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1 Introduction

Estimating an origin-destination (OD) travel demand pattern from a limited dataset

is a traditional transportation problem. It is still vital these days even though a

variety of observation measures that can directly measure each traveler’s origin and

destination using GPS or other techniques are available. It is mostly requested when

we need to forecast future demand patterns. The traditional four-way step method

is a typical example, where an OD demand pattern is estimated from its peripheral

distribution (i.e. the number of generation and attraction trips). Even in the modern

context, forecasting process of an origin-destination travel pattern should rely on how

the numbers of attraction and generation trips evolves in the future if their changes

are caused by changes of land use patterns. We especially consider to predict travel

demand patterns a few days or weeks after a major disaster, in which damaged areas

generate travel demand for recovery and transportation of relief goods. In such cases,

we cannot rely on an OD demand pattern in a normal situation, which can be observed

by GPS or other techniques. Instead, we need to estimate an amount of travel demand

in each damaged area, and then distribute it to an OD table assuming a certain travel

behavior model.

Estimating an OD demand pattern from a limited dataset surely incurs a variety

of errors, and hence attempting a point estimation (i.e. estimating a single number

for each cell of an OD demand matrix) is not appropriate. There are a number

of possible error sources such as intra-personal heterogeneity, spatial variation, day-

to-day variability, observation errors of transportation planners, and limitations in

forecasting future demands. Zhao and Kockelman (2002)1) focused on uncertainty

propagation in a contemporary transport demand model using point estimation. They

showed that the variability in model inputs is highly correlated across outputs and

the mis-predictions of travel demand in the early stages will surely amplify the mis-

1



predictions of traffic flows.

This study presents a novel approach to obtain an interval estimation of an OD

demand pattern instead of a point estimation. For point estimation, we should be

able to use the generalized least squares estimator (GLS) approach using observed

data (e.g. Zuylen and Willumsen (1980)2) and Cascetta (1984)3)) when we can use

a variety of datasets e.g. so-called big-data. However, the GLS approach is hard to

apply for future prediction with stochastic variations. Our approach estimates an OD

demand pattern set, which includes a lot of likely OD demand patterns using data of

trip generations and attractions. The set can include both the short-term and long-

term future stochastic variability (Figure 1). The proposed destination choice model

based on a discrete choice model evaluates spatial variations as random factors. Our

algorithm randomly samples OD demand patterns using the Monte Carlo method.

The computational cost to generate enough range of sampling is high; therefore, we

implement a parallel computing algorithm to reduce the computation time.
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Figure 1 Stochastic variability and future changes in the proposed model

2 Proposed Approach

2.1 Formulation of Destination Choice Model

This subsection describes the formulation of the destination choice model with

spatial variation. We assume that the spatial variation of the travel cost ci→j is

superior to other factors in the destination choice. This spatial variation is represented

by normal distribution. Thus, the formulation that follows is similar to a mixed logit

model. Standardly, a variation of a mixed logit model is derived from individual

n, but the variation of our approach is derived from zones i(= 1, 2, ...,M) and j(=
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1, 2, ...,M).

An observed utility from zone i to j is defined as:

Vi→j = Gj − log (ci→j) , (1)

where Gj is a measure of attraction for the destination j. A utility of the destination

choice is defined as follows to introduce a spatial variation:

Un
i→j = Vi→j + ηi→j + εni→j , (2)

where εni→j is an IID Gunbel distribution, and ηi→j indicates a spatial variation

defined as:
ηi→j = −νi→j log (ci→j) . (3)

νi→j is normally distributed: νi→j ∼ N (0, ϕ). We can obtain a destination choice

probability pi→j using a sampled ηi→j . Although the spatial variation is normally

distributed here, this condition can be changed.

This model assumes that variation of the destination choice mainly depends on

travel cost. We hypothesize that a planner cannot know the randomness from each

destination j, in addition to a random utility of each individual n. Moreover, this

randomness is proportional to the travel cost because this variation will be correlated

with zonal recognition, distance of OD pairs and future mode.

We can apply the network Generalised Extreme Value (GEV) model (Daly and

Bierlaire (2006)4)), to capture the correlation between destinations. The Network

GEV model allows complex correlation structures of destination choice situation.

2.2 Sampling Algorithm

Figure 2 shows a flowchart of our proposed sampling algorithm. First, the value of

the travel cost ci→j , expected number of trips generated E [Oi], and attracted E [Dj ]

are given as exogenous parameters. We assume that planners can determine these

parameters and the variances of Oi and Dj in future or unobserved situations. In

addition, the number of exogenous parameters is considerably less than that in the

GLS approach using a lot of the observed data. Using a distribution of Oi and Dj

can also weaken the influence of these parameters of expected number on the output.
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Figure 2 Sampling algorithm for a set of OD flow patterns

The measures of attraction G are calculated as follows using the exogenous param-

eters:

min
G

RSS (G) =
∑
j

[
E [Dj ]−

∑
i

[E [Oi] · pi→j ]

]2

. (4)

We let ϕ = 0, in Eq. (3), obtain G to calculate pi→j .

Ok
i , which is the k-th number of trips generated from zone i, is then sampled from

a Poisson distribution POi
. Meanwhile, the destination choice probability pi→j,k is

calculated using a sampled ηi→j,k. The destinations of O
k
i individuals are determined

by pi→j,k. After the calculation for each origin i, we can then obtain an OD flow

pattern Xk. Finally, we can obtain a set of OD flow patterns {X} by iterating these

sampling K times. This sampling can be parallelized because the generation of Xk

is independent from Xh.

4



3 Numerical Example

3.1 Settings

In this section, the Philadelphia Network5)6) is used to verify the reproducibility of

the proposed model. The network is comprised of two states, the Pennsylvania and

the New Jersey. The network consists of 13,389 nodes and 40,003 links. We divide

the Philadelphia area into square grids to generate 588 zones in accordance with the

traffic assignment problem (for convenience). The travel cost ci→j is calculated by

the user equilibrium assignment model (UE) using the Frank-Wolfe algorithm. The

number of total trips is 13,338,626. This numerical example discards the intra-zonal

trip because calculating the intra-zonal travel cost by UE is not possible.

Figure 3 shows the tree structure of the destination choice model. In this case,

the upper nest regarding the travel cost and the lower nest regarding the state cor-

respond the Generalized Nested Logit (GNL) model and Nested Logit (NL) model,

respectively. The GEV generator function Gi (Yi→j) can be written as follows:

Gi (Yi→j) =
∑
q

∑
l

αlq
i

∑
j∈Jl

(Yi→j)
1/µl

i

µl
i/µ

q
i


µq
i

(5)

Yi→j = exp (Vi→j + ηi→j) , (6)

where Jl is a set of the destination j which is included in the NL nest l. The pa-

rameters µq
i and µl

i are respectively the nest-specific coefficients of the GNL and NL(
0 ≤ µq

i ≤ µl
i ≤ 1

)
. The parameter αlq

i

(
0 ≤ αlq

i ≤ 1
)
which allocates a proportion of

Pennsylvania New Jersey

���� � �� �� � ���� � �� �� � ����

destination �

NL nest �

GNL nest �

origin �

Figure 3 Tree structure for the destination choice
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the NL nest l to the GNL nest q, is defined as:

αlq
i =

|Jq ∩ Jl|
|Jl|

, (7)

where Jq is a set of the destination j which is included in the GNL nest q. The

parameters are set as µq
i = 0.2, µl

i = 0.6 and ϕ = 0.1 in our calculation.

3.2 Results

We obtain 10,000 OD flow patterns using the proposed algorithm. Table 1 presents

comparison between our sampling pattern and the real OD flow pattern. Table 1

presents that 93.5% of OD pairs is in the 95% confidence interval. A root mean

square error (RMSE) shows that the volumes of the OD pairs with a low travel cost

are extremely different from the volume of the real OD pairs.

Table 1 Comparison of the real OD flow pattern and the sampled OD flow patterns

Percentage of the OD pairs RMSE between the real OD volume the number

in the 95% confidence interval and the median value of OD pairs

of the smapled OD volume (%) of the sampled OD volume (vehicles) (pairs)

All OD pairs 93.5 110.3 345,156

OD pairs with travel
67.3 816.9 3,439

cost of 10 minutes or less

Figures 4 and 5 show 95% confidence intervals of the volume of each OD pair in

our sampled set. The horizontal axis shows the IDs of the OD pairs arranged from

the left in ascending order of the real OD volume. Figure 4 shows that the sampled

OD volumes increase as the real OD volume increases. Figure 5, which is an enlarged

view of Figure 4, depicts the same tendency. However, the range of OD pairs with a

very large traffic volume is slightly smaller than that of the real OD volume. Most of

its travel costs are less than 10 minutes, and the problem persists when reproducing

the real OD flow pattern.

Finally, we show the calculation efficiency of our parallelized sampling algorithm.

Figure 6 illustrates the speed-up ratios, which are based on the computation time

of 125 CPUs. This speed-up ratio is very close to the ideal one, indicating that our

algorithm is highly parallelized.
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Figure 4 Confidence interval of OD volume (up to 5000 vehicles)

Figure 5 Confidence interval of the OD volume (enlarged view after the

340, 000th OD volume)

4 Conclusions

This proposed approach can present a set of OD flow patterns, including an un-

certainty of demand forecasting. The limited dataset and stochastic variability are

usually problems for travel demand forecasting. Our approach can obtain an interval

estimation of an OD flow pattern instead of a point estimation. In consideration of

uncertainty of observations, the interval estimation is superior to the point estima-

tion. Our parallelized algorithm could decrease the large computational cost caused
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Figure 6 Speed-up ratio by the sampling algorithm (number of sample: 10,000,000)

by the large number of samples.
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