regions are congested (i.e. when v1, v2 and v312

are low). The average trip lengths L1 are also not influenced by the traffic states13

because similar time-dependent virtual trips set are obtained for the previous two14

scenarios. As region 1 becomes more congested, while the adjacent regions 2 and15

3 are still in free-flow conditions, the number of time-dependent virtual trips Np16

associated with the internal path p = {1} decrease. For lower values of v1, the17

travel times of the city network links of region 1 increase. When the speeds in18

region 2 and 3 are in free-flow conditions, the city network links travel times for19

these two regions will be inferior than the ones of region 1. This means that the20

time-dependent virtual trips will detour to the links in regions 2 and 3 and then21

define other regional paths, such as for example p = {1231} and p = {1321}.22

The set of time-dependent virtual change and the average trip length Lp

1 = {1} is23

then dependent on the traffic conditions (i.e. on the observed mean speeds in the24

regions).25

Fig. 6 also depicts the evolution of Np as well as of the average trip lengths26

for regions 1 (L1), 2 (L2) and 4 (L4) as function of v2 and v3, for regional path27

p = {124}. One can observe similar trends as in the case of regional path p = {1}.28

For low v2 values, the link travel times of region 2 increase. When region 3 is29

in free-flow conditions, the time-dependent virtual trips detour from region 2 to30

3 and therefore define a different regional path p = {134}. This reduces the Np31

associated to regional path p = {124} and influences the average trip lengths. When32

both regions 2 and 3 are in free-flow conditions, the time-dependent virtual trips33

are more probable to cross the border of region 3 when their origin nodes are closer34

to this region. However, when v3 is low, the travel times of the links in this region35

increase and the time-dependent virtual trips detour to region 2. This increases36

the average trip length in region 1 as observed in Fig. 6. This is also true for the37

destination region 4.38

We also estimate the average trip lengths for regional paths p = {1} and39

p = {124} (see Eq. 8 to Eq. 9), considering different set of v1, v2 and v3. We40

have also determined the average trip lengths for these sets of speeds, based on the41

calculation of the time-varying virtual trips. The results are listed in Table 1 for42

regional path p{1} and in Table 2 for regional path p{124}. We observe that the43

estimated trip lengths show a good agreement with the calculated ones based on44

the time-varying virtual trips. The exceptions happen for regional path p{124} and45

low values of v2 and v3, i.e. when the average trip lengths are more sensible to Np.46

One solution is to consider a smaller δv to construct the numerical grid for smaller47

vr,∀r ∈ X.48
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v1 v2 v3

Region
1

L1 L̂1
5.10 0.60 1.15 407 407
2.50 5.80 6.13 369 369
3.40 2.15 4.36 407 407
4.33 3.77 5.20 407 407
1.05 5.40 2.40 324 320
0.66 0.50 5.95 406 403
0.45 0.60 0.88 407 397

Tab. 1 – Estimated L̂1 and calculated average trip lengths L1 (in m) for
regional path p = {1} and different values of v1, v2 and v3 (in m/s).

v2 v3

Region
1 2 4

L1 L̂1 L2 L̂2 L4 L̂4
0.60 1.15 200 270 666 652 298 679
5.80 6.13 208 209 833 821 225 229
2.15 4.36 214 226 801 809 232 228
3.77 5.20 210 214 828 813 225 230
5.40 2.40 209 231 827 754 229 229
0.50 5.95 134 225 674 792 354 632

Tab. 2 – Same as in Table 1, but for p = {124} and different values of v2
and v3.
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4 Outline1

In this paper, we propose an extension of the methodological framework proposed2

by Batista et al. (2019) to determine time-varying trip lengths for the calibration3

of aggregated traffic models. We show how the traffic conditions in the regions4

influence the average trip lengths. We also show that the proposed methodology5

yields good estimation results for the average trip lenghts. We plan to pursue this6

study for other regional paths and analyze the trip lengths estimation for larger7

city network partitioned into a larger number of regions.8
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