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Abstract

The low margins in the airline industry have made them focus in the
air cargo area to try to increase their profits. One of the decisions that
the airlines face is determining the proportion of the capacity of a flight
intended for long-term contracts (known as allotment) and for bookings
that are more urgent and come closer to the departure of the flight (known
as free). In general, allotment tariffs are lower than free market ones. This
suggests that, if possible, one should favour the sale in the free market
rather than the allotment contracts. However, demand in the free market
has more uncertainty and usually does not arrive with the promised cargo
even if the capacity was booked. In this paper we propose a two stage
stochastic programming model to determine the total weight that should
be assigned to allotment and free reservations, considering as random
elements the demand, the tariff, and the show-up rate for the free mode.
We also consider risk aversion in the objective function using the CVaR,
departing from the classical expected value case. We show that more
stable solutions, with low probability of experiencing extreme losses, can
be obtained at the expense of reducing the gains. Moreover, we conclude
that the use of stochastic programming model provides greater benefits in
scenarios with high seasonalities and free demand variability, reaching a
2.28% increase in average income when compared to solving the problem
replacing the random parameters by their average values.

Keywords: Air Cargo, Stochastic programming, Conditional Value at Risk.

1 Introduction

The average annual growth of passengers in the airline industry in the last years
has been around 5% [3]. Despite this growth, costs such as fuel have increased
significantly, which yielded a net profit per passenger transported of only $2.56
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USD in 2012 [4]. Such modest results have forced airlines to search for other
sources of revenue, focusing on businesses such as cargo transportation.

One of the main tools that have been used to increase profits in cargo trans-
portation is Revenue Management. However, the implementation of those tools
in cargo transportation is still in its infancy given its higher complexity when
compared to passenger transportation [17].

One important difference is the possibility that cargo customers can place
reservations in two forms: allotment and free. In the allotment mode the cus-
tomer signs a long term agreement (approximately 6 months long) specifying the
weight of the load to be transported, for instance on weekly basis, paying a fixed
tariff. The free mode corresponds to the space available in the airplane that was
not assigned to allotment contracts, and reservations usually take place closer
to the departure date. Free reservations can for example be urgent deliveries,
and typically airlines charge more for those types of reservations.

The decision of how much space to assign to each reservation mode is a very
difficult one mainly because of show-up rates. Show-up rates are defined as
the percentage of load that shows-up in the day of the flight to be transported.
Unlike passengers, for whom the show-up is a binary event, in the cargo industry
the show-up rate has a continuous behavior. The actual load that the customer
drops at the airport can be anything between nothing (a complete no-show) until
a load greater than what was previously established [5]. Such events happen
very often in the free mode, especially because there are no penalties for any
of the sides for doing so: it may happen that the airline will not transport
100% of previously agreed load, and it may the case that the customer shows-
up a fraction of the load that was negotiated. The system works mainly based
on trust, so the incentives for the airline to provide a good service, or for the
customer to have a show-up rate of 100%, are mainly dictated by the necessity
of being in good terms for future deals.

The impact of uncertainty can be significant to the airline: since free reser-
vations are typically placed a few hours before the flight, the airplane may fly
with empty spaces, which in a tight margin industry means losses. Therefore,
airlines must aim at maximizing their profits by finding the right balance be-
tween the higher profit per kilogram offered by the free reservations, and the
safer but less profitable allotment contracts.

There are several papers in the air cargo literature devoted to the determina-
tion of optimal overbooking levels. In the works [6] and [24], the authors focus
on the prediction of the show-up rate in order to compute the optimal over-
booking levels. The publications [12] and [20] solve an optimization problem
considering fixed capacity for weight and volume in a single leg flight, while [26]
incorporates stochastic capacity, and use fuzzy logic to determine the optimal
overbooking level using scenarios to represent uncertainty. Unlike their prede-
cessors, [27] consider multiple leg routes and solve the resulting optimization
problem using a newsvendor problem with two locations.

The focus of this work is to efficiently assign load to cargo flights considering
three sources of uncertainty: the demand for the free load, the show-up rates,
and amount charged for the free load. In the literature some works isolate the
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free demand problem, and others consider allotment and free jointly. In [1]
the authors use Markov decision processes to maximize the expected income
of the free reservations, in single-leg flights. The results show a 2.7% increase
in the profits in comparison to the first come first booked policy. The work
[13] develops a new heuristic using sampling methods and improve the results
obtained in [1]. A dynamic programming model is proposed in [14] to solve
the problem under uncertain capacity. The goal is to find an optimal capacity
control policy that tells when to accept an order.

Their numerical results indicate that the reservations of smaller sizes should
be accepted when uncertainty on demand increases.

A very important point that was not considered in previous publications
is the management of the risk associated with losses. The expected value is
the most common tool to deal with uncertainty, but its use imply that the
decision maker is risk neutral. As pointed out by [15], maximizing the expected
revenue is not the only concern—it is also necessary to control the impact or
the variability of losses. In the context of finance, the seminal work [21] was
the first to explicitly incorporate the need to balance risk and return, using the
variance as way to control risk. Another risk measure that is widely used in
practice is the Value-at-Risk (VaR) ([16], [11]), which is based on the quantile
of the loss distribution. Although it is a very intuitive risk measure, the VaR
lacks convexity, which complicates significantly its practical use.

The paper [2] proposed the concept of coherent risk measures, which are a
set of desirable properties a risk measure should have. The Conditional Value-
at-Risk (CVaR), introduced by [25], is a coherent risk measure and therefore is
suitable for optimization problems. In this work our objective function consists
of a weighted sum of the expected value and the CVaR.

Our contribution is twofold: first we propose a two stage stochastic program-
ming model to determine the total weight that should be assigned to allotment
and free reservations, considering as random elements the demand, the tariff,
and the show-up rate for the free mode. Second, we depart from the classical
expected value case and consider risk aversion in the objective function using
the CVaR. We show that more stable solutions, with low probability of experi-
encing extreme losses, can be obtained at the expense of reducing the gains. We
construct realistic experiments, based on real data from a major Chilean cargo
company, considering 9 different combinations of demand for the free mode.
Each experiment reflects the presence of possible seasonalities experienced by
the company, as well as situations with higher than usual variability.

The rest of the paper is organized as follows. In Section 2 we describe the
problem we are modelling, discussing the assumptions we make, and a descrip-
tion of the data we have from the industrial partner. In Section 3 we formulate
the problem, discuss how it can be solved and present two metrics to evalu-
ate solution quality. Section 4 contains extensive numerical experiments based
on real data. Section 5 concludes the paper and presents futures avenues of
research.
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2 Model description

In this section we will describe the cargo problem we want to model and the
practical aspects related to the formulation. In particular, we described the
variables of the model, the data provided by the cargo company, and how un-
certainty was modelled.

2.1 Allotment and free demand

Our model assumes the cargo company is planning its cargo policy for a fixed
time period in the future, say 6 months, and needs to define before the period
starts how much kilograms will be assigned for contracts, the so called allotment.
The remaining capacity can be filled with the free demand, that is, demand that
is random and is not attached to any type of contract. The price paid for the
allotment is usually lower than that of the free demand, but it offers a safer
alternative because the latter exhibits great variability in terms of prices and of
show-up rates.

Allotment contracts have a fixed duration, specified at the moment the con-
tract is signed, and they are valid for all flights within the contract’s time
window. The cargo company has a maximum demand for allotment contracts,
which is a known number DA. In addition, there is a fixed tariff TA that is
charged to the allotment customer, in dollars per kilogram. Finally, there is
show-up rate SURA, which represents the percentage of the assigned allotment
cargo that actually showed up for the flight. The cargo company has to decide
how much of the allotment demand it will sell via contracts. In our model we
will assume there is only one contract during the time horizon under study.
One can think this contract is a proxy for all contracts that were signed for this
period.

Those three parameters are assumed to be deterministic while the free de-
mand are specific for each flight i, and are characterized by a random demand
Di
F , a tariff T iF and a show-up rate SURiF .

2.2 Uncertainty modelling

The uncertain parameters of the model are all related to the free customers:
the demand at each flight, the tariff that will be charged to those customers,
and their show-up rate. We assume that the demand, tariff and show up rate
of the free customers to be independent. Furthermore, demand and tariff are
modelled as a lognormal distributions [23]. The use of a lognormal distribution
to model individual booking requests has been widely used in the literature ([9],
[18], [23]). Following [10] we assume that the free demand of a flight, which is
the sum of the individual booking requests, follows this same distribution with
the same first and second moments. Aside from being positive and allowing
values that are significantly greater than the mean, the lognormal distribution
generates values that resemble the data that we encountered in practice. The
same applies to the tariff charged to free customers.
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Finally, to model the show up rate, we use a discrete distribution similar to
the one proposed by [24]. To generate this distribution we create different bins
(show up rate ranges) with different probabilities of occurrence to each one. To
set the optimal number of bins, we first follow the methodology developed by
[8] that uses bins of equal size. However, given the small amount of data, some
bins contains only one observation of the data. For this reason, we create 5 bins
of different size that better reflect the data behaviour.

2.3 Data description

The test data for this model is based on real data provided by a major cargo
airline for a single market between December 2013 and March 2014. The data
base include information of each flight, with specific detail of each shipment
order: the client name, number of the order, flight date, shipment origin and
destination, load reserved and the load flown, tariff and reservation mode. How-
ever, the data base does not record the date of each booking and bookings that
were not accepted.

Flight capacity is fixed an equal to 100,000 kg representing the capacity of
a CAO Boeing 777

Table 1 summarizes the value of the parameters used for the free and allot-
ment contracts

Table 1: Parameters for the free and allotment contracts

Parameter Value
DA 51,847 kg.
TA 2,5[USD/kg.]
SURA 1
C 100,000 [kg.]
V 3
DF µ = 11.32[kg.] ; σ = 0.365
TF µ = 1.525[USD/kg.] ; σ = 0.044

3 Formulation

In this section we show the explicit optimization formulation of the problem.
We also discuss how the Sample Average Approximation will be used in order
to solve the problem.

3.1 Risk neutral formulation

The risk neutral formulation aims at maximizing the average income obtained
with contracts plus free demand. The problem fits into the framework of two-
stage stochastic programming: the airline has to decide how much should be
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assigned for allotment before uncertainty is revealed, and when the values of
the random elements are known, the assignment for the free demand must be
chosen. We formulate the problem as follows:

Max
XA

TAXASURA +
1

V

V∑
i=1

E [Q(XA, ξ(ωi))] (1)

s.t. 0 ≤ XA ≤ DA.

The constraint means that the capacity XA destined for allotment contracts
must be smaller or equal than the total demand DA for such contracts. The
objective function of (1) has two terms: the first represents the profit obtained
through contracts in any flight, which is the tariff TA multiplied by the assigned
capacity times the show-up rate for allotment SURA, and the second represents
the average return per flight obtained through free contracts. Thus, the objec-
tive function value can be interpreted as the average income per flight when
using a contract with demand DA and tariff TA. Function Q(XA, ξ(ωi)) repre-
sents the profit obtained with one flight given amount reserved for the contract
XA, and realizations of demand, tariff and show-up rate for the free customers
for each flight i(ωi) The second stage can be explicitly written as the optimal
value of a minimization problem:

Q(XA, ξ(ωi)) = Max
Xij

F

T ijF X
ij
F SURij

F (2)

s.t. 0 ≤ XA ≤ DA, (3)

XASURA +Xij
F SURij

F ≤ C, (4)

0 ≤ Xij
F ≤ D

ij
F , (5)

Constraint (4) states that the sum of effective cargo, that is, the assigned cargo
multiplied by the show-up rate, for allotment and free customers cannot exceed
the airplane’s capacity C. Constraint (5) is the analogous of constraint (3) for
the free demand.

The random variables are continuous, and the expectation of the function
Q(XA, ·) is impossible to compute explicitly. Following [19], we can approximate
the problem using the Sample Average Approximation (SAA) method. Each
sample j represents a vector of three components: (Dij

F ,SURij , T
ij
F ). For N

samples the problem becomes

Max
XA,X

ij
F

TAXASURA +
1

V

1

N

V∑
i=1

N∑
j=1

T ijF X
ij
F SURij

F

s.t. 0 ≤ XA ≤ DA,

XASURA +Xij
F SURij

F ≤ C, i = 1, . . . , V, j = 1, . . . , N,

0 ≤ Xij
F ≤ D

ij
F , i = 1, . . . , V, j = 1, . . . , N.
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The expected value model is a completely valid formulation, but as discussed
before it does not take into account risk. We now turn our attention to the risk
averse model with CVaR.

3.2 Risk averse formulation: the λ-CVaR model

The λ-CVaR model incorporates risk in the objective function, using the weight
λ to balance risk and return. For the sake of completeness, let us define the
CVaR rigorously. The Value-at-Risk of a random variable X that represents
losses at confidence level α is defined as

VaRα[X] := min{t | F (t) ≥ α} = min{t | P (X ≤ t) ≥ α}. (6)

The Conditional Value-at-Risk (CVaR) of a continuous random variable X with
cdf F (·) with risk level α ∈ [0, 1] is defined as the average of losses given that
such losses were higher than the VaR:

CVaRα[X] = E[X|X > VaRα[X]]. (7)

Albeit simple, definition (7) is of little use in an optimization context. The key
result in [25] is the proof that CVaR can be expressed as the optimal value of
the following optimization problem:

CVaRα[X] = min
η∈R

{
η +

1

1− α
E[(X − η)+]

}
, (8)

where (a)+ := max(a, 0). Moreover, they show that VaRα[X] is an optimal
solution of the optimization problem in (8). The λ-CVaR model is

Max
XA

TAXASURA +
1

V

V∑
i=1

λE [Q(XA, ξ(ωi))] + (1− λ)CVaRα[Q(XA, ξ(ωi))]

(9)

s.t. 0 ≤ XA ≤ DA.

Using expression (8) and defining auxiliary variable uij to linearize the
CVaR, problem (9) can be approximated by

Max
XA,X

ij
F

TAXASURA +
1

V

V∑
i=1

λ
 1

N

N∑
j=1

T ijF X
ij
F SURij

F

+

(1− λ)

θ +
1

N(1− α)

N∑
j=1

uij


s.t. 0 ≤ XA ≤ DA,

uij ≥ 0, i = 1, . . . , V, j = 1, . . . , N,

uij + θ + TAXASURA + T ijF X
ij
F SURij

F ≥ 0, i = 1, . . . , V, j = 1, . . . , N,

adding constraints (4),(5) from the expected value problem (2).
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3.3 Benchmark policies

In the literature of stochastic programming it is common to use two metrics to
obtain additional information about the usefulness of a model. The first metric
is the Value of the Stochastic Solution (VSS), which is a measure of the gain in
considering randomness in the formulation. If the VSS is zero then replacing the
random parameters by their averages yields the same results as the two stage
stochastic programming model.

The other metric is the Expected Value of Perfect Information, or EVPI.
The EVPI measures how much a decision maker would be willing to pay for
perfect information, that is, for accessing the outcomes of the random variables
before they are revealed. An EVPI of zero means that the solution of the two
stage problem, which is obtained without knowing the outcomes of the random
variable, is as good as the solution with complete information. More details
can be found in [7]. In the next section we will present our numerical results,
including the value of both metric for each of our experiments.

4 Numerical experiments

4.1 Experiment design

To test how does the model perform under different demand patterns we create
9 demand categories. Each demand category reflects the presence of possible
seasonality and is represented by its mean and standard deviation. Three levels
of demand mean and standard deviation are considered: High, Medium and
Low. Table 2 summarizes these 9 categories.

Table 2: Free demand categories

Standard Deviation
Demand Mean High (H) Medium (M) Low(L)
High (H) HH HM HL
Medium (M) MH MM ML
Low (L) LH LM LL

In the base category MM we assume that the demand mean of DMM =
88, 560 kg. and a standard deviation of 33, 503 kg. To generate the High (Low)
mean demand level, we took the DMM and amplify(reduce) in a 25%. We did
something analogous to create the High(Low) levels of standard deviation by
modifying the coefficient of variation in a ±15% in relation to the Medium level.

Based on these demand categories we built 9 experiments to test the two
different models presented in section 3. An experiment is composed by 3 dif-
ferent demand category each of them representing a season. Table 3 shows a
summary of these experiments.

The results of these experiments are presented in the next section.
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Table 3: Description of Free demand experiments

Experiment Characteristic Flight 1 Flight 2 Flight 3
1 Base case MM MM MM
2 Variability increase MH MH MH
3 Demand increase HM HM HM
4 Demand decrease LM LM LM
5 Three different seasons MM LM HM
6 One high demand season MM HM MM
7 One low demand season MM LM MM
8 Three seasons with high variability MH LH HH
9 Decrease variability ML ML ML

4.2 Results

As is usually the case with stochastic programming problems, we cannot solve
the resulting problem directly since the expected value cannot be computed
explicitly. As mentioned in Section 3.1, we will approximate the problem using
SAA in order to obtain good candidate solutions.

4.2.1 Risk neutral results

We now present the main results obtained for each of the nine experiments.
Using SAA we obtained upper and lower bound for the unknown optimal value
v∗. First we ran M = 100 experiments with N = 500, which generated 100
candidate solutions and 100 objective function values1. According to [19], the
average of those values is an (statistical) upper bound for v∗, and confidence
intervals can be constructed. The best candidate x̂∗A obtained among the initial
100 runs will be used to estimate a lower bound. By fixing the allotment capacity
equals to x̂∗A, we chose a much higher value of N ′ > N to construct accurate
statistical estimates of the objective function value associated with x̂∗A, including
confidence intervals.

By constructing lower and upper bounds we have not only a candidate so-
lution that can be implemented in practice, but we also can infer about the
quality of such candidate by comparing its objective function value with the
upper bound. Results for each of the nine experiments considering a value of
N ′ = 1 · 106 are shown in Table 4.

Table 5 shows the results compared with our benchmark policies explained in
section 3.3. The EVPI in this case represents the maximum willingness to pay
for having perfect information of the demand that a particular flight will face.
According to the results of Table 5 this willingness to pay is on average of 37,690

1The values of M and N were chosen for computational tractability. Additional experi-
ments with combinations of M and N are reported in the appendix
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Experiment Best f(x̂jN ) (95% conf. int.) E[v̂N ] (95% conf. int.)
1 MM–MM–MM 353, 779± 57 354, 360± 443
2 MH–MH–MH 339, 820± 62 340, 490± 496
3 HM–HM–HM 379, 334± 75 380, 491± 608
4 LM–LM–LM 328, 087± 41 328, 160± 348
5 MM–LM–HM 347, 937± 51 348, 392± 397
6 MM–HM–MM 360, 925± 63 361, 395± 530
7 MM–LM–MM 343, 086± 56 343, 286± 415
8 MH–LH–HH 335, 351± 72 335, 538± 494
9 ML–ML–ML 368, 109± 53 368, 773± 408

Table 4: Lower and Upper Bound Estimates for v∗

[USD] per flight. In contrast, the value of the stochastic solution (VSS) is on
average only 1 % better than solving the problem considering the expectation
of the expected value (EEV). However, the VSS increases in scenarios 2 and
8 where the free demand has higher variability, reaching a 1.64% and 1.35%
improvement compared with the EEV.

Table 5: Results for the Risk neutral formulation

Experiment ÊVPI V̂ SS
1 MM–MM–MM 39,137 2,434
2 MH–MH–MH 41,323 4,608
3 HM–HM–HM 38,580 3,062
4 LM–LM–LM 26,052 1,828
5 MM–LM–HM 40,613 3,191
6 MM–HM–MM 40,734 2,905
7 MM–LM–MM 37,259 2,533
8 MH–LH–HH 41,545 5,489
9 ML–ML–ML 33,968 733

Average 37,690 2,975

4.2.2 Risk averse results

In this section we discuss the influence of considering risk in the objective func-
tion using the CVaR. First, we study the influence of the weight λ to balance
risk and return. Second, we explore the impact of the confidence interval α. For
both analysis we use experiment 1 which is the base case experiment.

Influence of the balance weight λ : Figure 1 shows how the optimal al-
lotment capacity change for different values of λ, considering a confidence level
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α = 0.95. Remember that a value of λ = 1 represents the risk neutral approach
where only returns mater, whereas λ = 0 only gives importance to risk.

Figure 1: Allotment capacity as a function of λ for α = 0.95

Figure 1 shows a tendency to reduce the allotment capacity reserved as the
value of λ increase. In this case, when λ = 0.6 the optimal percentage of al-
lotment capacity is 52% which represents accepting all the potential demand
(remember that DA = 51, 847[kg.]). These results are coherent to what is ob-
served in practice since allotment reservations gives stability to gains, reducing
the probability of extreme losses.

Influence in the value of the confidence level α: The value of α indicates
the confidence level with which the VaR of a function is determined. This value
is then used to work with the CVaR of the same function. Figure 2 shows the
allotment capacity that should be reserved for different values of α, considering
λ = 0.6.

Figure 2 shows that the capacity intended for allotment contracts increase
with the value of α. In other words, this result suggest that in order to achieve
higher expected profits in (1− α) · 100% of the worst cases, which corresponds
to the cases where the revenue per flight are lower than the VaR of the revenue
function of the airline, capacity reserved for allotment must increase when α
grows. The result above shows again that allotment contracts provides security
to airlines revenue.
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Figure 2: Allotment capacity as a function of α for λ = 0.6

4.2.3 Comparison between Risk neutral and Risk averse results

So far, we have not analysed the optimal value of the λ-CVaR model because,
except in the case of λ = 1, where the problem is identical to the risk neutral
model, the objective function of the λ-CVaR model has no physical interpreta-
tion. In order to compare the risk neutral model and the λ-CVaR model, we
took the values of the capacity XA destined for allotment contracts obtained
for each of these two models as known parameters. We then generate a new
batch of 500 scenarios and compute for each scenario and for each model, the
expected income obtained fixing the value of XA. Finally we calculated the av-
erage income and standard deviation for all scenarios and compared it against
the EEV solution.

Table 6 shows for each experiment the percentage difference for both the
expected income per flight and the standard deviation of this income compared
against the EEV for the Risk Neutral (RN) model and for the CVaR model with
λ = 0.7. A negative percentage value represents greater profits or a reduction
in the standard deviation value compared to the EEV.

In terms of income, Table 6 shows that the risk neutral model shows on aver-
age for the nine experiments a 1 % higher income than the EEV, while the risk
averse model attain incomes a 0.8% lower than the EEV. For the RN approach,
the greater benefits are produced in experiments 2 and 8 which presents high
seasonality and situations with higher than usual variability, whereas the lower
benefits are obtained in experiments 9 and 1 where there is only one season and
a medium or low variability. Regarding the risk averse approach, the greater
benefits are obtained in experiment 8, while in experiments 1,3, 5,6,7 and 9 the
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Table 6: Comparison results between risk neutral and risk averse model

Experiment Dif RN (%) Dif λ = 0.7 (%)
1 MM–MM–MM Income −0.57 2.01

Std.Dv. −20.86 −57.33
2 MH–MH–MH Income −1.60 −0.02

Std.Dv. −27.74 −56.95
3 HM–HM–HM Income −0.65 2.37

Std.Dv. −20.66 −58.78
4 LM–LM–LM Income −0.24 −0.12

Std.Dv. −22.64 −29.14
5 MM–LM–HM Income −1.03 1.25

Std.Dv. −23.10 −59.14
6 MM–HM–MM Income −1.21 0.83

Std.Dv. −22.97 −62.34
7 MM–LM–MM Income −0.91 0.18

Std.Dv. −23.55 −55.78
8 MH–LH–HH Income −2.28 −1.41

Std.Dv. −29.68 −53.87
9 ML–ML–ML Income −0.14 1.95

Std.Dv. −12.45 −51.09

average incomes are lower than the EEV. The above results suggest that both
models achieve the best results on scenarios with high demand variability and
seasonalities.

Regarding standard deviation, both models present significant reductions
when compared against the EEV. While, the RN model shows on average a
22.7% reduction in standard deviation, the risk averse model attain average
reductions of 53.8% . This result suggest that both models give more stable
solutions than the EEV reducing the probability of experiencing extreme losses.
Moreover, the risk averse model shows to reduce this variability in a more effi-
cient way than the RN.

5 Conclusions

In this paper we proposed a two stage stochastic programming model to deter-
mine the total weight that should be assigned to allotment and free reservations.
In our formulation, we consider the risk aversion in the objective function using
the CVaR and compare it against the risk neutral formulation.

Our work suggest that using the risk neutral model can achieve on average a
1% increase in the incomes per flight than solving the model using the average
values.

The use of the risk neutral model also gives more stable solutions, reducing
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the probability of experience extreme losses, which is reflected by a 23% decrease
in the standard deviation of the incomes when compared to solving the problem
replacing the random parameters by their average values.

Regarding the risk averse approach, this model tend to give more stable so-
lutions than the risk neutral model, at the expense of reducing average incomes.
Thus, the risk averse model is more suitable in scenarios with higher than usual
variability and in presence of seasonalities where expected incomes can vary
significantly.

We also conclude that the use of stochastic programming model provides
greater benefits in scenarios with high seasonalities and demand variability,
reaching a 2.28% increase in average income compared to using average values.
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A Appendix A

A.0.4 Influence of the number of batches M and scenarios N

We use the Risk neutral formulation and experiment 1 to test the influence of
N and M in the stability of the objective function. To solve the optimization
problem we use Gurobi 5.6.2 [22] .

Influence of the number of batches M : First, we test the influence in the
number of batches M while mantaining fixed the number of scenarios N = 50
([19]). We consider different values of M = 50, 100, 500, 1000, 2000 and build for
each of them a 95 % confidence interval of the expected income of each flight,
and the relative error of these incomes as shown in Table 7

Table 7: Confidence interval and relative error of the expected income of each
flight for different values of M

M E[v̂N ][USD] Relative Error
50 352, 414± 2, 252 0.64%
100 354, 522± 1, 365 0.39%
500 353, 967± 651 0.18 %
1000 355, 217± 492 0.14%
2000 354, 967± 337 0.09%

Table 7 shows that the relative error is less than 1% for the different values
of M , showing that the optimal solution of the risk neutral formulation is stable
in the number of batches.

Influence of the number of scenarios N : Once we have fixed M = 100
we now study the influence of the number of scenarios N in the stability of the
results ([19]). Table 8 shows confidence interval and the relative error of the
income for N = 50, 100, 500, 1000.

Table 8 shows that the relative error is very small for all cases and the
expected income value is stable around 354,500 USD.

16



Table 8: Confidence interval and relative error of the expected income of each
flight for different values of N

N E[v̂N ][USD] Relative Error
50 354, 522± 1, 365 0.39%
100 355, 140± 1, 241 0.34%
500 354, 360± 443 0.12 %
1000 354, 114± 331 0.09%
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