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Introduction  
 
In urban systems, nature, economy, environment, and many other settings, there are multiple 
simultaneous phenomena happening that are of interest to model and predict. Phenomena of 
relevance include travel times and travel demand from different transport modes for different 
areas in a city, infrastructure conditions, weather impacts, parking availability, energy demand, 
emissions, and so on. For practical and historical reasons, the approach has been to focus on each 
phenomenon separately, by gathering data, designing and estimating one model with one problem 
in mind. However, because these scenarios are frequently rich in correlations between those 
phenomena, knowing the value of one response variable may contribute to improving prediction 
quality of other response variables. 
 
Demand prediction is one of the non-trivial research subjects that attracts particular interest due 
to its inherent complexity. Taxi demand is a characteristic example of a challenging research 
problem, because of the many parameters of underlying information. A taxi differs from other 
modes of public transport where the pick-up and drop-off locations are determined by the service 
provider, not by the passenger. Taxi calling platforms, such as Uber, Grab and Beat are becoming 
increasingly popular, especially in situations of traffic congestion, because they can efficiently 
facilitate resource allocation. Through their application, passengers are able to call or pre-order a 
taxi, even when they are located in an area where it is very hard to find a driver. This trend, 
therefore, proves that there is a tremendous need for better taxi fleet organization and taxi 
distribution from a taxi center, according to the demand of an entire city. 
 
Several methods have been proposed to predict taxi demand, including probabilistic models (Yuan 
et al., 2011), neural networks (Xu et al., 2017) and time series modeling (Davis et al., 2016, Moreira-
Matias et al., 2013). A unified linear regression model that outperforms other popular non-linear 
models in the prediction accuracy of the Unit Original Taxi Demand (UOTD) is proposed by 
Tong et al. (2017). A simple model structure that eliminates the need for repeated model redesign 
proves to be able to behave better in prediction scenarios with high-dimensional features. 
 
All these research studies follow the typical approach of a demand prediction model formulation 
that explores information related to the area of interest. The independent models for different 
areas of interest follow the converse direction, where each response variable is separately modelled, 
with its own dataset. They have the benefit of scalability and flexibility (e.g. different models can 
follow radically different function forms), but they ignore correlations between different response 
variables. 
 
In this study we explore the utility of information from other areas for a selected area taxi demand 
prediction optimization. This collaboration is defined through a correlation structure that is 
strongly dependent on domain, and itself potentially dynamic.  The time window of the study 
comprehends 4 years (2013-2016) and our work is focused on New York City (NYC) using a large-
scale public dataset of 1.1 billion taxi trips.  
 



 
Data description and preparation 

 
In this research we work with a taxi dataset distributed by technology providers of authorized 
under the Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP) and were made 
publicly available by the NYC Taxi and Limousine Commission (TLC). We use taxi data from 
1/1/2013 through 6/30/2016, which includes around 600 million taxi trips after data filtering. 
The dataset specifies for each drop-off and pick-up event the GPS location and the time-stamp. 
 
Based on this data, we decided to focus our study on the area of Manhattan and more specifically 
on the five neighborhoods shown in Figure 1. The selected areas show significant demand 
fluctuations within a day, due to many entertainment options that they offer to tourists and 
residents.  

 

 
Figure 1 Selected areas in Manhattan 

 
Methodology 
 
Our model aims to predict the number of taxi pickups from a given area, occurring at a given hour 
interval of a given day by taking into consideration short-term time series trends. In other words, 
the proposed approach is focused on hourly short-term predictions.  
 
The raw dataset that we obtained from TLC includes fields capturing pick-up and drop-off 
dates/times, pickup and drop-off locations, trip distances, itemized fares, rate types, payment 
types, and driver-reported passenger counts. The first three years of our dataset (2013-2015) is our 



model training set and the first six months of 2016 (January 2016 - June 2016) our test set. For the 
baseline model of each area the corresponding pickups and drop-offs aggregated by hour are used: 
 

𝑌𝑡+1̂ = 𝛽0̂ + 𝛽1,1̂𝛶𝑡 + ⋯ + 𝛽1,6̂𝛶𝑡−6 + 𝛽2,1̂𝐷𝑡 + ⋯ + 𝛽2,6̂𝐷𝑡−6 

 

where 𝑌 represents the taxi pickups counts, 𝐷 represents the hourly drop-off counts, and 

𝛽0̂, 𝛽1,1̂, … , 𝛽2,12̂ are estimated using data through period t. It is an 6th Order Autoregressive 

Model, namely 𝑌𝑡 is regressed against 𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−6 . 
 
It is obvious that, if we can somehow transfer relevant knowledge from one model to the others, 
we would improve them, even with very minimal new data available. Therefore, for the enhanced 
model of each area the correlation of pickups and drop-offs of the corresponding area with the 
pickups and drop-offs of the other four areas is examined using again the training set. For the 
correlation matrix calculation and the final model formulation, only the pickup and drop-off lags 
are used, since we don’t want to introduce any information about the demand at the timestamp t, 
which is our target time interval. Figure 2 gives an overview of the implemented methodology. 
The main square represents the correlation matrix of the five areas. The red color gradations 
indicate that the Pearson correlation coefficient is above 0.5, while the blue color gradations below 
0.5. 
 
 

 
Figure 2 Implemented methodology 

 
We chose to explore the proposed methodology using Linear Regression (LR) for its simplicity 
and interpretability and Gaussian processes (GP) because they are flexible enough to represent a 
wide variety of interesting model structures. The proposed models were implemented with the 
scikit-learn machine learning library in Python.  
 



For models’ performance validation and comparison, we will use the mean absolute error (MAE), 
the root-mean-square error (RMSE) and the coefficient of determination (R2), computed as 
follows: 
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where n denotes the number of instances in the dataset, 𝑥𝑖 is the predicted taxi pick-ups count for 

the 𝑖𝑡ℎ instance, 𝑥𝑖 is the corresponding true pick-up count and 𝑥̅ is the mean of the observed 
counts. 
 
Results 
 
The parameters of other areas that showed high correlation (ρ>0.85) with the pickups and drop-
offs of the examined area are included into our enhanced model. The analysis results are 
summarized in Table 1. Our baseline model with pickups and drop-offs lags of the studied area 
makes satisfactory predictions. But the enhanced models of each area are even more accurate. For 
example, Hell’s Kitchen enhanced model take into consideration the high correlation of its pickups 
with the corresponding value of Greenwich Village’s neighborhood (ρ>0.86). High correlation 
exists also for the drop-offs of those areas (ρ>0.91). It was therefore considered useful to include 
them in the model. 
 

Table 1 Summary of results 

 LR - BASELINE MODEL LR - ENHANCED MODEL 

R2 RMSE MAE R2 RMSE MAE 

HELL'S KITCHEN 0.867 63.616 48.166 0.881 60.109 45.419 

LOWER EAST SIDE 0.951 34.281 20.543 0.964 29.562 17.577 

UPPER EAST SIDE 0.954 133.883 96.642 0.959 126.111 92.945 

GREENWICH 
VILLAGE 

0.946 60.433 43.161 0.952 56.671 40.863 

EAST VILLAGE 0.950 48.429 31.705 0.957 45.292 30.247 
       

       

 GP - BASELINE MODEL GP - ENHANCED MODEL 

R2 RMSE MAE R2 RMSE MAE 

HELL'S KITCHEN 0.896 56.287 40.711 0.912 51.626 36.588 

LOWER EAST SIDE 0.957 32.353 16.476 0.959 31.528 15.796 

UPPER EAST SIDE 0.979 90.115 63.707 0.981 86.768 61.457 

GREENWICH 
VILLAGE 

0.961 51.040 34.037 0.967 47.481 33.407 

EAST VILLAGE 0.953 47.214 26.849 0.958 44.703 25.067 



 
A characteristic example of the small but useful optimization of the prediction results is shown in 
Figure 3. The black line corresponds to the true demand values, while the green line to the 
enhanced model prediction results. It is clear, that the latter is better able to capture the demand 
peak around 2am, and to avoid the demand overestimation during the evening (20:00-23:00). 
 
 

 
Figure 3 Model prediction results using GPs 
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