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1 Introduction

In this work, we develop a generalized framework for solving various classes of rich vehicle and inventory
routing problems with stochastic demand as well as other probability-based routing problems with a time-
horizon dimension. Demand is the only stochastic parameter. It is non-stationary and is forecast using
any model that provides expected demands over the planning horizon, with error terms from any empirical
distribution that can be simulated. The logistic setting includes a heterogeneous fixed fleet to service
demand points from supply points in a distribution or collection context. Vehicles can perform open tours
with multiple supply point visits per tour when and as needed. We can have time windows, maximum tour
durations, visit periodicities and various other practically relevant constraints. Based on the way we construct
the routing graph, this conceptual framework can be reduced to many classical types of routing problems
that appear in the literature, such as the vehicle routing problem (VRP), the inventory routing problem
(IRP), the periodic VRP, the pickup and delivery problem, routing problems based on event probabilities,
etc., subject to various operational and decision policies. The solution methodology is based on Adaptive
Large Neighborhood Search (ALNS), which exhibits excellent performance on selected benchmark instances
and appears to be very stable on randomly generated instances for the problems we consider.
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2 Formulation

Given a set of demand points P and a planning horizon T , let ρit denote the random demand of point i ∈ P
on day t ∈ T . We decompose ρit as:

ρit = E (ρit) + εit, (1)

where E (ρit) is a point forecast and εit is an uncertainty component. We can use any forecasting model that
provides E (ρit) ,∀i ∈ P, t ∈ T and the statistics necessary to define the probability distribution of εit.

Each demand point can be in one of two states. Given a set of vehicles K, σit = 1 denotes that demand point
i is in a state of stock-out in period t, while σit = 0 denotes otherwise. A regular delivery to a demand point
is one which is executed by a vehicle k ∈ K. Contrarily, an emergency delivery occurs when the demand
point is in a state σit = 1 and there is no vehicle k ∈ K that visits demand point i in period t. An emergency
delivery incurs a high cost.

For a demand point i with initial inventory Ii0 and initial state σi0 = 0, if there are no regular deliveries
over the planning horizon, its state probability tree develops as illustrated in Figure 1. Branches starting
from a state σit = 0 involve the calculation of conditional probabilities, while those starting from a state
σit = 1 involve unconditional probabilities because the demand point state is reset by the emergency delivery.
Imposing a regular delivery in period t requires starting a new tree of the same type to calculate the stock-out
probabilities for subsequent periods.

While the example is presented for a distribution context, the same reasoning holds in a collection context,
where we consider the probabilities of demand point overflows during the planning horizon. Emergency
collections are the counterpart of emergency deliveries. The conditional and unconditional probabilities are

Figure 1: Demand point state probability tree
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calculated in an identical way, that being numerical integration or simulation. Given that they require
the summation of random variables, an obvious candidate for modeling the error terms εit would be the
normal distribution for its simple convolution property. If this assumption is relaxed, the state probabilities
can be calculated by simulation. Under an order-up-to (OU) level inventory policy, all probabilities can be
precomputed. The same does not hold for a maximum level (ML) policy, in which trees started by regular
deliveries cannot be precomputed as the starting inventory is not known in advance, but depends on how
much was delivered. A compromise may be a discretized ML policy, which is still more general than the
OU policy, and in which the resulting inventory after a regular delivery is chosen from a set of discrete
values. For all practical purposes, the emergency deliveries should still apply an OU policy, otherwise the
combinatorial dimension becomes intractable.

The objective function contains various components reflecting the generality of the approach, including
a) inventory holding cost b) demand point visit cost c) continuity of service by the same vehicle d) routing
cost e) demand point stock-out and emergency delivery cost f) and route failure cost, the latter reflecting the
probability of running out of capacity during delivery before reaching the next supply point. The constraints
work with the deterministic parts of the demand and enforce the operational rules and policies.

3 Methodology

The solution methodology relies on ALNS. Some of the destroy and repair operators are adapted from the
literature (Ropke and Pisinger, 2006; Pisinger and Ropke, 2007; Coelho et al., 2012; Buhrkal et al., 2012),
while others are specifically designed for the framework, in particular taking into consideration the stochastic
demand decomposition given by formula (1) and the stock-out probabilities depicted in Figure 1. The search
admits intermediate infeasible solutions with a penalty for each type of constraint violation. These penalties
are added to the objective function and are dynamically adjusted during the search so as to encourage
diversification but also to avoid staying infeasible for too long. The ALNS shows excellent performance on
several sets of classical benchmark instances. The IRP benchmarks of Archetti et al. (2007) test the ALNS
in an IRP context with OU policy. Crevier et al.’s (2007) instances test the ALNS in a VRP setting with
intermediate facilities. Finally, Taillard’s (1999) instance set tests the ALNS in a VRP context with a rich
heterogeneous fixed fleet.

4 Applications

The applications of the framework are numerous. Markov et al. (2016) use a specific version of this approach
to evaluate the benefit of including uncertainty in the objective function on rich IRP instances derived
from real data in Geneva, Switzerland. The result is a significant reduction in the occurrence of container
overflows for the same routing cost compared to alternative policies. A particularly interesting application
can be found in maritime inventory routing, which is characterized by open and multi-period tours and this
problem is usually modeled on a time-expanded graph. Our generalized framework implicitly allows for tours
to last more than one period. We generate a dummy origin and destination point with zero service time
at each demand and supply terminal. The model can then build open tours that end at a demand or a
supply terminal in one period and start from there the next period, using the dummy origin and destination
points as inter-period connecting points. Another more particular application is facility maintenance, which
is not an inventory routing problem, but which can be seen through the same lens, with the probability
of breakdown of a facility accumulating as would inventory. Numerical testing shows that capturing this
breakdown probability in our framework leads to significantly fewer realized breakdowns after simulation,
while having only a moderate effect on the routing cost.
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5 Conclusion

The proposed generalized framework can model various types of rich stochastic routing problems and relies
on a sophisticated and efficient solution methodology, which can be applied in an operational setting. Future
work will involve further testing on benchmark instances and instances derived from real data as well as
comparison to the state of practice.
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