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INTRODUCTION
Modeling, estimation, and control of large-scale urban traffic networks present considerable chal-
lenges. Inadequate infrastructure and coordination, low sensor coverage, spatiotemporal propaga-
tion of congestion, and the uncertainty in traveler choices contribute to the difficulties faced when
creating realistic models and designing effective traffic estimation and control schemes for urban
networks. Although considerable research has been directed towards designing efficient real-time
traffic management schemes in the last decades, estimation and control of heterogeneously con-
gested large-scale urban networks remains a challenging problem.

Traffic modeling and control studies for urban networks usually focus on microscopic mod-
els keeping track of link-level traffic dynamics with control strategies using local information.
Based on the linear-quadratic regulator (LQR) problem, traffic-responsive urban control (TUC)
(Diakaki et al., 2002) and its extensions (Aboudolas et al., 2010; Kouvelas et al., 2011) represent a
multivariable feedback regulator approach for network-wide urban traffic control. Although TUC
can deal with oversaturated conditions via minimizing and balancing the relative occupancies of
network links, it may not be optimal for heterogeneous networks with multiple pockets of con-
gestion. Inspired by the max pressure routing scheme for wireless networks, many local traffic
control schemes have been proposed for networks of signalized intersections (see Kouvelas et al.
(2014); Varaiya (2013); Wongpiromsarn et al. (2012); Zaidi et al. (2015)), which involve evalua-
tions at each intersection requiring information exclusively from adjacent links. Although the high
accuracy of microscopic traffic models is desirable for simulation purposes, the increased model
complexity results in complications for control, whereas local control strategies might not be able
to operate properly under heavily congested conditions and fast propagation, as they do not protect
the congested regions upstream. Another disadvantage of sophisticated local controllers is that
they might require detailed information on traffic states, which is difficult to estimate or measure.

An alternative to traditional local real-time traffic control methods is the two layer hier-
archical control approach. At the upper layer, the network-level controller optimizes network
performance via regulating macroscopic traffic flows through interregional actuation systems (e.g.,
perimeter control), whereas at the lower layer the local controllers regulate microscopic traffic
movements through intraregional actuation systems (e.g., signalized intersections). The macro-
scopic fundamental diagram (MFD) of urban traffic is a modeling tool for developing low com-
plexity aggregated dynamic models of urban networks, which are required for the design of effi-
cient network-level control schemes for the upper layer. It is possible to model an urban region
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with roughly homogeneous accumulation (i.e., small spatial link density heterogeneity) with an
MFD, which provides a unimodal, low-scatter, and demand-insensitive relationship between accu-
mulation and trip completion flow (Geroliminis and Daganzo, 2008).

The concept of MFD with an optimum accumulation was first proposed by Godfrey (1969),
and its existence was recently verified with dynamic features and real data by Geroliminis and
Daganzo (2008). Control strategies based on MFD modeling and using perimeter control type
actuation (i.e., manipulating transfer flows between neighboring regions) have been proposed by
many researchers for single-region (Daganzo, 2007; Gayah et al., 2014; Haddad, 2017a; Haddad
and Shraiber, 2014; Keyvan-Ekbatani et al., 2012) and multi-region (Aboudolas and Geroliminis,
2013; Ding et al., 2017; Fu et al., 2017; Haddad, 2017b; Haddad and Geroliminis, 2012; Had-
dad and Zheng, 2018; Kouvelas et al., 2017; Zhong et al., 2017) urban areas. Application of the
MPC technique to the control of urban networks with MFD modeling also attracted recent interest.
Geroliminis et al. (2013) design a nonlinear MPC for a simple two-region urban network equipped
with a perimeter control system. Hajiahmadi et al. (2015) generalize the two-region MFD net-
work model of Geroliminis et al. (2013) to that of an R-region network, and propose hybrid MPC
schemes for an urban network equipped with both perimeter control systems and switching signal
timing plans. Ramezani et al. (2015) develop a model capturing the dynamics of heterogeneity
and design a hierarchical control system with MPC on the upper level. An integration of perimeter
control and route guidance type actuation within an MPC framework is proposed in (Sirmatel and
Geroliminis, 2018). More detailed literature reviews of MFD-based modeling and control can be
found in Saberi and Mahmassani (2012) and Yildirimoglu et al. (2015).

Although there is considerable literature on traffic state estimation (especially for freeway
networks), combined estimation and control for heterogeneously congested large-scale urban net-
works remains an open problem. In this paper we propose integrated traffic management schemes
involving optimization-based estimation and control for perimeter controlled urban networks with
MFD-based modeling.

MODELING OF URBAN NETWORKS
Consider an urban network R with heterogeneously distributed accumulation consisting of R ho-
mogeneous regions, i.e., R = {1, . . . , R}, with each region i ∈ R having a well-defined pro-
duction MFD Pi(ni(t)) (veh.m/s) expressing the production at accumulation ni(t) (veh). A net-
work consisting of 3 regions is schematically shown in figure 1. The demand for trips in region
i with destination j is qij(t) (veh/s), whereas nij(t) (veh) is the accumulation in region i with
destination region j, and ni(t) (veh) is the total accumulation in region i, at time t; i, j ∈ R;
ni(t) ,

∑
j∈R nij(t). Between each pair of neighboring regions i and h (with h belonging to

the set of neighbors of i, i.e., h ∈ Ni) there exists perimeter control actuators, modeled via the
control input uih(t) ∈ [umin, umax], with 0 ≤ umin < umax ≤ 1, that can restrict the vehicle flow
transferring from region i to region h. Moreover, the regional route choice decisions of the drivers
are modeled via route choice terms θihj(t) ∈ [0, 1], expressing the percentage of drivers in region
i with destionation j deciding to transfer to region h, with

∑
j∈R\{i} θihj(t) = 1. The dynamics of
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FIGURE 1: Schematic of an urban network with 3 regions.

the R-region MFDs network is (Ramezani et al., 2015):

ṅii(t) = qii(t) +
∑
h∈Ni

uhi(t)Mhii(t)−Mii(t) (1a)

ṅij(t) = qij(t) +
∑

h∈Ni\{j}

uhi(t)Mhij(t)−
∑
h∈Ni

uih(t)Mihj(t), (1b)

where Mii(t) (veh/s) is the exit (i.e., internal trip completion) flow that is defined as:

Mii(t) =
nii(t)

ni(t)

Pi(ni(t))

lii
∀i ∈ R, (2)

while Mihj(t) (veh/s) is the flow transferring from region i to h with destination j:

Mihj(t) = θihj
nij(t)

ni(t)

Pi(ni(t))

lij
∀i ∈ R, ∀h ∈ Ni, ∀j ∈ R \ {i}. (3)

Trips inside a region are assumed to have similar trip lengths (i.e., the origin and destination of the
trip does not affect the distance traveled by a vehicle). Simulation and empirical results (Geroli-
minis and Daganzo, 2008) suggest the possibility of approximating the MFD by an asymmetric
unimodal curve skewed to the right (i.e., the critical accumulation ni,cr, for which the production
Pi(ni(t)) is at its maximum, is less than half of the jam accumulation ni,jam that puts the region in
gridlock). Thus, Pi(ni(t)) can be expressed using a third-degree polynomial in ni(t):

Pi(ni(t)) = ain
3
i (t) + bin

2
i (t) + cini(t), (4)

where ai, bi, and ci are MFD parameters that can be extracted from data.
Note here that the route choice behaviour of the drivers can also be considered with this

dynamical model. In simulations, routing can be captured by a logit model (see (Ben-Akiva and
Bierlaire, 1999)), where the route choice terms θihj are calculated based on the current travel times
from region i to destination j through a fixed number of shortest regional paths (i.e., sequences
of regions) connecting the two. In general, the set of regional paths can be calculated using Dijk-
stra’s algorithm for K-shortest paths for complicated network topologies (see, e.g., (Sirmatel and
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Geroliminis, 2018)). The θihj values are updated at each time step of the simulation by the logit
model, to model real-time driver adaptation to traffic conditions. The assumption that the physical
shortest path is always chosen by the drivers is relaxed through the logit model. Thus, more real-
istic simulations are obtained, as in reality drivers rarely have access to perfect information and do
not always behave rationally. The information available to drivers or their sensitivity to travel time
differences between routes can be reflected in simulations by adjusting the parameters of the logit
model.

Although there exists empirical evidence about its validity via aggregated data (e.g., Geroli-
minis and Daganzo (2008)), the MFD should not be considered as a universal law. Strong demand
fluctuations, for example, can trigger fast evolving transients, affecting the trip length distribution
in a region at a specific time. This can potentially lead to inaccuracies in the approximation of
outflow as the ratio of production over trip length. Although, for a range of cases, this can be a
valid assumption, further research is required to examine the conditions requiring modeling via
more complex dynamics with delays (see, e.g., some analysis in Lamotte and Geroliminis (2017)),
which can be a research priority.

OPTIMAL ESTIMATION AND CONTROL OF LARGE-SCALE URBAN NETWORKS
Moving Horizon Estimation
We formulate the problem of finding the wij values that yield a state estimate striking a trade-off
between measurements and the prediction model, for a moving time horizon extending a fixed
length into the past, as the following discrete time nonlinear MHE problem:

minimize
wk

Ne−1∑
k=0

‖wk‖2Q +
Ne∑
k=0

‖vk‖2R

subject to for k = 0, . . . , Ne :

vk , y(t−Ne + k)−H(nk, uk)

for k = 0, . . . , Ne − 1 :

nk+1 = F (nk, u(t−Ne + k), θ̂(t−Ne + k), d(t−Ne + k), wk, T )

for k = 1, . . . , Ne :

0 ≤ ni,k ≤ ni,jam,

(5)

where k is the time interval counter internal to the MHE, Ne is the horizon of the MHE, t is
the current time step, Q and R are weighting matrices on the demand and measurement noise,
respectively, wk, vk, and nk are vectors containing the variables wij,k, vij,k, and nij,k for all i, j ∈
R, expressing the demand noise, measurement noise, and accumulation state variables internal
to the MHE, respectively, H is the measurement equation (i.e., a function expressing how the
measurements depend on the state variables and control inputs), F is the discrete-time version of
the dynamics given in equation (1) with sampling time T , whereas y(t), u(t), θ̂(t), and d(t) are
vectors containing the variables yij(t), uih(t), θ̂ihj(t), and dij(t) for all i, j ∈ R, h ∈ Ni, expressing
the measurement, perimeter control input, route choice measurement, and known inflow demand
terms recorded at time step t, respectively, while ni,k is the accumulation state of region i internal
to the MHE, with ni,k ,

∑
j∈R nij,k. Note that the arguments of F reflect the information available

to the MHE, which is assumed to have access to the recorded values of y(t), u(t), θ̂(t), and d(t)
for a finite horizon of length Ne into the past.
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Model Predictive Control
We formulate the problem of finding the uih(t) values that minimize total time spent (TTS) for a
finite horizon as the following discrete-time economic nonlinear MPC problem:

minimize
uk

Nc∑
k=0

∑
j∈R

ni,k

subject to n0 = ñ(t)

for k = 0, . . . , Nc − 1 :

nk+1 = F (nk, uk, θ̂(t), d(t+ k), 0, T )

umin ≤ uk ≤ umax

|u0 − u(t− 1)| ≤ ∆u

for k = 1, . . . , Nc :

0 ≤ ni,k ≤ ni,jam,

(6)

where k is the time interval counter internal to the MPC, Nc is the horizon of the MPC (i.e., the
prediction horizon), ñ(t) is the available information (e.g., either the measured or estimated value)
on the accumulation state n(t) at time t (with t being the current time step), uk and nk are vectors
containing the variables uih,k and nij,k for all i, j ∈ R, h ∈ Ni, expressing the perimeter control
inputs and accumulation state variables internal to the MPC, respectively, F is the discrete-time
version of the dynamics given in equation (1) with sampling time T , θ̂(t) and d(t) are vectors
containing the variables θ̂ihj(t) and dij(t) for all i, j ∈ R, h ∈ Ni, expressing the route choice
measurement and known inflow demand terms recorded at time step t, respectively, ∆u is the rate
limiting parameter on perimeter control inputs, whereas ni,k is the accumulation state of region i
internal to the MPC, with ni,k ,

∑
j∈R nij,k. Note that the arguments of F are different for MPC

and MHE: In MPC the prediction is from the current time t into the future (while for MHE the hori-
zon extends from t into the past), thus the MPC uses future values of known inflow demands d(t),
while the uncertainty present in these demands (i.e., the demand noise w(t)) is unknown for the
future and is thus fixed to zero. The route choice terms θ(t) are assumed to be fixed to their value
measured at the current time step t for the horizon. This can be viewed as a crude approximation as
the route choice decisions of the drivers are expected to change within this horizon. Nevertheless,
modeling the dynamics of route choice are considered outside the scope of this paper, and it might
further complicate the already non-linear formulation of MFD dynamics.

The optimization problems given in equation (5) and equation (6) are nonconvex nonlinear
programs (NLPs), which can be solved efficiently using solvers based on sequential quadratic
programming or interior point methods (for details, see (Diehl et al., 2009)).

Integrated Moving Horizon Estimation and Model Predictive Control
For the combined accumulation state estimation and perimeter control of large-scale urban net-
works with regional route choice, we propose a structure integrating the MHE and MPC schemes
given in equations (5) and (6) (see figure 2 and figure 3). This combined scheme operates in the
following manner: Given the past information the MHE computes the accumulation state estimate
ñij(t), which is communicated to the MPC. Then, given the estimate ñij(t), the MPC computes the
optimal perimeter control inputs uih(t), which is then applied to the urban network. The whole pro-
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cedure (in receding horizon fashion) is repeated in the next time step. Operation of the combined
MHE-MPC scheme can be formalized as given in algorithm 1.

Algorithm 1 Operation of the combined MHE-MPC scheme.
At time t = 1, initialize simulation from initial accumulation state n(1). Then, at each time step t:
1) Given the accumulation state n(t), calculate the route choice terms θ(t) using the k-shortest

path algorithm together with the logit model.
2) Given the records (for a finite horizon of length Ne into the past) of measurements {y(t −
Ne), . . . , y(t)}, perimeter control inputs {u(t−Ne), . . . , u(t−1)}, measured route choice terms
{θ̂(t − Ne), . . . , θ̂(t − 1)}, and the known average inflow demands {d(t − Ne), . . . , d(t − 1)},
solve the MHE problem (5) to obtain the state estimates {ñ(t − Ne), . . . , ñ(t)} for the finite
horizon into the past.

3) Given the last element ñ(t) of the state estimates (computed by MHE), measured route choice
term θ̂(t), and the known average inflow demands {d(t), . . . , d(t + Nc − 1)}, solve the MPC
problem (6) to obtain the perimeter control inputs {u(t), . . . , u(t+Nc−1)} (for a finite horizon
of length Nc into the future).

4) Given current state n(t), inflow demand d(t), route choice terms θ(t), and the first element u(t)
of the perimeter control inputs (computed by MPC), evolve system dynamics by evaluating the
discrete-time versions of the differential equations given in equation (1) to obtain n(t+ 1).

Repeat steps 1, 2, 3 and 4 for t = 1, . . . , tfinal.

CONCLUSION
In this paper we proposed the formulations of a combined MHE-MPC scheme for real-time opti-
mization based estimation and control of large-scale urban road networks using dynamical models
based on the macroscopic fundamental diagram of urban traffic.

The full paper will include two measurement configurations, one with measuring directly
the accumulations nij(t), the other one with measuring regional accumulations and transfer flows,
which is easier to achieve in practice. Furthermore, extensive simulation experiments will be pro-
vided to test whether the MHE scheme is able to accurately estimate the accumulation states, even
in the face of high levels of measurement noise. The results will shed light on the applicability of
the proposed combined MHE-MPC scheme for practical applications where keeping good control
performance in the face of highly noisy measurements is of critical importance to the success of
the large-scale urban traffic management systems.
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