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The Deterministic and Stochastic User Equilibrium (DUE and SUE) have limitations by allowing only
minimum cost routes to be used in the DUE and requiring all routes to be used in SUE. The Restricted SUE
(RSUE) was proposed to remove these limitations and facilitate large-scale application. The RSUE use
random utility maximisation models for flow allocation among equilibrated non-universal choice sets.
However, unattractive paths may be used at equilibrium which poses behavioural and computational
challenges for large-scale applications. We address this issue by proposing a generalisation of the RSUE,
which adds a behaviourally realistic ‘threshold’ condition that the cost on used paths needs to fulfil. A
corresponding generic solution algorithm is proposed and several variants of this tested on the large-scale
Zealand network. These showed very attractive computation times to equilibrated solutions and that the
modification supports an improvement in behavioural realism, especially for high-congestion cases. We
validated the choice set composition on aggregate as well as disaggregate level by comparisons to 16,618
observed route choices.

Introduction

The Deterministic User Equilibrium (DUE, Wardrop, 1952) and the Stochastic User Equilibrium (SUE,
Daganzo and Sheffi, 1977) have limitations by allowing only minimum cost routes to be used in the DUE and
requiring all routes to be used in SUE. To overcome these limitations and facilitate large-scale application,
Watling et al. (2015) and Rasmussen et al. (2015) introduced the Restricted Stochastic User Equilibrium
(RSUE) model framework and proposed a solution method. The RSUE model uses well-known random
utility maximisation (RUM) models for flow allocation among equilibrated non-universal choice sets, and it
was formulated to allow for a non-universal choice set by implicitly posing a condition on the costs on
unused paths.

While ensuring that no attractive paths are left unused, the RSUE model does not hinder the use of
unattractive paths at equilibrium. This is exemplified by Figure 1 and Figure 2, which illustrate the relative
generalised costs, at equilibrium, between each used route and the cheapest used route for the
corresponding choice set for the application of the MNL RSUE(min) and RSUE(max) on the Sioux Falls
network (downloaded from Bar-Gera, 2013).

Some used routes, though not very much used, have a considerably higher generalised cost (e.g., 100-200%
higher) than the cheapest route for the corresponding OD movement. This does not seem behaviourally
justifiable, and we believe that this arises from the fact that the conditions only pose a cost restriction on
unused routes and not on the used routes. In other words, there are no conditions ensuring reasonability of
the used routes, and there is no possibility to specify whether a small or large set of used routes is generally



preferred. It is thus not an algorithmic problem only, but rather seems to stem from the lack of a
mechanism in the underlying equilibrium conditions.
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Figure 1 — Number of observations as a function of the ratio between the cost of a used route and the cost of the
cheapest used route in the choice set for the MNL RSUE(min) application, Sioux Falls network. Grouped by the
cost of the cheapest used route in the choice set
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Figure 2 — Number of observations as a function of the ratio between the cost of a used route and the cost of the
cheapest used route in the choice set for the MNL RSUE(max) application, Sioux Falls network. Grouped by the
cost of the cheapest used route in the choice set



In this paper we aim to address this issue and allow only attractive paths being used through the
formulation of a generalisation of the RSUE model, namely the Restricted Stochastic User Equilibrium with
Threshold (RSUET) model. The RSUET has built-in rules providing aid for the solution algorithms to utilise in
the exclusion of paths, ensuring that a RSUET flow solution is an equilibrated solution on equilibrated
choice sets consisting only of the attractive paths. We propose a corresponding consistent solution
algorithm to the RSUET model. We apply several of its variants s to the large-scale Zealand area network,
and validate the results using observed link flows and GPS data.

Model formulation
Consider a network as a directed graph consisting of A links, indexed a=1, 2, ..., A with flow f, and
generalised cost function t,(f) on link a. f denotes the A dimensional vector of link flows. Let there be M
origin-destination (OD) pairs, indexed m=1, 2, ..., M. Let d,, refer to the demand for OD-pair m. Let R,
denote the index set of all simple paths (without cycles) between the origin and destination of OD-pair m,
and let x,,,, and c,,(x) be the flow and cost on route r for OD-pair m. x and ¢(x) denotes the vector of route
flows and generalised route travel cost functions, respectively. Let the random utility U,,, for each route:
u,=-0-c,(x)+<&, (reR,;m=12,.,M) (1)

where E_,:{§W:reRm,m:1,2,...,M} are random variables following some given joint probability

distribution, and & > 0 is a given parameter. Let Iém be any non-empty subset of R and we define the

‘conditional’ probability (assuming continuous, unbounded error distributions {&, :re R, ,m=12,..,M}):
P, (c(x)|R,)=Pr(-6-c, (x)+&, 2-0-c, (x)+&,,VseR,) (reR,cR,im=12,.,M) (2)

Definition: Restricted Stochastic User Equilibrium with Threshold (RSUET( © ,())

The route flow x € G is a RSUET(®,Q) if and only if for allr € R,and m = 1,2,...,M:
x,>0 = reR, A x,=d, P, (c(x)|]§m) A e, (x)< Q({cms (x):ise Rm};gm) (3)
x,=0 = reR, A ¢, (x)> CD({cm (x):se 1~2m};1)m) (4)

where CD(cRm,Rm) is formulated as in the RSUE and specifies, dependent on the cost on used paths, a
‘reference cost’ to be fulfilled by unused paths.

The function Q({cms(x):seﬁm};gm) is exogenously defined and specifies one threshold value (internal

reference cost) per OD movement. This value is @ maximum cost that any used path can have for the OD
movement, and ensures that no unattractive paths are used at equilibrium. In the definition above, the Q-
function is specified in a way that enables it to be formulated in numerous different ways. This could e.g. be
an absolute non-negative threshold, a relative threshold relative to the minimum cost used route, or a
combination of the above. In the application to the large-scale network we consider the following threshold
function:

Q({cms(x):s eﬁm};rm) =7, -min{cms (x):s eﬁm}

where 7,>1. The choice of the thresholds in Q) causes these to have more or less influence on the
solutions. We can either choose to have relatively low computational costs with relatively few used routes
(and therefore a strong effect of the threshold), or to enable the inclusion of more used routes (and less



effect of the threshold) at a higher computational cost. On the one hand, when choosing a higher threshold
the parameter assumes not so much a behavioural connotation as much as a way of controlling the
computation time of the algorithm by allowing to drop routes that become highly costly (and little used).
On the other hand, when choosing a lower threshold, the parameter assumes more behavioural weight,
since a low value will cause the exclusion of some routes with moderate cost (threshold will decide that
these are unlikely to be used).

Solution methods

A corresponding class of path-based solution algorithms are proposed to solve for solutions fulfilling the
RSUET( @ ,Q) solutions. The algorithm is an extension of the RSUE solution algorithm proposed in
Rasmussen et al. (2015), modified to ensure that the cost-threshold is fulfilled among used paths at
equilibrium. An additional step is added that checks for the fulfilment of the additional cost threshold and
removes violating routes, if relevant. An iteration of the proposed solution algorithm consists of 4 steps,
namely the Column generation phase, the Restricted master problem phase, the Network loading phase and
the Threshold condition phase.



Algorithm

Step 0 Initialisation. lteration n=1. Perform deterministic all-or-nothing assignment for all m=1, 2,...,
M OD-pairs and obtain the flow vector for all utilised paths X, .
Perform network loading, compute link travel costs ¢, (fn) on all network links a € 4, and
compute generalised path travel costs ¢, (X, ). Set n=2.

Step 1 Column generation phase. Let k, ,.; denote the current number of unique paths in the choice
set of used paths for OD-pair m=1, 2,..., M in iteration n-1.
For RSUET(min, Q): For RSUET(®, Q): For RSUET(max, Q):
For each origin, perform |For each OD-pair m=1, 2,..., M, Perform ki, ,.; - shortest path
a shortest path search  |based on actual link travel costs search for each OD-pair
to all destinations based |7, (fH) , check for a new route to m=1, 2,..., M based on actual
on actual link travel add to the choice set ]?m,n by link travel costs £, (fn—l) '
costst, (f, ) . If for any applying some path generation If for any OD-pair m=1, 2,...,
OD-pairm=1, 2,..., M a method which supports the M a new unique path ris
new unique path ris fulfilment of the O criterion. If for generated among the k
generated, add it to the any OD- pair m=1, 2,..., M a new generated paths, add it to
choice set with flow unique path r is generated, add it to the choice set with flow
Xyt =0- the choice set with flow x,  , =0;if | *mrn-1 =0; if several new

several routes are possible, add only unique paths are possible,
the shortest one. add only the shortest one.

Step 2 Restricted master problem phase. Given the choice sets I?nm forall m=1, 2,..., M, apply the
selected inner assignment component and averaging scheme to find the new flow solution X,,.

Step 3 Network loading phase. Perform the network loading to obtain f,from X,. Compute the link
travel costs ¢, (f”), the generalised path travel costs C(Xn) and (if relevant/included) the
path-size factors.

Step 4 Threshold condition phase. Given the choice sets R, , for all m=1, 2,..., M, check whether the
threshold condition c,, (Xn) <OQfcms(x) : s € ﬁm }; Gm ) is violated for any r € ém,n form=1,
2,..., M. Remove relevant routes (maximum 1 route per OD-pair), redistribute the flow on
routes removed among the remaining routes in the respective choice sets. If no routes have
been removed for any of the M OD-pairs, continue. Else, perform the network loading,
compute the link travel costs 7, (f, ), the generalised path travel costs C(X,) and (if
relevant/included) the path-size factors.

Step 5 Convergence evaluation phase. If the gap measure consisting of the sum of Rel. Gapf’“h' and

Rel Gap”******* is below a pre-specified threshold &, Stop®. Else, set n=n+1 and return to

n

Step 1.

! See Rasmussen et al. (2015) for the computation of the two gap measures




Please note that the path flow vector is denoted by X rather than x, in order to emphasise that in practical
implementations it is not possible/practical to operate with the vector x, as this requires enumerating the
universal choice set for all OD-pairs to obtain the dimension of the x vector. Rather, in practical
implementations, the dimension of the flow vector is not pre-specified, but it is allowed to increase as the
algorithm progresses. The same occurs for the path cost vector c(x), which we have denoted C(X) to
highlight that this might grow as the algorithm progresses. The elements x,, and c,, thus refer to the
elements of the vectors X and C, respectively.

The application of the RSUET considers the following Threshold condition phase. In this specification the
flow on routes to be removed are redistributed among remaining routes according to the flow proportion
on these.

Step 4.0 | Set m=1

Step 4.1 | For each route r in the choice set R, check whether the threshold condition ¢, (Xn ) < OQ{cms(x) :

se Rm }; ¢ ) is violated. If any route r violates this condition, flag the route that violates the

threshold condition the most.

Step 4.2 | If no route is flagged by Step 4.1 and if m<M, set m=m+1 and return to Step 4.1. If no routes are
flagged by Step 4.1 and if m=M, continue to Step 4.3. If a route r is flagged by Step 4.1, remove the
route from the choice set and redistribute flow x,,,, among the remaining currently-used routes s

ms,n

according to the following: x  =x  +x

ms,n ms,n mr,n

7 . If m<M, set m=m+1 and return to Step
m _xmr,n

4.1. If m=M, continue.

Step 4.3 | If no routes have been removed for any of the M OD-pairs, continue. Else, perform the network
loading, compute the link travel costs ¢, (fn), the generalised path travel costs C(Xn) and (if

relevant/included) the path-size factors.

Application

We performed numerical tests on the large-scale Zealand network. Approximately 2.5 million people live in
the area covering 9200 km?, and the digitised road network representation consists of 12,015 links and 429
zones. The demand matrix applied covered a 24 hour period and contained a total of 3.2 million trips across
19 different user classes and two vehicle types (car and lorry) to be assigned to the road network (1.6
million OD relations)®. The study area consists of urban as well as rural areas, and the congestion level is
spatially distributed as well as distributed across road type classifications.

Several variants of the implemented algorithm were tested on different configurations of the network
demand. All applications focused on the RSUET(min, t-min) using the method of successive weighted
averages with parameter d (Liu et al., 2009) and the closed-form probability expression in the Restricted
Master Problem Phase (as found to perform well for the RSUE(min) in Rasmussen et al. (2015)). The
multinomial logit (MNL) as well as the path-size logit (PSL) choice models were evaluated.

2 The Zealand network is a subset of the network to be used in the Danish National Model, currently under development
at DTU Transport.




The solution algorithm is attractive as it does not require simulation, which has also the benefit of limiting
the number of model parameters. In the following, we treat the three model parameters 7, d and 6 in a
subsequent manner. Then, we analyse the effect of correcting for path overlapping and give an example of
the effect of adding the threshold condition on the composition of the equilibrium choice sets. Last, we
present an analysis of the robustness towards the congestion level in the network. Note that the
convergence can be consistently evaluated using the two-part convergence measure proposed for the
RSUE(min) in Rasmussen et al. (2015).

Threshold condition

The threshold value t is not determined from an optimisation routine, but rather from insights learned
from analysing the choice of non-optimal paths in real-life observed route choices. Moreover, the threshold
value was defined based on a comparison between costs on observed paths and costs on the
corresponding minimum cost path. Figure3 illustrates the cumulative share of observations as a function of
the ratio between the cost on the observed path (path obtained from GPS data) and the cost on the
minimum cost path between the corresponding locations. The observed paths were constituted by the
16,618 routes obtained from the GPS data. The cheapest path was found by, for each GPS trip, performing
a shortest-path search in the congested network, between the origin and destination of the corresponding
GPS trip. It is e.g. seen that 71% of the observed paths were less than 5% longer than the corresponding
optimal path.
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Figure 3 — Cumulative share of observations as a function of the ratio between the cost on the observed path r and the
cost on the corresponding minimum cost path c,. pin (X)

The distribution of the ‘non-optimality’ of the observed routes is assumed to be representative of how
(relatively) expensive paths have to be in order for the travellers not to consider and use them. We
specified the threshold based on this: using a 95% interval induces a choice of t=1.2 (i.e. the relative cost on
95% of all observed paths is within this threshold), which has then been used in the remainder of the paper.



Step-size strategy

If the model parameters T and 8 are kept constant (=1.2, 8=0.2), the convergence measures can be directly
compared across d-values for the RSUET. Figure 4 and Figure 5 illustrate the convergence pattern of the
MNL RSUET(min, 1.2:min) for different step-size strategies.
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Figure 4 — Relative gap measure for convergence of choice set composition as function of computation time, Zealand
application. MNL RSUET(min, 1.2-min) for various values of step-size parameter d as well as the MNL
RSUE(min) with d=4. All with 0=0.2. Notice the log-scale on the vertical axis



Distribution of flow
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Figure 5 — Relative gap measure for convergence of flow distribution among routes in the choice set as a function of
computation time, Zealand application. MNL RSUET(min, 1.2-min) for various values of step-size parameter d
as well as the MNL RSUET(min) with d=4. All with 6=0.2. Notice the log-scale on the vertical axis

The choice set composition converged fast for all step-sizes, however with d=0 (MSA) being somewhat
slower. Also the distribution of the flow among the paths in the choice set converged to a stable low level
of approximately 1.0-3.5-107, except for low values of d (d=0 and d=2) which were far from reaching this
level at termination. Using d=4 caused the fastest convergence, as the final choice sets were generated
within less than 30 minutes and the flow distribution converged within 35-40 minutes of calculation time.
Consequently, the analyses presented in the remainder of the paper have been done using d=4.

The relative gap associated with the distribution of flow among paths did not seem to converge to zero, but
rather stabilised at approximately 1-3.5-10”. This number is very low, and we do not see this stabilisation to
a non-zero value as an indication of the algorithm not converging, but rather an issue arising due to the
limitations of the computer used; the relative gap is computed using exponential functions of the costs,
which causes very small deviations to be amplified into large numbers. We performed a disaggregate
analysis of the changes in flow and costs on routes between iterations when d=4. This showed that the
average/maximum change in absolute cost and flow on the paths across all OD movements is a very low
2.9:10™/2.3-10™ for cost and 6.2:10"?/1.0-10°° for flow. These numbers are at the limit of the C# software,
and we expect the non-zero gap measure to be a consequence hereof.



Scale parameter

Several different values of the scale parameter were tested, with each application using the same value
across all OD movements, i.e. 6,,=0 for m=1,2,...,M. The relative gap measures were used to verify that all
tests converged within reasonable computation time, and extremely fast and well-behaved convergence
were seen. The convergence measures can however not be compared across applications, as the scale
parameter influences the relative gap measure. We therefore performed a series of alternative analyses to
evaluate the performance of the solution algorithm for different values of the scale parameter. This also
facilitated the comparison to the link-based multinomial probit (MNP) SUE and mixed MNP SUE solution
methods.

1,169 observed link counts were available, and these were distributed throughout the case-study area.
Figure 6 reports coefficient of determination (R’) between the modelled and observed link counts. In
general, very high correspondence was observed (all R’20. 942), demonstrating that the RSUE/RSUET
applications are successful in distributing the flow in a way that matches the observed counts. The best
performance was obtained when using 8=0.2. While the mixed MNP SUE performed better than the MNP
SUE, it is prevailing that both MNP SUE applications performed slightly worse than all RSUE/RSUET
applications in reproducing link counts.
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Figure 6 — Correspondence between modelled and observed link flows for various RSUE and RSUET configurations as
well as the MNP SUE and mixed MNP SUE. Iteration 100, Zealand application



Moving to a disaggregate level, the solution algorithms should also be able to reproduce rational real-life
route choices. We evaluated their ability to do so by comparing with the 16,618 observed route choices
collected via GPS, under the hypothesis that the observed routes should be represented in the
corresponding choice sets generated. The coverage measure captures this, and Table 1 reports
characteristics of the solution generated, including the coverage obtained at iterations 25 and 100 when
using a 80% overlap threshold. In general, high coverage levels were produced for all values of the
parameter 0. It can be seen that adding the threshold on the relative costs does not seem to reduce the
coverage for any of the chosen values of 0. This indicates that the paths removed by the threshold
condition are in general non-relevant. Furthermore, the coverage seems to increase with an increase of the
scale parameter, a phenomenon probably related to the larger fluctuations in flow in the initial iterations
caused by the larger scale parameter; more weight is put on differences in costs (closer to DUE), leading to
more ‘extreme’ auxiliary flows and thereby also larger fluctuations. These fluctuations cause more routes
to be generated (seen through larger average choice set sizes) but also more routes to violate the threshold
at equilibrium (and thus be removed, see Table 1).

Table 1 — Coverage, choice set size, efficiency index and number of routes removed (when relevant) for various scale
parameters in MNL RSUET(min, 1.2-min) and the MNL RSUE(min). The relevant measures are also reported
for the MNP SUFE and the mixed MNP SUE. Zealand application

Coverage, A=0.8 Choice set size
Excluded paths
Ite 25 Ite 100 | Min. Avg. Max.
RSUE 0.8431| 0.8431 1 2.364 10 -
6=0.05
RSUET 0.8431 0.8431 1 2.367 10 1165
e RSUE 0.8452| 0.8452 1 2.484 10 -
e RSUET 0.8452| 0.8452 1 2.484 10 1180
_— RSUE 0.8487 0.8487 1 2.696 13 -
e RSUET 0.8487 0.8487 1 2.695 12 1989
s RSUE 0.8535| 0.8535 1 2.968 14 -
e RSUET 0.8535| 0.8535 1 2.967 13 3784
S RSUE 0.8548 | 0.8548 1 3.059 13 -
- RSUET 0.8548 | 0.8548 1 3.057 13 4640
MNP SUE 0.8959 0.8959 1| 14.894 100 -
mixed MNP SUE 0.8959 0.8959 1| 25.365 100 -

The MNP SUE and mixed MNP SUE produced coverage levels which were considerably better than those of
the RSUE and RSUET applications. This was however at the cost of generating large choice sets, which
continued to grow without any clear tendency towards stabilisation. The RSUE and RSUET on the other
hand produce choice sets having a very computationally reasonable size, and which are equilibrated. The
equilibrated choice sets were generated within a few iterations, which is also indicated by non-changing
coverage from iteration 25 to iteration 100 (Table 1). The flow distribution also converged within a few
iterations, highlighting that there is no need to perform many iterations to obtain an equilibrated
RSUE/RSUET solution.



Path overlap correction

Our tests also consisted of a comparison between the MNL and the PSL choice models. Similar results were
seen with the two choice models, however with a more reasonable distribution of flow across used paths
for the PSL (as anticipated) and comparable computation times. However, the PSL application have a higher
per-iteration calculation time in the initial iterations due to the need for recalculation of the path-size
correction terms when new paths are introduced into the choice sets (Figure 7).
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Figure 7 — Computation time per iterations for the MNL as well as PSL RSUET(min, 1.2-min) with d=0 and d=4.
Zealand application

Example of route exclusion, threshold condition

1,989 unique routes were removed by the threshold condition when using t=1.2, d=4 and the MNL choice
model with 9=0.2. Note, however, that the same unique path may have been generated and subsequently
excluded several times during the iterations of the solution algorithm. This section presents an example of
an OD movement (commercial business trip undertaken in van), for which a previously generated route was
removed by the threshold condition at equilibrium.

Figure 8 illustrates the four unique routes generated (each of these has been the most attractive at some
iteration), and Table 2 reports the corresponding equilibrium cost components, generalised cost and route
flow share on each of these. All 4 routes were however not included in the equilibrated choice set, as flow
was only distributed among paths 1, 2 and 4. Comparing the generalised costs, we see that Path 3 is
considerably more expensive than the others. Accordingly, since this path is 32% more expensive than the
cheapest path, the threshold condition removed it from the final choice set. We have verified that the flow
distribution among the three remaining paths constitutes a MNL flow solution, and that the relative costs
of these are below the threshold.
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Figure 8 — Example of excluded route. 4 paths generated, but 3 utilised at convergence. MNL RSUET(min, 1.2-min),
Zealand application

Table 2 — Specification of cost components, generalised costs, relative costs as well as flows at equilibrium. MNL
RSUET(min, 1.2'min), Zealand application. l},, tpeerr, 1 and tcongrr, 1 vefer to the length, free-flow travel time and
congested travel time of route r, respectively. c;(X) and c; ,i.(X) refer to the cost on route r and the minimum
cost across the used routes, respectively

Path | Category ID | I [kKM] | trreerr, 1(X) [MIN] | tcongrr, 1/(X) [MIN] | c1(X) | c1n(X)/Crmin(X) | Flow [%]
1 6 13.80 12.85 16.39| 81.40 1.01 32.23
2 6 13.61 13.42 15.40| 81.82 1.02 29.64
3 6 18.02 17.09 20.24| 106.07 1.32 -
4 6 14.43 13.64 16.44| 80.56 1.00 38.13

Stability to congestion level

We have applied the tested variant of the proposed solution algorithm with d=4 and 6=0.2 to a variety of
scaled versions of the original demand matrices (the scale-factors tested are 1.25, 1.5, 1.75 and 2.0). This
was done to test the robustness towards the general congestion level in the network.

There was a clear tendency for slower convergence as the demand increased, both in terms of number of
iterations needed as well as calculation time (Figure 9-10). However, a nice convergence pattern was seen
for all the tested levels of demand. The travel times in the network fluctuated more in the initial iterations




and caused larger choice sets to be generated. The higher fluctuations and travel time differences in the
network also caused the distribution of flow among paths to require more iterations to converge for
increasing demand levels, but even the highest congestion case converged nicely once the final choice sets
were generated. The larger choice sets caused an increase in the calculation time per iteration to also
increase, and the average calculation time per iteration was approximately 90/105/130/145/180 seconds
for scale-parameter 1.0/1.25/1.5/1.75/2.0, respectively.

Choice set composition
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Figure 9 — Development of relative gap measuring convergence of the choice sets for various values of the factor
scaling the demand, MNL RSUET(min, 1.2-min) with d=4, Zealand application



Distribution of flow
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Figure 10 — Development of relative gap measuring convergence of the distribution of flow between paths for various
‘scaled’ demands, MNL RSUET (min, 1.2-min) with d=4, Zealand application

Conclusions

The paper tackles the challenge of obtaining equilibrated RUM flow solutions among choice sets which do
not leave attractive paths unused and contain only attractive paths. The RSUE only partially obtains this; no
attractive paths are left unused, but some unattractive paths may be used at equilibrium. We overcome
this problem by proposing the RSUET (RSUE with Threshold), as an extension to the RSUE. The extension
adds a behaviourally realistic threshold condition that must be fulfilled by the costs on used routes. This
ensures that only attractive paths fulfilling the cost threshold are kept in the choice set and thus are
assigned traffic. We have demonstrated that the modification supports an improvement of the behavioural
realism in disaggregate large-scale applications, especially for high-congestion cases. We proposed a
corresponding generic solution algorithm and verified several variants of this in different parameter
settings in a highly complex network. The algorithm converged extremely fast to an equilibrated solution
satisfying the underlying conditions (across different scale parameters, step-size strategies, and congestion
levels).
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