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1 Introduction
Predicting passenger mode choice is an essential task for transport network simulation and operations
management. Machine Learning (ML) classifiers trained on trip diary data are increasingly being inves-
tigated as an alternative to Discrete Choice Models (DCMs) for mode choice prediction.

In order to determine the suitability of a particular algorithm for predicting mode choice, it is crucial
to be able to reliably quantify its predictive performance for unknown trips. In this paper we propose and
test a new framework for performance estimation of classification algorithms.

Firstly, we address three key issues in the literature relating to a) performance metrics for model train-
ing, b) sampling methods for model validation, and c) hyperparameter selection for model optimisation.
Alternative methods are proposed for each of these issues to form the new framework. The framework is
then used to compare the suitability of eight different ML classification algorithms for predicting mode
choice. Finally, the implications of the sampling method employed are then investigated experimentally.

2 State of research and proposed framework
There have been several investigations in the literature comparing the suitability of machine learning
classifiers for predicting passenger mode choice. For a recent review of the literature, see [1]. Further to
the limitations identified in this paper, we identify three linked issues corresponding to three classification
stages: 1) model training, 2) model validation, and 3) model optimisation.

2.1 Performance metrics
During model training, the expected value of a cost function is minimised over the data. We define a cost
function G of the probability distribution generated by the model P for given data D.

P (∗) = argmin
P

G (D;P ) . (1)

G represents an aggregate performance metric which provides a numerical representation of the pre-
dictive power of P when used to predict mode choice for new data.

Classification accuracy is predominantly used as the performance metric within the literature. There
are a number of issues with the use of accuracy as a performance metric.

Primarily, as the prediction is assigned to the mode with the highest probability, mode choice is
treated as a deterministic instead of a stochastic process. As such, it is assumed that mode choice is
constant under the same set of conditions and socio-economic characteristics. In reality, passengers
have a degree of intra-heterogeneity, and as such their choice is drawn randomly from a probability
distribution. This distribution is the true model, which we aim to replicate with the classification model.
In order to account for this stochastic heterogeneity in simulation, the predicted mode choice must be
drawn from a probability distribution. The metric used to assess model performance should therefore
represent how well the predicted probability distributions fit the data.
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Additionally, accuracy is a poor metric for assessing performance with imbalanced datasets. Trip
diaries, where trips by certain modes may occur much more frequently than others, are often highly
imbalanced datasets. As such, a trivial classifier can achieve high accuracy by predicting the most likely
mode. This is known as the accuracy paradox.

Instead, we use the average natural logarithm of the likelihood L (also known as log-loss or cross
entropy loss). For n = 1, .., N trips with corresponding ground truth mode choice in and feature vector
xn, this is defined as

Glog-loss = L = − 1

N

N∑
n=1

lnP (in|xn) . (2)

where P (in|xn) is the probability predicted by the model for the ground truth. A smaller log-loss
represents a better model fit.

2.2 Sampling methods
During model validation the predictive performance of a model is estimated. This is given by the expected
value of the cost function evaluated over an unknown set of journeys U

E
[
G
(

U;P (∗)
)]
. (3)

As U is unknown, the value of (3) can only be estimated. This is achieved by validating the model
on data unseen during model training.

In holdout validation the dataset D is divided into two subsets, a training set T , and a validation set
V . The model is trained on T in order to minimise the cost function. From (1)

P (∗) = argmin
P

G (T ;P ) . (4)

The predictive performance of the model can be estimated by calculating the performance metric on
V

E
[
G
(

U;P (∗)
)]
≈ G

(
V ;P (∗)

)
. (5)

In k-fold cross-validation, D is divided into k approximately equally sized validation folds Vi with
corresponding training sets Ti. These folds allow for k iterations of the model to be trained and validated,
for k separate estimates of model performance

P
(∗)
i = argmin

Pi

G (Ti;Pi) , (6)

E
[
G
(

U;P (∗)
)]
≈ G

(
Vi;P

(∗)
i

)
, (7)

where P (∗) is the model trained on the full dataset D. As each sample n ∈ D is predicted exactly
one time by the different models Pi, we can define a single performance estimate by calculating G for
the combined results of the k models

E
[
G
(

U;P (∗)
)]
≈ G

(
V1, ...,Vk;P

(∗)
1 , ..., P

(∗)
k

)
. (8)

In order for (5) and (8) to be valid estimates of model performance on new data, the correlation
between T and V (or Ti and Vi) must be equivalent to the correlation between D and U.

Datasets used in the literature are predominantly formed from trip diaries of respondents (individuals
and/or households). The respondents are sampled randomly from the population. The predominant
approach employed is to assume the trips (elements) in D are independent and identically distributed
(i.i.d.), and therefore to sample trips in T and V randomly from D. We refer to this as trip-wise sampling.

Whilst the survey respondents are sampled randomly from the population, each respondent provides
multiple trips in the trip diary. A simple thought experiment considering an example daily trip itinerary
demonstrates that the trips made by the same individual are not distributed i.i.d. For example, return
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journeys are highly correlated to their corresponding outbound journey, both in terms of the feature
vector xn, and the mode taken yn.

When sampling trip-wise from D, trips made by the same individual or household can be split across
both T and V . As such, this introduces correlations between T and V which will not be present be-
tween T and U. This will result in G(V ;P (∗)) overestimating the model performance on unknown data
E
[
G
(

U;P (∗))].
We propose household-wise sampling as an alternative to trip-wise sampling. In this sampling method

the trips are sampled grouped by household. This prevents trips made by the same household from
appearing in both the training and validation data, and as such ensures no additional correlations are
introduced between T and V .

2.3 Hyperparmeter selection
A trained classification model P (∗) is an instance of a classification algorithm A fitted to training data T .
Each algorithm A has a set of hyperparameters λ which control how the model fits to the data during (1)
(model training).

P (∗) = Aλ(T ). (9)

Model performance is highly dependent on chosen hyperparameter values λ. To enable fair com-
parison between algorithms, model optimisation should be performed to select values of lambda which
minimise the cost function of the trained model. We want to select optimal hyperparameter values λ(∗)

so that

λ(∗) = argmin
λ

E [G (U;Aλ(T ))] , (10)

= argmin
λ

E
[
G

(
U; argmin

P
G (T ;P )

)]
. (11)

Optimal hyperparameter value selection (11) contains two optimisation loops. Due to the embedded
inner loop, it is difficult to perform this optimisation using gradient decent methods.

The typical approach within the literature is to use grid search over a predefined set of candidate
values. Grid search has been shown to perform poorly in practice at finding optimal hyperparameter
values [2].

Instead, we propose using Sequential Model-Based Optimisation (SMBO) to select hyperparameter
values. This is where hyperparameter values are drawn from pre-defined probability distributions, with
subsequent draws learning from previous trials. SMBO has been shown to significantly outperform grid
search on real world examples [3].

3 Experimental methodology
We use three years of a dataset of recorded trips alongside details of the alternative trips for each mode
(walking, cycling, public transport, and driving). The dataset is derived from the trip diary data from
London Travel Demand Survey (see [4] for details). The first two years of data (2012/13 and 2013/14)
are used for model optimisation and performance estimation. The final year of data (2014/15) is used
as a holdout test set to assess actual model performance for predicting a future year. This represents a
realistic transport simulation task.

We compare the performance of eight machine learning classification algorithms:

1. Artificial Neural Network (ANN)

2. Extra Trees (ET)

3. Extreme Gradient Boosting (XGB)
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4. K-Nearest Neighbours (KNN)

5. Logistic Regression (LR)

6. Multinomial Naive Bayes (MNB)

7. Random Forest (RF)

8. Support Vector Machine (SVM)

We optimise two sets of model hyperparameters for each algorithm, one using trip-wise sampling,
and the other using household-wise sampling. We optimise the hyperparameters using 100 iterations of
SMBO, with 10-fold cross validation used to estimate model performance during optimisation.

We use 10-fold cross validation to estimate the performance for each model (two for each algorithm).
The validation folds are sampled using the corresponding sampling method to the hyperparameter opti-
misation.

Finally, we train two models for each algorithm on all of the validation data (2012/13-13/14), one
using the trip-wise optimal hyperparameters, and the other using the household-wise hyperparameters.
We then evaluate the real world performance of each model on the holdout set (2014/15). The cross-
validation estimates of performance are then compared to the real world performance for each model.

4 Results & discussion

Model Trip
wise

Household
wise Diff.

Artificial Neural Network 0.6739 0.6783 0.0044
Extra Trees 0.4782 0.6571 0.1789
Extreme Gradient Boosting 0.4665 0.6338 0.1673
K-Nearest Neighbours 0.7403 0.9713 0.2310
Logistic Regression 0.6770 0.6795 0.0025
Multinomial Naı̈ve Bayes 0.8626 0.8638 0.0012
Random Forest 0.4930 0.6578 0.1648
Support Vector Classifier 0.6248 0.6571 0.0322

Table 1: Performance estimates for each algorithm for each sampling method. Given value is log-loss
evaluated across 10 validation folds for models optimised using trip-wise and household-wise sampling.
Validation folds are generated using the corresponding sampling method to that used in optimisation

Model Trip
wise

Household
wise Diff.

Artificial Neural Network 0.7018 0.6941 -0.0077
Extra Trees 0.6961 0.6791 -0.0170
Extreme Gradient Boosting 0.7259 0.6510 -0.0749
K-Nearest Neighbours 1.0171 1.0397 0.0227
Logistic Regression 0.6935 0.6930 -0.0005
Multinomial Naı̈ve Bayes 0.8793 0.8766 -0.0027
Random Forest 0.6832 0.6774 -0.0058
Support Vector Classifier 0.7316 0.6702 -0.0614

Table 2: Test scores for each model optimised for each sampling method. Given value is log-loss evalu-
ated across holdout data for models optimised using trip-wise and household-wise sampling, trained on
all validation data (2012/13-13/14) and tested the holdout data (2014/15).

4



Model Trip
wise

Household
wise

Artificial Neural Network 0.0279 0.0158
Extra Trees 0.2179 0.0220
Extreme Gradient Boosting 0.2594 0.0172
K-Nearest Neighbours 0.2767 0.0684
Logistic Regression 0.0165 0.0135
Multinomial Naı̈ve Bayes 0.0167 0.0128
Random Forest 0.1902 0.0196
Support Vector Classifier 0.1067 0.0132

Table 3: Difference between predicted (cross-validation) performance and test performance for each
model

As shown in Table 1, trip-wise sampling consistently predicts higher performance than household-wise
sampling. The difference between the estimates is lowest for MNB, LR and ANN models, and great-
est for KNN and ensembles of trees classifiers (ET, XGB and RF). XGB shows the highest predicted
performance for both trip-wise and household-wise sampling.

Table 2 shows that the XGB household-wise optimised model achieves the highest real world test
performance. Except for KNN, where both models performed comparatively poorly, models with hyper-
parameters optimised for household wise sampling show consistently higher real world test performance.
This demonstrates that the models optimised for trip-wise sampling have overfit to correlations between
validation folds which are not present in the real world data.

Table 3 shows that that household-wise sampling cross-validation provides a much more consistent
estimate of real-world performance than trip-wise cross-validation. Cross-validation log-loss provides
an over-estimate of real-world test performance for all models. However, the predicted log-loss for
household-wise sampling cross-validation is consistently much closer to the test value. Additionally,
differences between cross-validation score and test score are much more consistent across algorithms for
household-wise sampling than trip-wise sampling.
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