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Problem Statement 

Recurrent congestion and increase of extended daily peak periods are universals trends in highways. 
Congestion mitigation is polarized between invasive approaches, such as infrastructure interventions, and 
traffic management through implementation of Intelligent Transportation Systems (ITS), which promote 
ameliorated network performance with sustainable economic, spatiotemporal requirements. The 
amelioration of current traffic management strategies, such as the traffic supply and demand 
management, control policies and managed lanes, stands as the most aspiring between the two 
approaches, as conduces to the restrain or prevention of network’s performance aggravation. However, 
traffic intra-class variability, adaptability of drivers’ behaviour to existent ITS policies, in conjunction with 
networks’ complexity in highways, fortify congestion and challenge the strategies’ efficiency. Abrupt 
fluctuations ensued by transitional traffic regimes advocate the congestion phenomenon that could be 
anticipated and mitigated by a timely activation of designated control policies. To provide reliable 
monitoring and controlling, stochastic modeling of impending traffic dynamics compounds one of the 
focal points of this study, so as to unveil synergistic properties of parameters to be integrated in these 
systems. 

In this scope, a multi-level algorithm is introduced that models and forecasts lane traffic distribution in 
succeeding traffic regimes through lane-scale parameterization of static and dynamic expression, and 
examines the existence of an inter-dependence of lane vehicle distribution patterns and congestion 
formation. An optimization approach concludes the stochastic scheme, aiming to ameliorate the 
performance of an existing reactive managed lanes system (MLS) and to reconfigure it to proactive, 
namely a hard shoulder running (HSR), by minimizing time delays through minimization of density per 
lane. The graphical methodological framework to succeed this challenging goal is presented in Figure 1.  

In the first level, a clustering approach captures patterns of lane stream dynamics, which corresponds to 
an unbiased definition of peak periods and prevailing traffic regimes. Data mining leads to the conjecture 
that inter-lane traffic propagation denotes the onset of another regime. Therefore, the hypothesis 
regarding the underlying spatial inter-dependence between traffic lane distribution and traffic states 
occurrence is assessed in the subsequent level, through lane-scale spatiotemporal parameterization. The 
stochastic method that is introduced, forecasts lane traffic distribution in succeeding traffic regimes, 
through a novel introduced parameter, lane density distribution ratio (LDDR). Ultimately, at the lower 
level, the developed dynamic multivariate models are implemented to an indicative single managed lane 
(ML) per direction system in a Swiss highway, or else Hard Shoulder Running (HSR), equipped with 
variable speed limit (VSL). Due to fixed activation thresholds and to observed underutilization of the ML, 
over favouritism of the general purpose (GP) lanes, the systems’ operations are undermined. Hence, the 
designated control policy is subject to optimisation, through the minimisation of delays and thus densities 
per lane, in order to achieve timely activation.  
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Figure 1. Stochastic algorithm framework for modeling and dynamic operation of managed lanes systems. 
 

Level 1: Data Mining for Traffic Patterns Identification 

The aim of the first level is to render a) the temporal patterns of time span, during which maximum 
capacity is attained per sections of a network, hereinafter referred to as the peak period, and b) the 
spatial patterns of the three prevailing traffic regimes that capture stream dynamics in three 
homogeneous groups (free flow, saturated, congested). Additionally, any detected outliers are removed, 
generating a denoised and concise input dataset, which promotes accuracy prediction at the subsequent 
level of modeling. An exploratory data mining is performed by employing a neural network (NN) 
algorithm, namely the “neural-gas” algorithm, in independent stochastic clustering procedures. The 
algorithm is a fuzzy extension of the k-means that outperforms standard clustering techniques, according 
to a dissimilarity measure, that might tend to converge to local minima for non-smooth data, as in the 
case of rapidly fluctuating traffic flow. Moreover, it requires an order of magnitude fewer weights to 
achieve the same order prediction error.  

The studied data vectors are: (a) a two-dimensional vector of time and densities per direction,       
, for 

the distinction between peak from off-peak periods, and (b) a  -dimensional vector of normalized 
densities and speeds per lane,     

   
, and a  -dimensional vector of normalized densities per lane and 

lane density distribution ratios (LDDR) per lane,     
   

, for the identification of traffic regimes, where 

       is the number of lane-scale parameters   that are considered for clustering and   the number of 
lanes in the section. Hence, (  )    separate clustering procedures are invoked for each of the three 
vectors,     

   
,     

   
,       

. For every reference to   hereinafter, each of these vectors is implied, 

depending on the case. 

Three separate clustering procedures are invoked for each of the three vectors. Each of the resulted 
clusters comprises indications about stream patterns that contribute to the targeted delineation of traffic 
dynamics. The morning and evening peak periods serve to reduce the research area and target the 
optimal thresholds of a traffic responsive activation. The relationships of density per lane and LDDRs, 
which capture transitions between regimes and highlight the thresholds for a timely activation of an ITS, 
provide an insight into traffic behaviour and traffic distribution dynamics in lanes. In these transitions 
between free flow and congested regimes, represented by the saturated regimes, lay the range of 
thresholds to be inquired for a traffic responsive system operation, related to the system’s activation or 
deactivation.  

Furthermore, the clustering analysis on the relationships between density per direction and LDDRs 
revealed uneven vehicles’ distribution. The right lane is preferred even at impending saturation, while left 
lane remains underutilised up to the onset of congestion conditions. These lane density patterns that are 
intermittently occurring during respective traffic conditions, induce the conjecture that congestion moves 
from right to left in the onset of peak periods and contrary in the offset. Hence, traffic inter-lane 
propagation delineates a potential transition to another state. This justifies the initial hypothesis of inter-
dependence between patternised lane vehicle allocation and traffic regimes.  

Managed 
Lane  

Operation 

Activation/ 

Deactivation 



Page 3 of 6 

  (a) 

Figure 2. Clusters of (a) morning,(b) evening 
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Figure 3. Clusters of traffic regimes per lane (a) left, (b) right, (c) emergency lane (L-60590, 18.03.2014).  

Level 2: Lane Distribution Modeling and Forecasting for Managed Lanes Management 

In the this level, the aim is to predict and hence alleviate part of the causes of the mechanisms that cause 
extended congested phenomena, through impending spatiotemporal distributions that could be 
integrated to existing control algorithms of ITS schemes, moderating thereby delays and costs. The 
hypothesis regarding the underlying spatial inter-dependence between traffic allocation per lane and 
traffic states emergence is assessed, through separate models with lane-scale variables for each of the 
resulted homogeneous clusters.  

The data mining of the preceding level revealed that in a site that traffic propagates from an initially 
preferred outer lane to the remaining outer lane, in this case study from right to left, in ascending passage 
at the offset of saturated conditions and at the onset of peak periods, a transition to congested regimes is 
implied. Based on these findings, the sequence between congested and uncongested conditions, as those 
are ensued by the traffic behavioural patterns of each cluster, can be anticipated through lane-related 
parameterisation of the stream. Thence, following the verified assumption that at the onset of congested 
conditions the left lanes receive the inflow, left lane LDDR is introduced as determinant response variable 
for congested conditions, since any increase of their values could suggest transition from free flow or 
saturated regimes, and density of the right lane for the uncongested.  
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Pursuing a simple approach that would ensure feasibility of implementation into real-time control 
policies, dynamic multivariate general regression models are deployed, of type  (   )   ( )  
∑       ( )  with     constant coefficients    { }. Separate dynamic prediction models are 
developed for each of the resulted homogeneous clusters, enhancing thus their statistical power and 
contributing to the acquired significant accuracy for both congested and uncongested regimes. Their 
dynamic character lays on the fact that they are providing predictions for an interval, t+1, one time step 
subsequent to the current time t. The prediction horizon is set on  =3-minutes, which is considered as 
adequate to detect transitions, without overleaping or accentuating rapid fluctuations. The forecasting 
parameters are subject to unity-based normalization, in order to be scale invariant for comparability 
reasons. Although multicollinearity within independent variables is negligible, since they are normalised 
and on account of the bounded response variables, it is inquired based on the significance of the 
estimated regression coefficients.  

To statistically assess the proposed models, an exploratory analysis is effectuated at the aforementioned 
reactive ML system highway site. To provide the system’s timely operation, forthcoming stream dynamics 
are monitored in two sections, upstream and in the system, ensuring sufficient time interval for its 
activation before the propagation of any upstream triggering conditions to downstream. From the study 
period are excluded holidays and days with accidents (March, May of 2013 and 2014).  

The dynamic model for congested conditions (Equation (1 )) is intended to describe stream dynamics 
during this regime, through a left lane related variable for the reasons described to the corresponding 
static model. The model predicts the response variable of left lane LDDR upstream one time step 

subsequent    

  (   ) to the current,    

  ( ), with an accuracy of 5% (Table 1), when as explanatory 

variables are set the current step’s  : normalized density of the left lane downstream,    
   ( ), right lane 

LFDR downstream,    
   ( ), derivative of the normalized left lane speed upstream, 

    

  

  

, and discrete 

normalized number of lanes that are used as general purpose lanes downstream,        
   ( ) 

(       
   ( )  0 for 2 lanes,        

   ( )  1 for 3 lanes).  

Multivariate dynamic regression model for congested conditions:  

    

  (   )      

  ( )       
   ( )      

   ( )   
   
   ( )

  
   
   ( )   

     
  

        
  

     
       

   ( )
  

       
   ( ) 

(

1) 

Based on  =4293 observations, the LLDDR upstream one time step following to the current is inversely 
related to the right lane LFDR (RLFDR) downstream and the derivative of the normalized left lane speed 
upstream, which suggests that a decrease to the latter indicates a subsequent 3-min transition towards 
denser conditions, thus the decrease of the left lane LDDR upstream is justified as the congestion 
propagates up to the section in question. The model successfully provided adequate fitting to the data 
with an adjusted    of 81% (Table 1). 

Table 1. Summary statistics of dynamic multivariate models for congested and uncongested conditions, as 
resulted by clustering. 

Congested Uncongested 

Variables*              Variables*         

    

  (   )      

  ( )   
    

  (   )      

  ( )    

   

( =4293)  
( =3765) 

Intercept 0.43 Intercept 0.06 

    
   ( ) 0.15     

   ( )  0.03 

 
   
   ( )

 -   0.45  
   
   ( )

 0.17 

     
  

   -   2.67      
  

   17.85 

 
       

   ( )
   0.01  

       
   ( )

  0.01 

Res. S.E. 0.05 Res. S.E. 0.02 

   adj. 0.81    adj. 0.67 

* All variables are statistically significant at the 99.9% confidence level, based on t-test. 
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Idem, the developed dynamic model for uncongested conditions (Equation (2)), predicted with significant 

accuracy (2%), the normalized right lane density upstream one time step subsequent,    

  
(   ), to the 

current,    

  
( ). The explanatory variables comprise the current step’s  : right lane normalized density 

downstream,    
   ( ), right lane LFDR downstream,    

   ( ), derivative of the normalized right lane flow 

upstream, 
    

  

  

, and discrete normalized number of lanes that are used as general purpose lanes 

downstream (0 for 2 lanes, 1 for 3 lanes),        
   ( ). 

Multivariate dynamic regression model for uncongested conditions:  

   
  (   )      

  ( )       
   ( )      

   ( )      
   ( )   

   
   ( )   

     
  

        
  

     
       

   ( )
  

       
   ( ) 

(2) 

The normalized right lane density upstream one time step subsequent to the current is positively affected 

by all the explanatory variables, which suggests that an increase to any of the variables results to an 

increase to the right lane density and implies less attractiveness to the left lane, hence a subsequent 3-

min transition towards less dense conditions is induced.  

Optimisation of Control Algorithm for Managed Lanes 

In order to improve the performance of a reactive HSR system, an optimization of its 

activation/deactivation thresholds is currently on-going. The approach is considered as novel, as relevant 

frameworks are not acknowledged in literature in this scope, apart from the application-driven empirical 

adjustments where decisions for timely operation are solely empirically-driven. In addition, an Application 

Programming Interface (API) is under development in a simulation environment, as part of an evaluation 

of the system’s performance upon implementation of the suggested optimal set of thresholds before the 

prospective field test, with the employment of certain scenarios of control, demand and additional 

policies variations that could challenge its efficiency and engage accordingly any adjustments.  
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