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The aim of this paper is to remove the known limitations of Deterministic and Stochastic User Equilibrium
(DUE and SUE), namely that only routes with the minimum cost are used in DUE, and that all permitted
routes are used in SUE regardless of their costs. We achieve this by combining the advantages of the two
principles, namely the definition of unused routes in DUE and mis-perception in SUE, such that the resulting
choice sets of used routes are equilibrated. A family of models is formulated to address this issue, which
allows the combination of the unused routes with the use of well-known random utility models for used
routes, without the need to pre-specify the choice set. We explore properties of different model
specifications and present a corresponding generic path-based solution algorithm. Numerical results are
also reported of the application of alternative specifications to two real-life cases, in which we explore
convergence patterns and choice set composition and size.

Introduction

The Stochastic User Equilibrium (SUE, Daganzo and Sheffi, 1977) in connection with the most commonly
applied Random Utility Models (RUM) induces (as remarked by Damberg et al., 1996) ‘that of every route
receiving a positive flow in the equilibrium state, regardless of its travel cost’. While only considering actual
minimum cost routes as in the (deterministic) User Equilibrium (DUE, Wardrop, 1952) seems difficult to
justify, moving to a case where all possible routes are used seems equally questionable. The need for full
route enumeration has also a computational consequence for practical applications, as at least in principle
any SUE algorithm has the aim to consider all such routes. This is not feasible even for medium-sized
networks, and as a consequence, in practical implementations, an SUE using all available paths is typically
not found. Instead, the issue of deciding which routes to consider, whether generated implicitly while
iterating towards network equilibrium or explicitly prior to this, is left for the solution algorithm without the
aid of any explicit criterion within the model formulation. As a consequence, the algorithmic heuristics
implicitly determine the choice set and hence influence the choice probabilities in a way that it not
explicitly stated in the base model or even fully understood by the modeller. An example is the solution of a
multinomial probit SUE (Sheffi, 1985) with sampling, where paths are added with low probabilities,
however, where new paths are added with some probabilities even when the solution algorithm is run with
a number of iterations approaching infinity (or a number that is beyond practical applications).

The paper proposes a model which tackle the challenges of removing the known limitations of the DUE and
SUE, namely that only routes with the minimum cost are used in DUE, and that all permitted routes are
used in SUE regardless of their costs. The paper then moves on to propose consistent and applicable
solution methods to the new model. Lastly, the applicability and reasonability of the solutions are
demonstrated through applications to the Sioux Falls as well as the large-scale Zealand networks.



Model formulation

A model family is presented that combines the advantages of the two principles of DUE and SUE, namely
the definition of unused routes in DUE and mis-perception in SUE, such that the resulting choice sets of
used routes are equilibrated: a Restricted SUE model with an additional constraint that must be satisfied
for unused paths (Watling et al., 2015). The overall advantage of this consists in its ability to combine the
unused routes with the use of well-known random utility models for used routes, without the need to pre-
specify the choice set.

Consider a network as a directed graph consisting of A links, indexed a=1, 2, .., A with flow f, and
generalised cost function t,(f) on link a. f denotes the A dimensional vector of link flows. Let there be M
origin-destination (OD) pairs, indexed m=1, 2, ..., M. Let d,, refer to the demand for OD-pair m. Let R,,
denote the index set of all simple paths (without cycles) between the origin and destination of OD-pair m,
and let x,,, and c,,/(x) be the flow and cost on route r for OD-pair m. x and c¢(x) denotes vector of route flows
and generalised route travel cost functions. Let the random utility U, for each route:

U, =-0-c,x)+&, (reR,;m=12,..,M) (1)
where §={§mr:reRm,m=1,2,...,M} are random variables following some given joint probability

distribution, and € > 0 is a given parameter.

Let ﬁm be any non-empty subset of R and we define the ‘conditional’ probability (assuming continuous,

unbounded error distributions {fmr reR,,m=12,..,.M } ):

P (c®)|R,) =Pr(=0-¢, (x) + &, 2-0-C, (x) + &, VseR,) (reR, cR;im=12,..,M)(2)

We define the ® -Restricted Stochastic User Equilibrium model:

Definition 1: ® -Restricted Stochastic User Equilibrium (RSUE( @ ))
Suppose that we are given a collection of continuous, unbounded random variables

{fmr ‘reR,,m=12,..,.M } defined over the whole choice set R ,, and that for any non-empty subsets Iim of
R, (m = 1,2,..,M), probability relations Pmr(c| Iim) are given Iim by considering the relevant marginal joint
distributions from {tfmr ‘reR,,m=12,...,.M } . The route flow x € G is a RSUE(®) if and only if for all r € R,
and m=1,2,...,M:

X >0 = reR. A x,=d, P, (c(x)|R,) (3)

X =0 = reR, A Cu(x)20({c(x):seR,}) (4)

The RSUE(®) consists of two conditions, one concerning the utilised paths and the distribution of flow
among these and one concerning non-utilised paths. The first condition allows the distribution of flow
according to RUM among the paths in the restricted choice set. Thereby one of the limitations of the DUE is
avoided by allowing flow to be distributed to non-minimum cost paths. In comparison with the SUE model,
condition (3) in the above overcomes one of the main limitations, in that the flow allocation mechanism
may only apply to a sub-network of the paths available. This is also true of SUE models applied to a pre-
defined Master Choice set, but the key difference in Definition 1 is that, at equilibrium, condition (4) must
be simultaneously satisfied alongside condition (3). That is, given that perceived utility is an affine function
of travel cost plus random errors, the two conditions above must be consistently satisfied, at the same



travel cost levels. Thus, they do indeed yield an alternative mechanism for defining equilibrated, non-
universal choice sets in an SUE framework. The function @ specifies a reference cost to be fulfilled by the
cost on unused paths and thereby poses the distinction between used and unused paths. Since there exist
several alternative, plausible ways for defining the reference costs, Definition 1 defines a class of conditions
that is as wide as the ways in which the relationship ® may be defined.

It should be noted that, in the RSUE definition, we consider only RUM models with continuous and
unbounded error distributions. Under such an assumption all alternatives in the RUM (in this case, those in

Iim) will have a non-zero probability of being chosen. Thus, condition (4) will never be relevant for a path

that is subject to the RUM, i.e. in Iim, since such a path will always attract a positive flow. This makes the

separation of used/unused paths coincide with the separation of those paths subject to the RUM and not
subject to it.

A final remark is on the relation of the RSUE(® ) model to conventional notions of equilibrium in networks.
The RSUE(® ) model does not contain DUE as a special case, in spite of the similarities in the specification
of RSUE(® ) and DUE. This is due to the fact that we restrict the attention in RSUE(® ) to choice models
which have continuous random utilities on the used paths, and thus the probability of two paths being
exactly equal in terms of perceived utility is zero, whatever continuous distribution is adopted for the error
terms. RSUE(® ) does, however, contain SUE as a special case (regardless of the specification of @ ). This
may be seen by setting Iim =R, in the RSUE definition, meaning that there are no paths for which

condition (4) is tested, and condition (3) is simply an SUE condition on the universal choice set. This is true
for any problem, and therefore we can guarantee existence of at least one RSUE( @ ) solution by exactly the
same conditions as those that guarantee existence of a SUE solution (e.g., Cantarella, 1997).

Instances of RSUE( ® )models
A key question that appears is the definition of @. Since in condition (4) the actual travel cost on an unused
alternative must be compared with the actual travel costs on used alternatives, and since these unused
alternatives are not subject to the random utility specification, it seems reasonable that ® must map to
something that makes sense in terms of the actual travel costs (rather than the randomly perceived
utilities). Thus, while it might seem a possibility, it is not so sensible that @ is a satisfaction function
(expected maximum perceived utility, such as logsum for multinomial logit) over the used alternatives, as
then we are in the ‘scale’ of perceived utility as opposed to actual travel cost. An alternative, then, might be
to define ® as the average or median travel cost of the used alternatives, but there are surely many
possibilities that might be explored. In our case, we focus on two example possibilities (without wishing to
rule out others), each seemingly having its own attractive features.

The two particular examples are the RSUE(min) model, obtained by defining for any non-empty set B:

®(B)=min{b:beB} (5)
and the RSUE(max) model, obtained by defining:
®(B) =max{b:beBj . (6)

An attractive property of the RSUE(min) model is that it leads in the direction of a computationally tractable
method: a candidate flow pattern can easily be verified using some standard shortest path algorithm (for
each OD movement) to identify the minimum cost path of any kind on the network. If the cost on this is
(strictly) less than the cost on the currently minimum cost used route (for the corresponding OD-pair), then
condition (4) is not satisfied. However, the RSUE(min) has a disadvantage in that it allows for traffic to be



assigned to paths with actual travel costs greater than the actual travel costs of unused paths. From a
behavioural point of view, one might question the plausibility of this, and in this respect the RSUE(max)
model has an advantage.

The RSUE(max) model requires that no path is unutilised if it has an actual travel cost that is lower than or
equal to the actual travel cost on the longest utilised path. While this seems behaviourally more defensible,
it may lead to a less tractable computational model. Certainly, condition (4) is more difficult to verify from a
computational perspective for the RSUE(max) model than it is for RSUE(min), yet still there are standard
network analysis tools for doing so. In particular, given some path flow allocation and the resulting network
link costs, a standard tool can be used (for each OD movement) to identify the current k shortest paths
(where k is the number of used paths). If there among these exists any currently unused path on which the
cost is (strictly) less than the cost on currently maximum cost used route (for the corresponding OD
movement), then condition (4) is violated. Clearly, the computational effort involved in solving k-shortest
path problems and identifying any unused paths among these is significantly greater than that required for
solving standard shortest path problems, and so verifying that the RSUE(max) conditions are satisfied is
much more demanding than the verification of the RSUE(min) conditions.

Proposition 1
Any RSUE(max) solution is also a RSUE(min) solution. An RSUE(min) solution may not, however, necessarily
fulfil the RSUE(max) conditions.

Proof

Suppose a flow allocation satisfies the RSUE(max) conditions. Then from condition (4) when @ is the max
operator, any unused path must have a travel cost greater than or equal to the maximum cost used path.
By definition, the maximum cost used path must have cost at least as great as the minimum cost used path,
and so condition (4) is also satisfied when instead @ is the min operator. Condition (4) of RSUE(max) is the
same regardless of the choice of ®, and so we have shown that the flow allocation must also satisfy the
RSUE(min) conditions. For the converse situation, suppose that a flow allocation satisfies the RSUE(min)
conditions, and in addition has an unused path which has a cost less than the maximum cost of any used
path. Then the RSUE(max) conditions are violated as illustrated in the following Example 1. [

Example 1

In this example we explore the multiplicity of solutions in a simple example in which we can exhaustively

check the conditions for all non-empty subsets Iim of the universal choice set R . We illustrate that RSUE

solutions do indeed exist with an equilibrated but non-universal choice set and that RSUE(min) solutions
may violate the RSUE(max) conditions.

Consider a network serving an OD demand of d;=100 and consisting of three parallel links/paths, with link
cost functionst, (f) =8+ f, /10; t,(f)=13+ f,/15; t,(f)=15+f,/50,

Suppose that the choice model for used routes is a multinomial logit model with 8= 1. With such a small
network, it is possible to identify all 7 possible choice sets, and for each choice set to find an SUE solution
by some traditional path-based solution method. We may then subsequently check each of these 7
possibilities with respect to the RSUE conditions. Clearly such an exhaustive search of possible choice sets
would be infeasible for large-scale networks, but this example allows investigating the existence and
multiplicity of RSUE solutions. The solutions are shown in Table 1.



Table 1 SUE solutions for all seven possible choice sets.

Choice set (included paths)
{1,2,3} {1} {2} {3} {1,2} {1,3} {2,3}
cost/flow cost/flow cost/flow cost/flow cost/flow cost/flow cost/flow
Path 1 13.9/59.1 18.0/100.0 8.0/0 8.0/0 14.6/66.0 14.9/68.5 8.0/0
Path 2 14.7/26.0 13.0/0 19.7/100.0 13.0/0 15.3/34.0 13.0/0 16.2/47.4
Path 3 15.5/14.8 15.0/0 15.0/0 17.0/100.0 15.0/0 15.6/31.5 16.1/52.6
. YES
RSUE(min) NO NO NO YES NO NO
(=SUE)
YES
RSUE(max) NO NO NO NO NO NO
(=SUE)

For all cases, SUE has been found among utilised paths. This means that the first condition (3) of the
RSUE(min) as well as the RSUE(max) definition is fulfilled in all cases. The second condition is fulfilled if the
actual travel cost of paths not in the choice set is not shorter than the actual travel cost on the shortest
(longest) utilised path for the RSUE(min) (RSUE(max)). Note that this is always fulfilled in the case where all
paths are in the choice set, and the traditional SUE will always be a RSUE solution. From Table 1 we see that
there exist unused paths which are shorter than the shortest (longest) used path for the choice sets {1}, {2},
{3}, {1,3} and {2,3} and these do thus not fulfil the second RSUE(min) (RSUE(max)) condition and do
therefore not constitute RSUE(min) (nor RSUE(max)) solutions. The violation of the RSUE(max) conditions
could have also been realised by using Proposition 1 and the knowledge that the RSUE(min) conditions are
violated.

However, since min{cls(x):Se I'(’l}zmin(14.6,15.3)=14.6 for the configuration with paths 1 and 2 used

(i.e. Iil ={1,2}), and since 15.0>14.6 then the second RSUE(min) condition is fulfilled, consequently giving a

RSUE(min) solution. Assuming instead a max operator for ®, then the second condition (4) requires that
any unused paths have cost at least as great as the maximum cost of a used path (= 15.3 in this case), and
since 15.0 < 15.3 the flow solution where paths 1 and 2 are used is not a RSUE(max) solution.

From this example we can see that RSUE solutions exist with equilibrated but non-universal choice sets,
and that solutions that satisfy RSUE(min) may not satisfy RSUE(max) for a given problem. In the example we
did not find any RSUE(max) solutions using a non-universal choice set. We could however imagine such a
solution by retaining the flow allocation in Table 1 for the choice set {1,2,3} and adding a fourth non-
overlapping route with free-flow travel cost of e.g. 20.



Solution methods
The RSUE seems straightforward to apply, as an extension of existing, calibrated SUE models, especially if
supplemented with some information on routes actually chosen to aid in the determination of the @

operator. We propose a new class of path-based solution algorithms to solve the RSUE, which allows a
flexible specification of how the choice sets are ‘systematically’ grown by considering congestion effects

and how the flows are allocated among routes (Rasmussen et al., 2015).

Algorithm
Step 0 Initialisation. Iteration n=1. Perform deterministic all-or-nothing assignment for all me M
OD-pairs and obtain the flow vector for all utilised paths X, .
Perform network loading, compute link travel costs t, (fn) on all network links ae A, and
compute generalised path travel costs C, (X,). Set n=2.
Step 1 Column generation phase. Let k, ,.; denote the current number of distinct paths in the choice
set of used paths for OD-pair m=1...M in iteration n-1.
For RSUE(min): For RSUE(O®): For RSUE(max):
For each origin, perform a For each OD-pair meM, Perform a ky, ,.;-shortest path
shortest path search to all based on actual link travel | search for each OD-pair
destinations based on actual costs t,(f, ,), check fora | (m=1...M) based on actual link
link travel costst, (f, ;) . If for | new route to add to the travel costs t,(f, ).
any OD-pair m=1...M a new choice set ﬁm’n by If for any OD-pair m=1...M a
distinct path i is generated, applying some path new distinct path i is generated
add it to the choice set R, generation method which | @MON8 the k.., generated
with flow x; ., =0. supports the fulfilment of p~aths, add it to the choice set
the @ operator. If for any Ron with flow x; ., =0; if
OD- pair m=1...M a new several new distinct paths are
distinct path i is generated, add only the
generated, add it to the shortest one.
choice set Iimyn with flow
Xnina =0; if several routes
possible, add only the
shortest one.
Step 2 Restricted master problem phase. Given the choice sets Iim'n for all m=1...M, apply the
selected inner assignment component and averaging scheme to find the new flow solution X,.
Step 3 Network loading phase. Perform the network loading to obtain f,from X,, compute the link
travel costs t, (f,), the generalised path travel costs C(X|,) and (if relevant/included) the
Path Size factors.

The Step 2 allow the use of a wide range of flow allocation methods, here among SUE methods designed for
pre-defined choice sets. We also propose a cost transformation function and show that by using this we
can, for certain Logit-type choice models, modify existing path-based DUE solution methods to fit the RSUE



solution algorithm. The function transforms the original flow dependent cost C_, (x) into an equivalent cost
measure C_, (x), which is used in the equilibration of the DUE solution algorithms:

Cor (X) =X, -€xp(6-C,,, (x)) (7)
where 0 corresponds to the scale parameter used in the logit-formula.

The transformation function also leads to the proposal of a new convergence measure that is applicable to
any RSUE solution algorithm for logit-type choice models:

Used _ ZVmeM Zreﬁm Xnr n '(ﬁmr (x,) - Cm,min (Xn))
n ZVmeM Zreém er,n ' ﬁmr (Xn)

where C i (xn) refers to the minimum transformed cost on routes utilised for OD-pair m. This measure is

Rel.gap (8)

supported by an additional measure capturing how close the costs on the unused route are to fulfilling the
second RSUE condition. For the RSUE(min):

Unused _ ZVmeM dm ) (minVFERmmer >0 (Cmr (Xn)) - minvreRm (Cmr (Xn)))
n ZVmsM dm 'minerRm,meO (Cmr(xn))

Rel.gap (9)

Numerical tests

We have performed numerical tests on the Sioux Falls network as well as the large-scale Zealand network
(5.4 million daily trips), in which we explore convergence patterns and choice set composition and size, for
alternative specifications of the RSUE solution algorithm.

The Sioux Falls application compared several different approaches to allocate flow between routes, and
found that the algorithms, in general, reliably to an RSUE solution within a few iterations. The algorithms
were analysed based on the number of iterations they required, but also importantly (given their different
per-iterations requirements) on computation time. It was seen that the strategy for step-size determination
highly influences the convergence speed, as would be anticipated.

Two promising algorithms were tested for the RSUE(min) on the Zealand network using a multinomial logit
choice model: one utilising the cost transformation function to apply a modified DUE algorithm based on
pairwise path swapping proposed by Carey and Ge (2012) (Path Swap); one utilising the closed-form choice
probabilities directly to find the auxiliary solution (Inner Logit). The algorithms have been implemented in
the Traffic Analyst traffic assignment module for ArcGIS (Rapidis, 2013), and both accommodated the use of
the MNL and the PSL models. In the application we specified 6=0.2 and the step-size constant d=2 (an
initial test comparing d=0 to d=2 found best performance in terms of convergence speed when d=2). The
generalised travel costs were constituted by a weighted sum of free flow travel time, congested travel time,
travel distance, and travel (monetary) cost. Figure 11 illustrates the convergence pattern as a function of
the iteration number for the MNL choice model. Both algorithms converged extremely fast to fulfil the
underlying RSUE conditions and were efficient in generating the choice sets within the first few iterations
(Figure 1).

The converged solution generated was not the same for the two algorithms, as the composition of the
choice sets varied between them (Table 2). In both cases the equilibrated non-universal choice sets were
however reasonable and computationally attractive in size. A high share of the OD-pairs only contain one



or two paths, and an average choice set size of 2.5-3 routes may seem small. However, this should be seen
in light of the network composition; the case-study area includes, in addition to urban areas, large rural
areas in which there is no congestion and only one or two relevant alternatives. An analysis of the spatial
distribution of the choice set size showed that the choice sets generated for trips conducted in rural areas
were considerably smaller than those generated for urban trips.

Convergence MNL RSUE(min), Zealand application
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Figure 1. Relative gap measures, Zealand network application using the method of successive weighted averages with
step-size parameter d=2 (MSWA, Liu et al., 2009). Notice the log-scale on the vertical axis.

Table 2. Average choice set size and distribution of number of paths in the choice sets, Zealand application.

Choice set size
Avg. size 1 2 3 4 5 6 7 8 9/ 10|11
Inner Logit d=2 2.45| 479,286| 452,449 357,576|200,260| 92,046| 30,175| 8,019| 1,131| 256 0| 2
Path Swap d=2 2.71| 444,808| 396,939 327,525/222,882| 132,667| 68,354| 21,366| 5,502| 749| 400| 8

The above analysis has focused on the multinomial logit (MNL) model, but we also tested the path-size logit
(PSL) choice model and found similar results.

In the PSL application we tested different values of 8,5 (ranging from —25 to 0) and evaluated the results by
comparing the link flows obtained with corresponding real life observed link flow counts (for 1169 links
distributed across the network). The evaluation was done using the coefficient of determination (R?)
obtained from a linear regression of the modelled flows as a function of the observed flows (using the Path
Swap algorithm). In general very high correspondence was found, with R?=0.9444 when 8,5 =0 (MNL case),
with slightly declining R® with increasing negative value of 8,5 until R?=0.9404 when 855 =-25.



Last, we performed a qualitative, disaggregate evaluation of the choice set composition and flow
distribution for one OD-pair within the study area. Both algorithms generated the same five distinct routes
shown in Figure 2 for the MNL as well as the PSL choice models. The trip was a commuting trip and the size
and composition of the choice sets seems plausible from our local knowledge of the network; one
alternative (Path 3) used motorways as far as possible, one alternative avoided motorways but rather used
uncongested minor local roads (Path 2) and three alternatives were versions of the lowest cost route using
a combination of motorways and minor local roads.

A Origin
[ Destination
Path 5
Path 4

= Path 3
Path 2

- Path 1

Metwork link

Figure 2. lllustration of generated choice set, 1 OD relation Zealand application.

The generalised route costs and flow shares for the MNL and the PSL choice models can be seen in Table 3

(results from two different 8,5 values reported).



Table 3. Generalised costs and flow distribution for various choice models, 1 OD relation Zealand application.

MNL PSL 8,5 =-3 PSL 8,5 =-8.5
Gen. Cost | Flow share | Gen. Cost | PSterm | Flow share | Gen. Cost | PSterm | Flow share
PathID [-] [%] [-] [-] [%] [-] [-] [%]
1| 126.16 22.7 126.07 0.30 21.0 125.90 0.30 16.2
2| 130.40 9.7 130.49 0.78 15.2 130.65 0.78 30.9
3| 129.19 12.4 129.18 0.48 14.9 129.18 0.48 18.4
4| 125.28 27.1 125.20 0.28 23.7 125.05 0.28 16.6
5| 125.08 28.1 125.00 0.29 25.1 124.87 0.29 18.0

In the MNL case, the three routes with the lowest generalised costs (paths 1,4 and 5) attracted 78% of the
traffic, whereas path 2 (which has almost no overlap with other used paths) only attracted 9.7% of the flow,
despite being only 4% more expensive than the cheapest path. In the PSL case, accounting for path overlap
changed the distribution of flow between the path as well as the path costs (through redistribution of flows
for all OD-pairs). While paths 1, 4 and 5 highly overlap, path 2 is the most distinct path, and thus was the
one that attracted flow from the other paths when the PSL results are compared to the MNL case. The
share on path 2 ranged from 15.2% when 8,5 =-3 to as much as 30.9% when 8,5 =-8.5. This highlights the
need for aggregate as well as disaggregate analysis when evaluating the models; while on an aggregate
level it was difficult to choose between the models (and in fact the MNL performed a little better in
reproducing link counts), accounting for path overlapping (by choice of a suitably-calibrated 8,5 value) can
have a major influence on the distribution of flow among paths. Such a disaggregate-level calibration
would, however, require more informative data than link counts alone.

Conclusions

The paper shows how we might overcome the limitations of the DUE and SUE by consistently integrating
the problem of distinguishing used and unused paths within the concept of SUE. We set out the RSUE(®)
model as a new methodological approach to address this problem. This model defines not only an
equilibrated flow solution but also an equilibrated choice set in which the equilibrium conditions (and not
the solution algorithm adopted) specify that some available routes could be unused at perfect equilibrium.
The potential benefits of such an approach are greatest, it would seem, in large-scale regional and trans-
national studies, meaning that we no longer have the choice only between DUE (which will tend to assign
all-or-nothing at non-congested parts of such networks) and SUE (which can be computationally demanding
and rather implausible, in attempting to assign some traffic to all routes).

The paper also addresses the issue of applying the RSUE(®) to large-scale cases. A generic solution
algorithm is proposed, and applications have demonstrated the applicability, convergence and scalability of
different variants of the RSUE(min) and RSUE(max) solution algorithms on the well-known Sioux Falls
network as well as the large-scale Zealand network. The results are very promising as the algorithms
converges extremely fast to fulfil the underlying RSUE conditions and are efficient in generating the choice
sets within the first few iterations.
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