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Problem statement and related work

The purpose of this work is to solve optimization problems that are constrained by a dynamic traffic assignment (DTA)
simulation. Examples are signal optimization (where the DTA simulation evaluates the system-wide performance of a given
signal plan), origin/destination matrix estimation (where the DTA simulation predicts the network flow patterns resulting from
an origin/destination matrix, which then can be compared toreal data), and network design problems (where the DTA predicts
the usage pattern of new/modified infrastructure elements).

DTA simulations for strategic planning implement, essentially, the following iterative scheme:

1. Create a synthetic population of individual travelers (“agents”).

2. In every iteration (loosely interpreted: simulated day):

(a) Every traveler chooses a travel plan.

(b) All travelers execute their plans (i.e. they travel).

(c) All travelers observe the resulting network conditions.

This scheme can be conveniently represented by a state spacemodel

xk+1 = f[xk, u] + ε
k (1)

wherek is the iteration (simulated day) index,u are decision variables (to be optimally selected),xk is the state (memory) of
the simulation, andεk is the zero-mean simulation stochasticity. Cascetta (1989); Cascetta and Cantarella (1991); Hazelton
(2002); Nagel et al. (1998); Watling and Hazelton (2003) refer to similar formalisms, even though these approaches are
mostly constrained to trip (and not full-day travel plan) DTA problems. A strategic planning simulation runs this process until
a (stochastic) fixed point is reached.

The state of a DTA simulation that assigns all-day travel plans can be defined as a real-valued vector that contains the utilities
of all possible travel plans of all agents, as “learned” by the individual agents. This real-valued state space is extremely
large. To give an example, Bowman and Ben-Akiva (1998) estimate the number of single-day travel plans (comprising all-day
route, mode, time choice) for a single individual to be in theorder of105; an urban population of size106 then leads to a
simulator state space dimension of1011 – and this is in light of the combinatorial size of the universal route choice set a rather
conservative estimate. It then becomes a rather striking observation that strategic simulators tend to find good approximations
to this, say1011-dimensional, fixed point within the order of103 iterations. One may conclude that the effective dimension of
the state space through which the simulator moves is much smaller than the number of degrees of freedom in the underlying
model system.

The objective of this work is to exploit this observation in the design of an efficient simulation-based optimization procedure.
Consider the problem of selecting a decision variableu, consisting possibly of both real-valued and integer entries, that
minizing a real-valued objective functionQ of the simulation constraints:

min
u

Q(x) (2)

s.t. x = f[x, u]. (3)

The equilibrium constraint (3) means that the expected state of the simulator has reached a deterministic fixed point; other
formulations are conceivable. This is a computationally challenging problem because one needs to iterate the simulator all
the way to convergence whenever one wishes to evaluate a single objective function value. The applicability of alternative
approaches to incorporating the constraints less explicitly, for instance by introducing Lagrangian multipliers, islimited by
the process-based simulation logic that is not easily amenable to a mathematical reformulation.
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The approach pursued in this work is based on makingu-improvement steps while the simulator converges, meaningthat one
optimization iteration (improvement step) coincides withone simulation iteration (evaluating (1) once). A key ingredience of
the method is to identify the effective state space of the simulator already while the simulator converges. A number of related
approaches deserve attention in this context.

• Bierlaire and Crittin (2006) present an efficient techniques for solving large noisy nonlinear systems of equations. Their
approach is based on fitting a regression model against the problem; it may be conjectured that the efficiency of their
approach is a consequence of the relatively low effective dimension of their problem. Their approach does, however,
not aim at the solution of simulation-based optimization problems.

• The two-simulation SPSA algorithm of Bhatnagar et al. (2013) is a generalization of SPSA (Spall, 1992) that requires
to run two simulations in parallel, performs symmetric decision variable variations in each iteration of both simulations,
and then computes improvement steps based on the usual SPSA finite difference scheme. The intuitive reason why
the algorithm of Bhatnagar et al. (2013) converges is that the simulation responses are additionally smoothed over
the iterations at a rate that is higher than the rate at which the search step size goes to zero, meaning that the simulator
responses eventually appear stationary (converged) from the search algorithm’s perspective. Interestingly, this particular
method appears to have never been tried out in the transport optimization community, despite of its extensive use of
SPSA.

• Rested multi-arm bandits (e.g. Tekin and Liu, 2012) provideanother interesting perspective on the problem at hand.
A multi-arm bandit is a gambling machine with two or more armswhere playing a particular arm yields a pay-off
that is drawn from a fixed pay-off distribution assigned to that arm. A rested multi-arm bandit attaches to each arm a
discrete-time Markov process conditional on which the payoff is computed and that advances by one step whenever the
arm is probed. Payoff-maximizing strategies for rested multi-arm-bandits are conceivable approaches to tackle discrete
decision problems subject to simulation constraints that apparently have not yet received attention in the transportation
community.

Methodology

The proposed approach looks as follows. Consider the simulation transition

∆xk = (f[xk, u] + ε
k) − xk (4)

that describes the simulation’s movement vector in state space in iterationk. Note that convergence of the simulation in the
above sense is equivalent to

E{∆x} = 0. (5)

Now allow the decision variablesuk to change in every iteration. In iterationk, consider the lastM transitions
(

xk−i, uk−i, ∆xk−i
)

, i = 0 . . .M − 1. (6)

Based on this information, solve the problem

min
α
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∥

∥

∥

M−1∑

i=0

αi∆xk−i

∥

∥

∥

∥

∥
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2

+ r

M−1∑

i=0

α2

i (7)

s.t.
M−1∑

i=0

αi = 1; ∀i : αi ≥ 0, (8)

which, essentially, aims at identifying a minimum-norm convex combination of the lastM state transitions. (The second
term, which is necessary to guarantee both a unique solutionto the problem and certain asymptotic properties of the overall
algorithm, may for now be ignored by lettingr = 0.)

The usefulness of (7), (8) becomes clear when pretending thesimulator was linear and, for the sake of presentational simplicity,
deterministic:

xk+1 = Axk + Buk (9)

with A andB being matrices of suitable dimension. Finding anα that exactly solves

M−1∑

i=0

αi∆xk−i = 0 (10)
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then allows to write

x̃k = Ax̃k + B

(

M−1∑

i=0

αiuk−i

)

(11)

with

x̃k =

M−1∑

i=0

αixk−i. (12)

Thich results from (i) pre-multiplying (9) withαi, (ii) summing over alli = 0 . . .M − 1, and (iii) inserting (10). Noting that
the convex combination

∑M−1

i=0
αiuk−i is the expected value of a bootstrap distributionα of theM last decision variables,

one hence can conclude that re-samplinguk−i with probabilityαi in future iterations will make the simulation converge to
a stationary state distribution with known expected valuex̃k. That is, one can predict a surrogate simulator solution without
having to run the simulator to convergence.

A convex combination of intermediate solution points is also at the core of the algorithm of Frank and Wolfe (1956). The
purpose, however, is different: Frank and Wolfe (1956) solve a real-valued convex optimization problem, whereas here the
convex combination is used to construct a stationary point of a hypothetical stochastic process. A number of further steps are
needed in order to exploit this intermediate result in a solution to the optimization problem at hand.

• Means to evaluate and process (an approximation of) the huge-dimensional state vector are needed. A method that
appears to function well in preliminary experiments is to use instead the network flows of one or several previous
iterations. The subsequently reported result is based on this approximation.

• There needs to be a computational benefit in resorting to an approximate surrogate simulator solution. This is the case.
For illustration, consider the following figure, which is based on an optimization problem with two real-valued decision
variables subject to a multi-agent simulation of the City ofZurich. (Details are omitted due to space restrictions.)
It shows the objective function value (7), which can be interpreted as an equilibrium gap function, over simulation
iterations, with “naive average” corresponding to allαs set to1/M and “surrogate solution” referring to theαs resulting
from minimizing that function.

• Asymptotic convergence of the surrogate simulator solution to the true simulator solution needs to be established. There
are several ways to go about this; one is to gradually increase ther coefficient in (7), another one is to gradually reduce
the variability of the trial decision variables.

It remains to combine these elements into a concrete algorithm. A blueprint of one iteration looks as follows:

1. Create a trial decision variable. For instance, drawn from some problem-specific proposal distribution.

2. Advance the simulator by one iteration using this decision variable and compute the new surrogate simulator solution.

3. Accept the trial decision variable if the objective function value of the trial surrogate simulator solution constitutes an
improvement, otherwise discard this trial.

4. Ensure that the surrogate simulator solution of the next iteration is closer to the real simulator solution than before.

The practical importance of using a surrogate simulator solution when evaluating a trial decision variable with only a single
simulator transition is that the surrogate solution is (approximately) instantaneously equilibrated, whereas the original simu-
lator is not. This (approximately) removes the path-dependence of the original simulation process that otherwise renders the
current simulator state not representative for its equilibrated state.

Several concrete instances of this algorithm are currentlybeing explored and tested; results will be presentable by the time of
the conference.
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