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ABSTRACT
In recent years, Convolutional LSTM neural networks have
demonstrated superior performance when applied to prob-
lems in multiple domains, including biology [1], weather
forecasting [2], and speech recognition [3]. In this work,
we apply this technique to the traffic domain, by measuring
its accuracy in predicting speeds and flows. Our dataset
comprises of 6 months of traffic information, collected from
Android devices in several roads around Nørre Campus in
Copenhagen, Denmark. We compare the predictive perfor-
mance of Convolutional LSTM to several Recurrent Neural
Network architectures which use a more "classic" Fully-
Connected LSTM. The results show that for this traffic
forecasting problem too, Convolutional LSTM outperforms
other models.
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I. INTRODUCTION

Accurate prediction of traffic conditions enables reliable
planning of travel times, early detection of traffic congestion,
and effective response by road practitioners. Reliable short-
term traffic prediction is essential for proactive applications
of Intelligent Transport Systems (ITS) [4], and is extensively
used by Traffic Management Centers world-wide [5] [6].

Decades of research into short-term prediction have
yielded a plethora of methods for forecasting time series
data, such as the ARIMA family of models and Kalman
filters. In recent years, Deep Learning techniques have
also come into play, yielding successful results. A Deep
Learning architecture which is often applied to time series
data is Recurrent Neural Network (RNN), which in turn
often employs Fully-Connected Long Short-Term Memory
(FC-LSTM) units. More recently, a new type of memory
unit called Convolutional LSTM (Conv-LSTM) has been
published and shown to gain superior results for datasets
in several domains. Conv-LSTM applies convolutions, and
so is better equipped than FC-LSTM for learning patterns in
local neighborhoods.

In this work, we pit FC-LSTM against Conv-LSTM within
the transportation domain, in predicting speeds and flows for
a network of roads in Copenhagen, Denmark. We assume

that underlying our data are spatio-temporal correlations,
which Conv-LSTM can take advantage of. We begin by
building a simple FC-LSTM architecture, then continue to
gradually enhance it to yield better predictions, compared
to a Linear Regression baseline. Then, we implement a
Conv-LSTM network, apply it to the same input, and show
that Conv-LSTM outperforms FC-LSTM in predicting both
speeds and flows.

II. DATASET
The data we use in this work consists of traffic information

for several places around Nørre Campus: a campus of the
University of Copenhagen. Each place falls into one of two
place groups: junctions and middle-of-roads (both traffic
directions). Because traffic tends to flow more freely in
middle-of-roads than in junctions, we may anticipate that
prediction models perform better in middle-of-roads than in
junctions.

The data was collected from Android devices between 1-
Jan-2015 00:00 and 29-Jun-2015 23:59, in 5 minute lags,
and consists of mean speeds (km/hr) and mean flow deciles
in {0, 1, . . . , 9}. For example, if place p has flow decile 4
at lag t, then the mean flow in p during t is greater than at
least 40% of all other places, and smaller than at least 50%
of them.

Before modeling, we detrend speeds, and interpolate miss-
ing speeds and flows. We then use all data before June
2015 for training, while we reserve the remaining data
for testing. The input to our models is in the form of
feature vectors, so that for each place p and lag t, the
corresponding vector comprises of speeds and/or flows in
p in lags t − 1, t − 2, . . . , t − 12, namely the previous 60
minutes.

III. MODELS
For all models, we measure prediction quality through the

commonly used Rooted Mean Squared Error (RMSE). As
baseline, we use Linear Regression (LR), which we found to
outperform two other common baseline models: Naive Copy
(whereby the prediction is the value in the previous lag), and
Historical Average. We find that LR performs essentially
the same whether it learns speeds and flows together or
separately.



Next, we start from a simple RNN architecture and
gradually enhance it towards better prediction quality. Unless
otherwise stated, all our networks use the following hyper-
parameters, which we found to work best through exhaustive
search: LSTM state size = 30 ; past lags = 3 ; mini-batch
size = 256 ; and epochs = 100. Figures 2a and 2b provide
and compare the RMSE of all models.

We first experiment with "classic", Fully Connected Long
Short-Term Memory (FC-LSTM). Figure 1 presents the
architectures we go through to gradually improve predictive
performance, as we briefly describe next. First is LSTM
Separated, which we apply separately to speeds and to
flows, and which turns out to be worse at predicting flows
than LR.

Second is LSTM Combined, which we apply to speeds
and flows together, and which outperforms both LR and
LSTM Separated. This also shows that unlike LR, RNN
can take advantage of processing speeds and flows together.
We also experiment with adding dropout and regularization
as counter-measures for overfitting, but obtain lower perfor-
mance, and so leave out these additions.

Third is LSTM Mixture, where we first train two in-
dependent LSTM’s – one for speed, another for flows –
and only then combine the two. We run this architecture
twice: once with state size 15 per LSTM – so that the RNN
has same total memory as in the previous architectures –
and once with double the state size per LSTM. The results
show that LSTM Mixture performs virtually the same with
or without size doubling, and is in both cases worse than
LSTM Combined.

Fourth, we feed an entire place group G ∈
{middle-of-roads, junctions} at once, thus allowing LSTM
Grouped a simultaneous overview of all places. We increase
the number of epochs to 150 and the state size to 30 |G|,
and the results are slightly better than for LSTM Combined.

Finally, we create a new architecture LSTM Conv1D,
by replacing FC-LSTM with Conv-LSTM in the LSTM
Grouped architecture. We reason that two-dimensional input
is problematic in our case, because the resulting grid is
highly sparse, and some neighboring cells contain traffic in
opposite directions. Hence we first convert the 2D map into
1D format, by ordering all places linearly in three different
manners: randomly, by latitude, and by longitude. We then
run LSTM Conv1D independently for each ordering, with a
convolutional kernel of size 5× 1.

We obtain that LSTM Conv1D outperforms LSTM
Grouped – our best performing FC-LSTM model – in pre-
dicting speeds and flows, regardless of which linear ordering
we apply. Furthermore, ordering by latitude or by longitude
yields better performance than ordering randomly, which
indicates that LSTM Conv1D indeed takes advantage of geo-
spatial properties of our dataset. The best improvement is
gained for ordering by longitude, as the places are more
widely scattered vertically than horizontally.

IV. CONCLUSIONS
Our best performing RNN architecture is LSTM Conv1D,

which uses Convolutional LSTM, rather than Fully-
Connected LSTM. Compared to the baseline LR, LSTM
Conv1D achieves 12% better speed RMSE in middle-of-
roads, 8.5% better speed RMSE in junctions, 5.7% better
flow RMSE in middle-of-roads, and 5.9% better flow RMSE
in junctions.

Similarly to the baseline LR, all our RNN models yield
more accurate predictions in middle-of-roads than in junc-
tions. However, unlike LR, our RNN models successfully
take advantage of combining speeds and flows at input level.

We intend to next experiment with Graph Convolutional
LSTM [7], as our data is naturally structured as a graph, e.g.
where places are vertices and connecting road segments are
edges. We also intend to experiment with Stacked LSTM
[8], which could further improve prediction accuracy.
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Fig. 1: RNN architectures in our experiments.
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(b) Flow RMSE

Fig. 2: Comparison of RMSE for all models. A star marks the best value in each case.
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