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Introduction 

Public transport disruption may force travellers to switch from habitual travel behaviour, requiring them 

to choose alternative routes with which they may be less familiar. In London, the transportation system is 

under some serious threat due to its aging infrastructures (Willams et al., 2004), and vulnerability brought 

by the network’s high complexity and industrial disputes (Darlington, 2009). 

Besides some incident response work (e.g. Jespersen-Groth et al.’s, 2007; Zhu and Levinson, 2010; 

Freemark, 2013), it is of great importance to understand public transport users’ route choice under 

disruption. However, existing research focuses predominantly on analysing decision-making on public 

transport under normally functioning conditions (e.g. Raveau et al., 2011, Brands et al., 2014), and adopts 

approaches under economically rational premises, assuming human can always maximize their benefit 

through selecting the best one from a range of choices. Serious questions have been raised on the 

adaptiveness of such presumptions under the uncertainty brought by the disruption. Within recent years, 

behavioural theories such as Prospect Theory (Kahneman and Tversky, 1979) and heuristic decision-

making (Gigerenzer and Todd, 1999) have demonstrated a great potential to be practiced with traditional 

Random Utility Models (RUM) and Game Theory in transportation (Manley, et al, 2015). 

Our research aims to construct a comprehensive framework to understand people’s decision-making 

under disruption, exploring whether transport users choose routes as economic models suggested, 

rationally, or bounded by their ability, relying on some simple rules. This paper addresses the necessary 

work towards constructing such a framework, particularly on the first rational discrete choice model. 

Proposed methodology will be applied to London’s public transport system, focusing underground 



passengers’ commuting trips. It covers a range of topics, including smart card data analysis, integrated 

transport network building, discrete route choice modelling and beyond. 

Methodology 

Overall, three models are intended to be examined that 1) a base model utilizing most prevalent discrete 

choice methods, 2) another one embedded with Prospect Theory features, 3) a non-compensatory 

heuristic model falls into bounded rationality paradigm i.e. Take-The-Best (Gigerenzer and Todd, 1999).  

It also aims to demonstrate the viability of conducting route choice models on a large-scale urban area 

with multiple transport modes (underground, bus and train), looking into the revealed preference captured 

in the smart card, and mapping out each individual’s choice to support the above decision-making models. 

Present work 

Several constituent elements have been developed towards constructing the base discrete choice model. 

Integrated public transport network 

A within-city scaled public transport network is built to support the route choice decision-making, 

incorporating a frequency-based structure for short-interval underground and bus services and a time-

expanded network for long-interval train service. It gives great detailed representation of London’s public 

transport system, with desired travel time attributes embedded (e.g. in-vehicle, waiting and walking time), 

different transport modes connecting through walking links, serving as physical walking time between 

access points. The data come from a variety of sources, including Transport for London (TfL) and Google 

Transit Data.  

Route choice generation method 

A customized route choice set generation method, service elimination, has specifically designed for the 

network, based on traditional link elimination/penalty method (De La Barra et al., 1993). It iterates 

through underground and bus services, eliminating services in turn, to find different path combinations 

while delivering a high computational performance. At the same, by keeping station and bus stop nodes 

intact, it avoids any potential travel path break caused by the traditional elimination method. 

Bayesian inference on route selection 

A Bayesian inference approach has been adopted to characterize individuals’ route choices in the 

underground where passengers’ choices cannot be explicitly identified. Specifically, one’s route choice is 



modelled through Bayesian inference on the mixture of the alternatives’ travel time distributions between 

smart card taps at the two ends of underground (Marin et al., 2005; Fu, 2014; Sun et al., 2015).  

The posterior distribution of an individual’s choice, given travel time t, can be inferred through 

maximizing the sum of each weighted alternative’s travel time distribution (𝑓 𝑡! 𝜃! ) over the whole 

population (n). 
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By applying a Markov Chain Monte Carlo (MCMC) algorithm (Metropolis-Hasting), we then obtain all 

the parameters (θ and p) and can further decide which individual passenger tends to choose which route. 

Expectation-Maximization (EM) algorithm works in a similar fashion, with less computational stress, 

could be used for future application. 

Case Studies 

Case study 1: A one-to-many ODs route choice experiment 

This case study demonstrates a discrete choice model implemented between one origin and multiple 

destinations during an underground strike in London. During the morning peak, passengers have 

experienced a longer commuting time and showed a more spread out public transportation system using, 

comparing to the well-operated day before (Figure 1).  



 

Figure 1 Descriptive statistics comparing a disrupted and non-disrupted day 

A Multinomial Logit (MNL) model was developed based on their route choice with the specification: 

𝑉 = 𝛽!"# ∗ 𝑖𝑣𝑡 + 𝛽!"#$#%&  !"#$ ∗ 𝑤𝑎𝑖𝑡𝑖𝑛𝑔  𝑡𝑖𝑚𝑒 +   𝛽!"#$%&'  !"#$ ∗ 𝑤𝑎𝑙𝑘𝑖𝑛𝑔  𝑡𝑖𝑚𝑒 + 𝛽!"#$%&'"

∗ 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝛽!"#  !"#  !"#$% ∗ 𝑏𝑢𝑠  𝑙𝑒𝑔  𝑟𝑎𝑡𝑖𝑜 + 𝛽!"#$%  !"#  !"#$% ∗ 𝑓𝑖𝑟𝑠𝑡  𝑙𝑒𝑔  𝑟𝑎𝑡𝑖𝑜 

Where a journey’s in-vehicle travel time, waiting time, walking time, transfer times, bus and first public 

transport leg’s proportion were extracted. This model was estimated in PythonBiogeme 2.5, giving a 

result (Table 1). 

Table	
  1	
  MNL	
  model	
  result	
  

𝛽!"# -0.634 

𝛽!"#$#%&_!"#$ -0.611 

𝛽!"#$%&'_!"#$ -0.942 

𝛽!"#$%&'" 2.30 

𝛽!"#_!"#_!"#$% -0.984 

𝛽!"#$%_!"#_!"#$% 5.06 

Initial Log-Likelihood/Final 
Log-Likelihood 

-1497.885/-965.993 

 



The signs associated with most of these parameters are as expected. However, we find that the transfer 

times one is positive, contradicting to the common sense. This may be largely due to the fact that route 

selection is based purely on shortest paths between tap in and out stations, which assumes least travel 

time path even if the passenger must make more transfers. To fix this problem, we introduce our Bayesian 

inference approach towards route selection. 

Case study 2: Bayesian inference on route selection in the underground 

Passengers’ route choices between two London underground stations have been deduced through a 

Bayesian Gaussian mixture model.  A series of parameters have been estimated using Metropolis-Hasting 

algorithm regarding passengers’ travel time extracted from a normal workday morning. Specifications can 

be seen in Table 2. 
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Table	
  2	
  Bayesian	
  mixture	
  model	
  descriptive	
  data	
  

Parameters Descriptions Distributions Data sources Estimates Validation 
𝑖 ∈ 𝑛 Individual passenger 𝑖 of total population 𝑛 

(383). 
- Smart Card  - - 

𝑡! Travel time of individual 𝑖 - Smart Card  - - 
𝑟 ∈ 𝑅 Victoria – Holborn  

(Route 1 via Oxford Circus, 
Route 2 via Green Park) 

- 2012 TfL Rolling Origin	
  
Destination Survey (RODS) 

82% – Route 1, 
18% – Route 2 
 

78% – Route 1, 
22% – Route 2 
(RODS) 
 

𝜃!"#!!"#$!  Average in-vehicle travel time of Route 1. 𝑁  ~(10.08, 1) Integrated public transport 
network model 

9.4511  
 
 
 
 
 
 
 
 
 
 

- 

𝜃!"#!!"#!  Standard deviation of in-vehicle travel time 
of Route 1. 

𝐺𝑎𝑚𝑚𝑎  ~(2.3, 1.67) - 0.8860 

𝜃!"#!!"#$!  Average out-vehicle travel time of Route 1. 𝑁  ~(7.6750, 2) Integrated public transport 
network model 

6.9563 

𝜃!"#!!"#!  Standard deviation of out-vehicle travel time 
of Route 1. 

𝐺𝑎𝑚𝑚𝑎  ~(4, 1.25) - 1.6516 

𝜃!"#!!"#$!  Average in-vehicle travel time of Route 2. 𝑁  ~(10.29, 1.1) Integrated public transport 
network model 

10.3381 

𝜃!"#!!"#!  Standard deviation of in-vehicle travel time 
of Route 2. 

𝐺𝑎𝑚𝑚𝑎  ~(2.3, 1.43) - 1.0223 

𝜃!"#!!"#$!  Average out-vehicle travel time of Route 2. 𝑁  ~(8.8250, 2.2) Integrated public transport 
network model 

8.9187 

𝜃!"#!!"#!  Standard deviation of out-vehicle travel time 
of Route 2. 

𝐺𝑎𝑚𝑚𝑎  ~(5, 1) - 2.1433 

𝑝!!! Component distribution weight 𝑢  ~(0, 1) - 0.6949 
𝑓 𝑡! 𝜃!"  Component distribution of travel time on 

route R, given descriptive 
parameters  

𝑁  ~(( 𝜃!"#$
!

!!!
),   

( 𝜃!"#!
!
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!
)) 

- - 

𝜋! 𝜃!, 𝑝! 𝑡  Posterior probability of selection route r, 
given travel time t 

𝑝!𝑓 𝑡! 𝜃!"     

/ 𝑝!𝑓 𝑡! 𝜃!"
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- - 



It shows a very positive result, the estimation being very close to the local official’s surveying data. The 

mixture model plot can be seen in Figure 2. 

 

Figure	
  2	
  Mixture	
  travel	
  time	
  distribution	
  

Discussion 

The present work contributes to the base model in this project, also offering a platform for the two 

remaining models. The results demonstrate the necessity to integrate these separate elements together to 

give a comprehensive representation of people’s route choice. Given the uncertain nature under 

disruptions, we believe that the rationally assumed discrete choice model may not provide enough 

explanation for passengers’ choices, with behavioural models providing a plausible alternative theory of 

decision-making. 
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