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1. Background and Rationale 

The growing availability of transport big data2 from information and communications 

technologies has stimulated substantial discussion regarding their applicability for 

detailed travel behaviour analysis (Pawlak et al., 2015). In parallel to the enthusiasm 

created by such opportunities, researchers have become increasingly aware of the 

major limitations of such data; particularly their lack of semantic content – typical big 

data sources containing little information on data point. For example, unless 

supplemented with an add-on survey, data from a GPS logger typically provide 

numerous data points with accurate geographical coordinates and timestamps but no 

readily accessible and meaningful information on the respondents or their activities. 

Since such contextual information is critical for travel behaviour analysis and policy-

making practices, the weak semantics of transport big data can significantly limit 

analytical depth of the possible insights and can even lead to inferences erroneous 

and misguiding policy-making. 

In response to the limitation outlined above, there has been a growth of research which 

aim to add information such as mode of transport (Brunauer et al., 2013), location visit 

pattern (Isaacman et al., 2011), trip purpose (Wolf et al., 2001; 2004), and activity type 

(Calabrese et al., 2010) to typical transport big data sources. A few attempts have also 

been made to attach socioeconomic attributes (Gebru et al., 2017; Auld et al., 2015; 

de Montjoye et al., 2013). To our best knowledge, however, this area remains in its 

infancy with techniques that lack solid microeconomic behavioural theories, or 

theoretical understanding of their properties under different data conditions. 

In addressing this gap, we proposed an inverse discrete choice modelling (IDCM) 

framework for data enrichment, drawing upon the extensive body of theoretical and 

empirical results developed in the field of discrete choice modelling (Zhao et al., 2017a; 
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Pawlak et al., 2015). In particular, the IDCM approach proposes that demographics 

and preference structure captured in the form of a discrete choice model (DCM) can 

serve as a mechanism for inferring attributes of the decision maker from observed 

travel choices (e.g. time of day, route and, in certain circumstances, mode). Moreover, 

the probabilistic nature of the IDCM ensures individual-level privacy whilst retaining 

enough information for sample-level analysis, which can accommodate the growing 

need and policy trend for privacy preservation, e.g. the General Data Protection 

Regulation (Blackmer, 2016), yet capitalising on the richness of big data. This warrants 

further exploration into this approach. 

2. Aims and Objectives 

Findings from previous studies based on both simulated data (Pawlak et al., 2015) and 

revealed preference data (Zhao et al., 2017b) have shown that the performance of the 

IDCM approach is highly sensitive to the explanatory power (EP) of the imputed 

variable in the DCM specification. In particular, Pawlak et al. (2015) showed that the 

enrichment quality of the IDCM at individual level, measured by the ‘percentage 

correctly predicted’ (PCP) values of the imputed variables, improves as the EP 

increases. In addition, enrichment of discrete variables with multiple outcome 

categories was shown substantially more challenging than that for dichotomous ones. 

An extension of this study by Zhao et al. (2017b) used a more formal representation of 

the EP, i.e. the mutual information (MI) between the imputed variable and the choice 

(Cover & Thomas, 2012). The MI was employed because of its firmer theoretical 

grounding, in comparison to McFadden’s Rho-squared, in information and probability 

theories as a more universal metric for measuring both linear and non-linear 

associations between variables. In addition to earlier findings, this empirical work 

suggested the existence of diminishing marginal improvement in PCP associated with 

growing MI for variables of the same type with the same number of outcome 

categories, which motivates the current study to develop a formal link between 

performance of the IDCM approach and the MI between observed choices and the 

imputed variable. 

Specifically, we seek to achieve this aim through three objectives: 

1) to explore variation in PCP and sample shares with respect to changes in MI 

values for specified discrete variable types with specified number of outcome 

categories by conducting detailed Monte Carlo (MC) experiments; 

2) to generalise findings in 1) by relating them to the DCM and IDCM theories; and  

3) to implement the findings in an empirical context of enriching a real-world transport 

big dataset. 



3. Methodology 

A general setting for the MC experiments for the aforementioned objectives is devised 

and presented in Table 1. In particular, three series of experiments will be conducted 

to impute nominal variables with respectively 2 and 3 outcome categories and an 

ordinal variable with 3 values. For controlling the number of independent variables, the 

number of choice alternatives is fixed. Variables with 3+ outcome categories are not 

considered as previous studies suggested a significant decrease from an additional 

category (Zhao et al., 2017a; 2017b). Due to the nature of MC methods, the analysis 

could represent any case of imputation of corresponding variable types with the 

specified number of outcome categories.  

Table 1. Experiment Settings for Monte Carlo Simulation 

Exp. 

No. 

Type of 

Var.  

Number 

of Cat. 

Number  

of Exp. 

Repe-

titions 

Influential factor to IDCM 

performance 

1 Nominal 2 4045 20 Number of outcome 

categories 

— 

2 Nominal 3 115225 20 Type of discrete 

variables 3 Ordinal 3 115225 20 — 

In each experiment, a set of probabilities 𝑃(𝑌)  and joint probabilities  𝑃(𝑋, 𝑌) are 

defined and thus fix the MI level. The corresponding conditional probabilities 𝑃(𝑌|𝑋) 

which characterise the correlation between the imputed variable 𝑋 and choices 𝑌 in 

the form of a DCM can be calculated. In information and probability theories, the MI 

between two discrete variables 𝑋 and 𝑌 is formalised as (Cover & Thomas, 2012): 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥∈𝑋𝑦∈𝑌

 (Eq. 1)  

where 

𝑝(𝑥, 𝑦) joint probability distribution function of 𝑋 and 𝑌; 

𝑝(𝑥) and 𝑝(𝑦) marginal probability distribution functions of 𝑋 and 𝑌.  

By invoking Bayes’ theorem, Eq. 1 can be transformed as: 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥|𝑦)𝑝(𝑦) log
𝑝(𝑦|𝑥)

𝑝(𝑦)
𝑥∈𝑋𝑦∈𝑌

 (Eq. 2)  

Eqs. 1-2 show that the MI does not rely on specific distributional assumptions and it is 

non-linear. A same MI can be produced by different conditional probabilities 𝑃(𝑋|𝑌) 

that infer different levels of IDCM enrichment quality. Moreover, deriving 𝑃(𝑌|𝑋) 



which is required for DCM parameter estimation and data simulation for a particular 

value of MI would be problematic. Nevertheless, it is simpler in an implicit way, i.e. 

computing MI levels given various specified  𝑃(𝑌|𝑋) , which can be calculated 

given 𝑃(𝑌) and 𝑃(𝑋, 𝑌). By changing 𝑃(𝑌) and 𝑃(𝑋, 𝑌) by 0.1 and 0.01 respectively 

in each experiment, number of experiments can be designed respectively for variables 

with 2 and 3 outcome categories (Table 2). 

The sample simulated for each experiment is randomly split into 2 subsamples 

respectively used for computing the MI and the IDCM enrichment. A cross-validation 

in the form of a k-fold holdout method (Kohavi, 1995) with k = 20 as suggested by 

Kohavi is employed account for possible sample specificity.  

4. Expected Findings and Applications 

Given Eq.1, the upper and lower bounds of MI can be determined by the limiting 

correlation between  𝑋  and  𝑌 . The MI reaches its minimum when 𝑋  and  𝑌  are 

independent of each other, i.e. 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦), as: 

𝐼min(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥)𝑝(𝑦) log 1 = 0

𝑥∈𝑋𝑦∈𝑌

 (Eq. 3)  

While the dependence between 𝑋 and 𝑌 is deterministic, i.e. 𝑝(𝑥|𝑦) = 𝑝(𝑦|𝑥), the 

maximum MI is achieved as Equation 1 reduces to: 

𝐼max(𝑋; 𝑌) = − ∑ 𝑝(𝑥)log 𝑝(𝑥)

𝑥∈𝑋

= − ∑ 𝑝(𝑦) log 𝑝(𝑦)

𝑦∈𝑌

 (Eq. 4)  

A formal mathematical relationship between the EP and performance of the IDCM, 

represented by 𝑃(𝑋|𝑌), in between the limiting cases will be explored starting from 

Equation 2. For the imputation of a dichotomous variable 𝑋 = {𝑥, ¬𝑥} from a binary 

choice 𝑌 = {𝑦, ¬𝑦} through the IDCM approach, Equation 2 is equivalent to: 

𝐼(𝑋; 𝑌) = 𝑝(𝑥|𝑦) 𝑝(𝑦)[log
𝑝(𝑦|𝑥)

𝑝(𝑦|¬𝑥)
+

𝑝(¬𝑦|𝑥)

𝑝(𝑦|𝑥)
log

𝑝(¬𝑦|𝑥)

𝑝(¬𝑦|¬𝑥)
]

+ 𝑝(𝑦) log
𝑝(𝑦|¬𝑥)

𝑝(𝑦)
+ 𝑝(¬𝑦) log

𝑝(¬𝑦|¬𝑥)

𝑝(¬𝑦)
 

(Eq. 5)  

𝑃(𝑌) and 𝑃(𝑌|𝑋) are knowable in empirical contexts. The 𝑝(𝑥|𝑦) in Equation 5 is 

hence a linear function of the MI: 

𝑝(𝑥|𝑦) = 𝑘𝐼(𝑋; 𝑌) + 𝑏       𝑝(𝑥|𝑦) ∈ [0.5,1] (Eq. 6)  

where 



𝑘 =
1

𝑝(𝑦)
[log

𝑝(𝑦|𝑥)

𝑝(𝑦|¬𝑥)
+

𝑝(¬𝑦|𝑥)

𝑝(𝑦|𝑥)
log

𝑝(¬𝑦|𝑥)

𝑝(¬𝑦|¬𝑥)
]−1 

𝑏 = −
𝑝(𝑦) log

𝑝(𝑦|¬𝑥)
𝑝(𝑦)

+ 𝑝(¬𝑦) log
𝑝(¬𝑦|¬𝑥)

𝑝(¬𝑦)

𝑝(𝑦)[log
𝑝(𝑦|𝑥)

𝑝(𝑦|¬𝑥)
+

𝑝(¬𝑦|𝑥)
𝑝(𝑦|𝑥)

log
𝑝(¬𝑦|𝑥)

𝑝(¬𝑦|¬𝑥)
]
 

As the coefficient 𝑘 can be proved non-negative, the likelihood 𝑝(𝑥|𝑦) of identifying a 

choice maker is characterised by attribute 𝑥  from his/her choice 𝑦 through IDCM 

enrichment increases as the MI grows. However, this representation fails for variables 

with 2+ categories to capture the link as 𝑃(𝑋|𝑌) is asymmetric over its domain. We 

hereby introduce a new quantity for measuring the imputation quality (IQ) for variables 

with 2+ categories using the IDCM. 

For a number of variables with a fixed summation, e.g. ∑ 𝑝(𝑥|𝑦)𝑥∈𝑋 = 1, their product 

reaches its maximum when the values of these variables are equal. In such case, 

however, the IQ is minimised as the likelihood of inferring any outcome category of 𝑋 

from observed 𝑦 is purely random. As one 𝑝(𝑥|𝑦) (𝑥 ∈ 𝑋) increases infinitely close 

to 1 while the others decreases almost to 0, their product, on the other hand, reaches 

infinitely to its minimum and the IQ is almost maximised. Hence the negative of the 

product is used as a measurement of the IQ:  

𝐼𝑄(𝑋|𝑌) = − ∏ 𝑝(𝑥|𝑦)

𝑥∈𝑋

     𝑦 ∈ 𝑌 (Eq. 7)  

As part of the contribution, we will explore extension of the link between IQ and the MI. 

In terms of the MC experiments, we will report results showing the sensitivity of PCP 

and sample shares with respect to the MI to explore the reason for diminishing 

marginal PCP improvement with MI growth revealed in the previous work (Zhao et al., 

2017b). Additionally, the enrichment quality with respect to the type and the number of 

outcome categories of the imputed variable will also be explored according to Table 1. 

Eqs. 4-7 jointly with the MC experiment outcome link the forward DCM specification 

with expected performance of the IDCM enrichment. This closes the chain between a 

priori information possessed by the researcher and the expected quality of enrichment 

and hence enables assessment of the expected outcome before conducting the 

enrichment, which is novel as compared to existing approaches where performance is 

established by post-enrichment cross-validation. 

As a final step, we will seek to demonstrate applicability of the IDCM approach in the 

context of enriching anonymous mobile network data with the socioeconomic 



information of the anonymised mobile users, e.g. their age, gender, and income level. 

Because of the stochastic nature of the IDCM, it reveals only the probability distribution 

of the random variable describing the imputed variable which reduces intrusion into 

individual privacy while still permitting aggregate, sample-level analysis. 

It is expected that this study will further enable understanding robustness and 

properties of inferring an attribute through observed choice behaviours using the IDCM 

approach. The contribution is hence an important step towards establishing statistical 

properties and thus credibility of the IDCM approach under a wide set of data 

conditions. This is crucial given absence of such rigour in enrichment studies to date. 

In addition, we note this as an essential pre-requisite for further extensions of the IDCM 

approach, such as using multiple choices or multiple individual-level models.   
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