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1 Motivation

Autonomous vehicles have been predicted to make significant changes to the
field of transportation in the next decades. In order to support the growth of
this technology, the development of scene understanding algorithms which
can robustly identify the objects in the vehicle’s viewpoint is crucial for im-
proving both navigation and safety. Fine-grained semantic labeling of static
and dynamic objects in a scene, such as roadways, sidewalks, sign posts,
cars, pedestrians and cyclists (see Figure 1), provides valuable information
as to what is in the vehicle’s near and far field [6]. This information can
be fed to systems such as collision avoidance and trajectory prediction, de-
pending upon the level of autonomy of the vehicle, to further improve both
vehicle and pedestrian safety.

Figure 1: Scene Understanding: An example of a semantically labeled (or
segmented) image which can be used to improve navigation and safety [5].

Figure 2: Spatial Priors: The "before" and "after" images of an intersection
after improvements have been made. The before image provides a strong
structural prior for labeling objects in the new ("after") image.

An autonomous vehicle is typically outfitted with several sensor modal-
ities which can be used for mapping of environment [8] through which
it drives (e.g Google self-driving cars continuously map the campus and

streets of Mountain View, CA, near the headquarters) [3]. A priori knowl-
edge of a given area can be derived from maps created during previous
traversal through an intersection, for example. These scene priors, in the
form of imagery and semantic labeling, can be incorporated into scene un-
derstanding algorithms to improve the semantic segmentation of the scene in
its current state. As seen in Figure 2, the "before" image provides a strong
spatial prior: the scene need not have the exact appearance to be useful
as the fundamental layout of the road, sidewalk and buildings represent a
strong structural prior. Time series data in the form of video from a mov-
ing vehicle can also provide a rich temporal prior. Earlier frames captured
within a time window of the current scene often share a high degree of visual
coherence (especially for objects in the distance) which can be leveraged in
scene understanding algorithms. This idea is illustrated in Figure 3, where
the "temporal prior" is captured from a car driving down a highway several
seconds before the "current image".

Figure 3: Temporal Priors: Earlier frames captured within a time window of
the current scene often share a high degree of visual similarity and structure.

Modeling a prior is a challenging task. Some objects, such as cars and
pedestrians, are mobile and are not in the same location between frames (or
timesteps). Also, the appearance of the scene can shift quite a bit, depending
upon the speed of the vehicle. For these reasons, it can be difficult to know
which semantic labels should be selectively propagated from the semantic
segmentation prior to accurately represent the current scene. There are naive
approaches for transferring this information, such as estimating the motion
shift between frames, something more useful for static priors. However, we
want to use machine learning to learn from driving data how to more ac-
curately transfer information from the prior. This will help avoid problems
like spurious labeling in the final segmentation.

This research seeks improve an autonomous vehicle’s situational aware-
ness of its environment by using a machine learning-based approach with
spatial and temporal priors to improve scene understanding algorithms.

2 Methodology

In the past several years, deep learning has come to the forefront of ma-
chine learning, computer vision and robotics research, proving to be highly
effective by generating state-of-the-art results in several areas such as object
detection and classification [7]. This work has recently been extended to the
field of autonomous driving with success. In the past year, NVIDIA created
a deep learning-based system, known as PilotNet, which is able to predict
steering angles and identify relevant object on the road by using images an
input [2].

More specifically, deep learning uses feed-forward, multi-layered con-
volutional neural networks (CNN) which can take various types of image



input and produce output such as bounding box detections, scene depth esti-
mation or pixel-level classification of objects in a scene. The latter is called
semantic segmentation where each pixel in an image is labeled with one of
a set of pre-defined classes and is used for our scene understanding task.

Figure 4: Model Architecture: Two variants of a convolutional neural net-
work with an encoder-decoder architecture which takes an image and se-
mantic segmentation as a prior (either spatial or temporal) to produce a se-
mantic segmentation of the input scene.

Figure 5: Semantic Segmentation: Qualitative comparison of semantically
labeled images for networks which use and do not use priors.

Each network has an architecture that is specifically designed to the task
at hand. In the case of our models, we use a fully-convolutional encoder-
decoder architecture for semantic labeling, motivated by [1]. The strength
of this type of model is that it is able to map the network’s input ("encode")
to a completely different representation ("decode"). The encoder projects
raw pixel values into a lower dimensional representation by progressively
convolving the input with a set of learned feature kernels and similarly the
decoder progressively deconvolves (or upsamples) this representation into a

Network Architecture Global Class Inter Over Union

(1) No Prior: All Classes 80.85 62.41 46.03
(2) With Noisy Prior: All Classes 82.33 61.89 47.57
(3) With Manhattan World Prior: All Classes 84.46 51.84 45.00

(1) No Prior: Dynamic Classes 78.34 78.84 34.62
(2) Noisy Prior: Dynamic Classes 76.30 80.57 37.54
(3) Manhattan World Prior: Dynamic Classes 51.62 85.13 26.14

(1) No Prior: Static Classes 80.98 58.63 50.32
(2) Noisy Prior: Static Classes 82.65 58.14 51.32
(3) Manhattan World Prior: Static Classes 86.18 54.33 52.07

Table 1: Multi-Class Comparison: Pixel-wise labeling accuracy for seman-
tic segmentation networks which use and do not use priors. Results for all
classes, dynamic classes (car, person, bicycle) and static classes (road, side-
walk, signpost, fence, etc.). Dynamic classes comprise 2% of test dataset
annotations. Network architectures correspond to cases illustrated in Figure
4.

semantically labeled image.

We have trained several variants of the encoder-decoder architecture for
scene understanding which incorporate prior knowledge at different levels
in the network (see Figure 3). We define a scene prior as a semantically
segmented image of a given location which has been captured in a spatially
or temporally similar way. Each model is trained using the CamVid road
scene dataset [4] which contains several driving sequences with object class
semantic labels, collected at various times of the day. The challenge for each
model is to be able to label eleven classes such as road, sidewalk, building,
car, pedestrians, bicycle, sign, poles, sidewalk, etc.

3 Results and Discussion

The preliminary results of our experiments indicate that using priors, when
available, increases the overall accuracy of the semantic labeling in the test
set. The performance of the scene segmentation can be measured using
three standard metrics: global accuracy, class accuracy and intersection-
over-union. Global accuracy is the overall mean per-pixel labeling accuracy
and class accuracy is the mean class-wise accuracy. Intersection-over-union
is the average of the intersection of the prediction and ground truth regions
over the union of them.

Table 1 shows a quantitative comparison of the network architecture
variants, where architecture (1) (no prior) is the baseline . Two different
types of priors were used during model training, a "noisy" prior which was
previous semantic segmentation of the scene (as described in Section 1) and
a Manhattan World prior (see Figure 5, 3rd row) which simplifies class la-
bels into approximately three planar surfaces (horizontal: sidewalks, roads,
vertical: buildings, poles, trees, pedestrians, overhead: sky). Both priors
were obtained from semantic segmentation models trained solely for gener-
ating priors. The global accuracy increased both for models (2) and (3) of
per-pixel labeling increased by 1.5 to 4.4% and the intersection-over-union
for model (2) increased by approximately 1.5%. The improvement in (3) in-
dicates that just by collapsing object classes into orientation-similar labels,
a deep learning network is able to learn well from a simplified structural
prior. One reason for this may be that noisy spurious labels have been re-
moved from the prior, decreasing the amount of error propagated.

An example where a spatial prior is applied can be seen in Figure 5,
where a comparison models with no priors, noisy and Manhattan World pri-
ors is shown. The semantic segmentation with no prior (1) contains a lot of
noisy artifacts of mislabeled classes. Even when a noisy prior (with some
mislabeling of pixels) of the scene is used (2), the effect is that the final
segmentation is much cleaner and smoother around object boundaries. The
prior acts as an extra weighting in the feature maps that are produced by
convolutional kernels at each level of the network. The final segmentation
for the Manhattan World prior (3) lacks much of the mislabeled pixels prop-
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agated in (2) which can be attributed to using a simpler, cleaner prior.
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