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Context and motivation: 
 
Determining the demand for a transportation network has been a classical topic for researchers and 
practitioners in the past decades. The most classical methodology to generate this demand is the so-
called four step model. This model is based on aggregate demographic data and provides an origin-
destination (OD) matrix, which is a good approximation of the demand of commuters for a specific 
network. Since its demand is based only on socio-demographic information, this model is useful for 
planning and forecasting applications, on the basis of statistical trends for a specific area. This 
representation of the demand is normally macroscopic, since the demand is represented  aggregated 
level. One of the main limitations of this approach, is that demographic variables are normally 
assumed static, which means that they are not suited to capture within-day traffic dynamics 
(congestion dynamics, spillback,…). Dynamic Traffic Assignment (DTA) tools can potentially 
overcome these limitations ([1]–[3]). However, to reproduce realistic traffic conditions, DTA 
models need as input a dynamic OD matrix rather than a static one. In addition, the four-step model 
is trip based, i.e. it represents traffic demand and flows for a specific time period and hence does not 
consider the eventual trip sequences done by the road travellers during a day. For this reason, these 
classes of models have been usually adopted to represent the commuting demand in the busiest peak 
hour.  
 
A cheaper way to estimate a dynamic OD matrix is to correct/calibrate an available old (static or 
dynamic) OD matrix in order to reproduce the observed traffic conditions [4], [5]. This approach 
may partly solve the problem of obtaining socio-demographic information, usually expensive to 
collect and relatively quickly outdated, and can be combined with DTA tools. However, this 
method is also disregarding trip sequences, correlations between trip schedules of individuals, 
constraints due to the duration of daily activities, etc.  
 
A third, alternative, approach may be to use Activity Based Models and, specifically, Activity-Based 
demand generation models [6]–[8], to represent the daily demand. In this case a synthetic 
population is generated by e.g. census data, or daily activity travel diaries from a sample of the 
population, generating Activity Plans, which describe the entire daily activity pattern for each user 
on the network. The advantage is twofold. First, since the Activity Plan includes departing/arrival 
times at the destination, it is a dynamic information, which is a desirable property for dynamic 
demand estimation models. Furthermore, this plan includes different activities, which allow the 
model to consider other purposes rather than the basic home-work commuting. While the relevance 
of the trip chain has been already investigated in literature [9], assessing its potential contribution to 
represent the demand is still missing in macroscopic models. 
 
If research on Activity-Based models is attracting more and more interests, this branch of the 
research mainly focuses on the single-user point of view. Rather than producing an OD matrix, 
Activity Plans are generally used as input for microscopic agent-based DTA. In these models, like 
Albatross (Arentze and Timmermans [10]) and MATSim (Feil et al. [11], Balmer et al. [12]), each 
user is modelled as a single user, maximizing his own utility, which, according to economic theory 



[13] is function (at least) of the departing time, the number of scheduled activities, the duration of 
the activities and the travel time.  
 
We believe that building a bridge between an aggregated representation of the demand and its 
behavioral, user-specific, component is needed in order to use macroscopic DTA models in a more 
efficient and reliable way. Specifically, we investigate the aggregate relation between Demand 
Activity Patterns and traffic states. The classic demand matrix is in our approach assumed to be a 
convolution of different activity patterns. Some of them are defined as rigid, like the home-work 
activity, and they are more difficult to be modified or rescheduled, while others are more flexible. It 
is intuitive to realize that rigid activities determine the network condition, while the flexible ones 
are influenced by the given state, since user can change plans of leisure activities if the cost to reach 
the destination is too high. To support these assumptions, in this study we perform an empirical 
analysis of activity-travel patterns from a multi-day travel survey, and later we present a new 
modeling framework based on the above-mentioned analysis. 
 
Methodology and Results 
 
The goal is to exploit the Travel Diary in order to reproduce aggregate Activity Patterns, rather than 
disaggregate Activity Plans. We first focus on identifying Demand Activity Patterns, which are 
broadly defined as rigid and flexible demand patterns. Travel diaries and traffic counts for the city 
of Ghent have been used to relate these distributions with the observed traffic flows. The database 
has been collected in the BMW Project (Behaviour and Mobility within the Week, Viti et al., 2010), 
which was carried on by KU Leuven and the University of Namur. 500 participants provided 
information for six weeks, including purpose of their trips, departure times and locations. As first 
step, we identify at least three groups of activities (Activity Components): 
 

I. Within-Day-Systematic Activities (DSA): These are rigid activities, in which arrival and/or 
departing time is not flexible (i.e. going to work, returning home), and they are likely to be 
observed every day or at least for multiple days a week;  

II. Within-Week-Systematic Activities (WSA): These are flexible activities, which are not 
systematic within the day, but are likely recur every week (i.e. swimming pool, weekly 
shopping) at least once;  

III. Non-Systematic Activities (NSA): These flexible activities represent extraordinary events 
with respect to the usual user activity scheduling (i.e. visiting the doctor is an example); 
their occurrence is not likely every week but they are observed on longer time periods (e.g. a 
month).   

 
All the activities are classified in the data according to the above three groups through a cluster 
analysis. The authors identify that the demand can be sufficiently represented through four/five 
distinct Activity Demand Components. Under these assumptions, the Home-Work Activity Patterns, 
which is the main rigid component, represents a relatively small share of the total daily demand 
(12%). If we further focus on rigid trip sequences with no more than two trips during the day (i.e. 
the loop Home-Work-Home – the percentage rises up to 35%. These percentages are similar to other 
reported in literature [14], and show how considering more complex trip chains and daily patterns is 
fundamental to capture the total demand, as trip sequences with non-work related trips still remain 
the largest majority in a day. To evaluate at aggregate level the Activity Patterns, three of the most 
important characteristics of the daily activity tour have been evaluated: Travel Time distribution, 
Departing Time Distribution and Activity Duration. In Figure 1 departing time and activity duration 
for WSA-Home (flexible) and Work-Home (rigid) tours are presented. The flexible component of 
the demand enters into the network after the morning peak when the rigid component leaves the 



system, and the typical duration is shorter with respect to the rigid component (9 hours on average 
for the rigid component and 2 hours for the flexible one).  
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Figure 1: (a) Departing Time Work-Home tour (b) Duration distribution Work-Home Activity (c) Departing Time 
WSA-Home tour (d) Duration distribution WSA-Home Activity 

 
Both duration of the activity and the departing time to reach that activity can be represented through 
a probability distribution. We can therefore define Activity Function as the probability function, 
which describes a certain Activity Pattern in an aggregated way. These functions can be identified 
by fitting an opportune parametric function to the observations, which can be very sharp in cases 
like Home-Work and Work-Home activities (Figure 1a), or more dispersed over a day as the case of 
Within-Week-Systematic Activities (Figure 1c). The identified Activity Function for each activity 
transfers information derived from the microscopic population directly to the aggregate demand 
flow. Specifically, the mean value of this distribution is the average departing time for users within 
one Activity Pattern, while the covariance term shows the dispersion of the departing time with 
respect to this value. It is relevant to point out that this information can be obtained not only 
through microscopic information, but also exploiting other source of data containing individual 
movements, e.g. floating car data, or GSM/GPS data. Activity duration distributions (Figures 1b 
and 1d) can on the other hand be used to further constrain the demand between two sequential 
activities. 
It should be further pointed out that the discrepancy between what we observe in terms of link flows 
and the real demand flows depends on the travel time between the origin node and the observed 
link. This is dealt with in the conventional demand estimation problem from traffic data. 



Nevertheless, the component of the flow related to specific origin will derive from the original 
Activity Function.  
To illustrate the concept, an experiment has been performed on a toy network to show how 
including activity scheduling and duration can improve the quality of demand estimation. In the 
experiment, a rigid demand from two different origins moves to one common destination, only one 
route is available for each origin-destination pair, but having a different travel time. Both the real 
and the starting demand for performing OD estimation are not generated according to a probability 
function, so when the shape is representable through this function a small error between the 
matrices is observable. An Activity Function is generated by fitting the starting matrix shape. This 
simulates the fact that the starting matrix is derived by observations, which are a sample or an 
approximation of the real demand. If the shape of the demand is modelled through an Activity 
Function, and the parameters of the function are corrected rather than the disaggregated demand 
flows, the proper demand can be reproduced, independently by the traffic condition (congested or 
uncongested).   
 

  
Constant Link Cost Uncongested DNL Congested DNL 

 Start Classic OD 
estimation 

Imposing 
Activity 

Probability 

Classic GLS 
estimation 

Imposing 
Activity 

Probability 

Classic GLS 
estimation 

Imposing 
Activity 

Probability 
 Error OD Flows 55% 44% 7% 38% 6.5% 47% 19% 

Abs Error Link 
Flows 2 0 0.25 0.0021 0.25 0.00019 69.75 

 

Table 1:Proof of concept results  
 
The experiment has been performed using constant link costs, i.e. not considering congestion 
dynamics, and a more realistic Dynamic Network Loading (i.e. the Link Transmission Model 
developed by Yperman [15]), both in congested and non-congested conditions. In all the conditions, 
when the demand profile is constrained though the Activity Function, the travel time to reach the 
detector is indirectly considered since the average value of the departing time is an explicit 
coefficient of the demand. Only few combinations of demand flows exist, which can properly 
reproduce the observed traffic regime according to the imposed Activity Function (Table 1 and 
Figure 2). 
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Figure 2: Constant Link Costs - Flow composition for the (a) Observed flows on the network: (b) Estimated according 
to the classic OD estimation procedure; (c) Estimated considering a correct Activity Function; 

 
The difference between the results showed in table two should not to be considered surprising. The 
low improvement obtained using the standard approach is related to the fact that the algorithm ends 
in a local optimum very close to the starting point. In this specific proof of concept, by exploiting 



the Activity Function the solution space becomes convex. However, this represent an extreme case, 
while in general we expect a smoother shape is expected in more complex networks. 
In the presentation of this work more details will be given on an empirical analysis upon the 
correlation between activity data and traffic state is performed. We will also generalize the new 
demand estimation methodology presented here in form of the illustrative example. In this general 
methodology, the demand is assumed to be composed by different demand patterns, which 
influence and are influenced by the network states, and their functional parameters can be estimated 
from traffic data using an extension of the classical dynamic demand estimation problem. Since 
departing time, activity duration and travel time are found to be important determinants to be 
considered in order to evaluate the correlation between traffic state and activity patterns, this 
information is transferred to the Mobility Demand through an Activity Distribution, which is able to 
capture the existing correlation between traffic and demand flow. The derived distribution then 
works as constraint on the generated flow between an origin destination zone transferring the 
observed behavior to the demand in term of average statistics. If this element is considered within a 
demand estimation problem, local solutions related to unrealistic demand patterns are  less likely to 
occur as the simple illustrative example showed. This means that the objective function used to 
identify the demand is smoother and more reflecting observed activity-travel patterns.  
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