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Problem statement and related work

The purpose of this work is to solve optimization problematthre constrained by a dynamic traffic assignment (DTA)
simulation. Examples are signal optimization (where thé\Bimulation evaluates the system-wide performance of argiv
signal plan), origin/destination matrix estimation (wéére DTA simulation predicts the network flow patterns reésgifrom

an origin/destination matrix, which then can be comparedabdata), and network design problems (where the DTA ptedi
the usage pattern of new/modified infrastructure elements)

DTA simulations for strategic planning implement, essahti the following iterative scheme:

1. Create a synthetic population of individual traveleeggnts”).

2. In every iteration (loosely interpreted: simulated day)

(a) Every traveler chooses a travel plan.
(b) All travelers execute their plans (i.e. they travel).
(c) All travelers observe the resulting network conditions

This scheme can be conveniently represented by a state isyaied

X =[xk u] + eX (1)
wherek is the iteration (simulated day) indexare decision variables (to be optimally selectedt)is the state (memory) of
the simulation, and* is the zero-mean simulation stochasticity. Cascetta (. 9B8scetta and Cantarella (1991); Hazelton
(2002); Nagel et al. (1998); Watling and Hazelton (2003greb similar formalisms, even though these approaches are
mostly constrained to trip (and not full-day travel plan)Mdgroblems. A strategic planning simulation runs this psscentil
a (stochastic) fixed point is reached.

The state of a DTA simulation that assigns all-day travehgplean be defined as a real-valued vector that contains thiesiti

of all possible travel plans of all agents, as “learned” by ihdividual agents. This real-valued state space is exfyem
large. To give an example, Bowman and Ben-Akiva (1998) edtrthe number of single-day travel plans (comprising ayl-d
route, mode, time choice) for a single individual to be in tnder of 10°; an urban population of siz&® then leads to a
simulator state space dimensionlof ' —and this is in light of the combinatorial size of the unim®ute choice set a rather
conservative estimate. It then becomes a rather strikisgrohtion that strategic simulators tend to find good agprations

to this, sayl0'"-dimensional, fixed point within the order d®° iterations. One may conclude that the effective dimensfon o
the state space through which the simulator moves is muchesrttaan the number of degrees of freedom in the underlying
model system.

The objective of this work is to exploit this observationlretdesign of an efficient simulation-based optimizatiorcpdure.
Consider the problem of selecting a decision variableonsisting possibly of both real-valued and integer estrthat
minizing a real-valued objective functidd of the simulation constraints:

min  Q(x) 2
st x=fxul. €))

The equilibrium constraint (3) means that the expecte@ sththe simulator has reached a deterministic fixed poitgrot
formulations are conceivable. This is a computationallgligmging problem because one needs to iterate the simalkto
the way to convergence whenever one wishes to evaluate k& sibppctive function value. The applicability of alterivat
approaches to incorporating the constraints less eXpliéitr instance by introducing Lagrangian multipliersimited by
the process-based simulation logic that is not easily abvlena a mathematical reformulation.



The approach pursued in this work is based on makiimgprovement steps while the simulator converges, meathiaigone
optimization iteration (improvement step) coincides witie simulation iteration (evaluating (1) once). A key irdjeace of
the method is to identify the effective state space of theukitor already while the simulator converges. A number tatesl
approaches deserve attention in this context.

e Bierlaire and Crittin (2006) present an efficient technigjfar solving large noisy nonlinear systems of equation®ifTh
approach is based on fitting a regression model against tiegmn; it may be conjectured that the efficiency of their
approach is a consequence of the relatively low effectimeedision of their problem. Their approach does, however,
not aim at the solution of simulation-based optimizatioolppems.

e The two-simulation SPSA algorithm of Bhatnagar et al. (2042 generalization of SPSA (Spall, 1992) that requires
to run two simulations in parallel, performs symmetric demn variable variations in each iteration of both simalas,
and then computes improvement steps based on the usual SH®Adfiference scheme. The intuitive reason why
the algorithm of Bhatnagar et al. (2013) converges is thatsimulation responses are additionally smoothed over
the iterations at a rate that is higher than the rate at whietséarch step size goes to zero, meaning that the simulator
responses eventually appear stationary (converged) freisdarch algorithm’s perspective. Interestingly, thisigaar
method appears to have never been tried out in the transptmination community, despite of its extensive use of
SPSA.

e Rested multi-arm bandits (e.g. Tekin and Liu, 2012) proadether interesting perspective on the problem at hand.
A multi-arm bandit is a gambling machine with two or more amwtsere playing a particular arm yields a pay-off
that is drawn from a fixed pay-off distribution assigned tattarm. A rested multi-arm bandit attaches to each arm a
discrete-time Markov process conditional on which the fidgecomputed and that advances by one step whenever the
arm is probed. Payoff-maximizing strategies for restedtiraum-bandits are conceivable approaches to tackleetiscr
decision problems subject to simulation constraints thpaeently have not yet received attention in the transfiorta
community.

M ethodology

The proposed approach looks as follows. Consider the stinnlransition
AXF = (flX< u] 4 k) —x* (4)

that describes the simulation’s movement vector in staaeesjn iteratiork. Note that convergence of the simulation in the
above sense is equivalent to

E{Ax} = O. (5)
Now allow the decision variablas® to change in every iteration. In iteratids) consider the las¥! transitions
(x*Lu A i=0...M—1. (6)

Based on this information, solve the problem
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which, essentially, aims at identifying a minimum-norm eex combination of the las¥l state transitions. (The second
term, which is necessary to guarantee both a unique soltitre problem and certain asymptotic properties of theailver
algorithm, may for now be ignored by letting= 0.)

The usefulness of (7), (8) becomes clear when pretendirgirthdator was linear and, for the sake of presentationgsiity,
deterministic:

XM = Ax* 4+ Bu® 9)

with A andB being matrices of suitable dimension. Findingaathat exactly solves

M—-1

> At =0 (10)
i=0



then allows to write

M—1
< = AX*+B (Z ociuk_i> (11)

i=0
with

M—1
o= ) ax (12)
i=0

Thich results from (i) pre-multiplying (9) witlx;, (i) summing over ali = 0...M — 1, and (iii) inserting (10). Noting that
the convex combinatiol " a;u*t is the expected value of a bootstrap distributionf the M last decision variables,
one hence can conclude that re-samplitig? with probability «; in future iterations will make the simulation converge to
a stationary state distribution with known expected vaitieThat is, one can predict a surrogate simulator solutiohauit
having to run the simulator to convergence.

A convex combination of intermediate solution points isoads the core of the algorithm of Frank and Wolfe (1956). The
purpose, however, is different: Frank and Wolfe (1956) s@weal-valued convex optimization problem, whereas heze t
convex combination is used to construct a stationary pdiathyypothetical stochastic process. A number of furthgystee
needed in order to exploit this intermediate result in atsmiuto the optimization problem at hand.

e Means to evaluate and process (an approximation of) the-timgensional state vector are needed. A method that
appears to function well in preliminary experiments is te usstead the network flows of one or several previous
iterations. The subsequently reported result is basedismapiproximation.

e There needs to be a computational benefit in resorting to progjmate surrogate simulator solution. This is the case.
For illustration, consider the following figure, which isdeal on an optimization problem with two real-valued decisio
variables subject to a multi-agent simulation of the CityZofrich. (Details are omitted due to space restrictions.)
It shows the objective function value (7), which can be ipteted as an equilibrium gap function, over simulation
iterations, with “naive average” corresponding tocedlset tol /M and “surrogate solution” referring to thes resulting
from minimizing that function.
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e Asymptotic convergence of the surrogate simulator sofuiscthe true simulator solution needs to be establishedieThe
are several ways to go about this; one is to gradually inerthee coefficient in (7), another one is to gradually reduce
the variability of the trial decision variables.

It remains to combine these elements into a concrete ahgorif blueprint of one iteration looks as follows:

1. Create a trial decision variable. For instance, drawmfsome problem-specific proposal distribution.
2. Advance the simulator by one iteration using this deaisi@iable and compute the new surrogate simulator solution

3. Accept the trial decision variable if the objective fupaotvalue of the trial surrogate simulator solution congés an
improvement, otherwise discard this trial.

4. Ensure that the surrogate simulator solution of the niesation is closer to the real simulator solution than befor

The practical importance of using a surrogate simulatartsmi when evaluating a trial decision variable with onlyirgée
simulator transition is that the surrogate solution is (agjpmately) instantaneously equilibrated, whereas tlgiral simu-
lator is not. This (approximately) removes the path-depeid of the original simulation process that otherwise eenthe
current simulator state not representative for its equtigd state.

Several concrete instances of this algorithm are currédtiyg explored and tested; results will be presentable dyitie of
the conference.
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