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Abstract 

This paper estimates the marginal cost for maintenance of the Swedish rail network, using a 

unique panel dataset stretching over 14 years. We test different econometric approaches to 

estimate the relationship between traffic and maintenance costs, and compare our estimates with 

previous studies using shorter panels. The dynamic model results in this paper are contrasting 

previous estimates on Swedish data. Our results show that an increase in maintenance cost during 

one year can increase maintenance costs in the next year. No substantial differences are found for 

the static models. We conclude that more data made a difference in a dynamic context, but the 

estimated cost elasticities in European countries are rather robust. 

 

1.0 Introduction 

The Swedish government has commissioned VTI to summarize state-of-the-art principles for 

estimating the marginal costs of infrastructure use and to update cost estimates as well as develop 

new knowledge if and when feasible. While this is a cost appraisal assignment, the ultimate 

benefit of these estimates is to provide input for the pricing of infrastructure use.  

One component of the marginal cost in the railway sector concerns the way in which track 

maintenance costs are affected by variations in railway traffic. The relevance of this relationship 

was formally established after the vertical separation of infrastructure management and train 

operations introduced by the European Commission in 1991 (see directive Dir. 91/440)
1
, and the 

White Paper on Fair payments for infrastructure use (CEC 1998) endorsing the use of marginal 

cost pricing to finance infrastructure.  

                                                           
1
 Note the Swedish reform was made in 1988 
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 Previous estimates on Swedish data are summarized in Table 1; Table 2 comprises the current 

charges for using Sweden’s railway network. The cost elasticities for maintenance in table 1 are 

in line with the estimates in the review of best practice by Link et al. (2008), which reports 

elasticities from 0.07 to 0.26. In additional studies made within the rail cost allocation project 

CATRIN, the cost elasticities lies within 0.2 and 0.35 (see Wheat et al. 2009).  

The purpose of this paper is to present new marginal cost estimates for maintenance of the 

Swedish rail network. The analysis departs from the models referenced in table 1. A significant 

difference is, however, that our data covers a much longer period of time than the previous 

studies. This does per se motivate the research: since previous studies make use of rather short 

data panels, it is relevant to consider whether longer time series makes a difference to 

conclusions.  

An additional motive for addressing this question is that the maintenance of Sweden’s railways 

has gone through a far-reaching organizational reform. In 1998, the production unit of what was 

then the Swedish Rail Administration (Banverket) was separated from its administrative unit, 

creating a client-contractor relationship. This further led to a political decision to introduce 

competitive tendering of maintenance contracts, with the first contract tendered in 2002. The 

exposure to competition was gradual, but almost 95 percent of the network had been tendered at 

least once as of 2012.  

Changes in the definition of activities have also been made, with snow removal defined as a 

maintenance activity as of 2007. Table 1 shows the operation cost elasticities from previous 

studies, in which snow removal costs constitutes a major part of the operation cost included in the 

estimations.  

 

Table 1 - Previous estimates on Swedish marginal railway costs 

 

Model Output variable 

Output 

elasticity 

Marginal 

cost 

Marginal costs in 2012 

prices using CPI 

Maintenance 

    Johansson and 

Nilsson (2004) 

Pooled 

OLS 

Gross tonnes 0.17 0.0012 0.0014 

Andersson (2006) Pooled 

OLS 

Gross tonnes 0.21 0.0031 0.0036 
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Andersson (2007) Fixed 

effects 

Gross tonnes 0.27 0.0073 0.0084 

Andersson (2008) Fixed 

effects 

Gross tonnes 0.26 0.0070 0.0081 

Andersson (2011) Box-

Cox 

Freight gross 

tonnes 

0.05 0.0014 0.0016 

  Passenger 

gross tonnes 

0.18 0.0108 0.0124 

Operation 

    Andersson (2006) Pooled 

OLS 

Trains 0.37 0.476 0.5481 

Andersson (2008) Fixed 

effects 

Trains -0.04 0.089 0.1025 

Uhrberg and 

Grenestam (2010) 

Fixed 

effects 

Trains 0.18 0.45 0.4975 

 

Table 2 - Current charges 

 

Track charge, SEK/gross tonne-km Operating charge, SEK/train-km 

2013 0.0040 0.10 

2014 0.0045 0.18 

 

The present paper makes use of a panel covering 14 years. This includes a re-assessment of the 

appropriate choice of functional form and the choice between a static or a dynamic panel data 

model. 

 

2.0 Methodology 

Different approaches have been used in order to determine the cost incurred by running one extra 

vehicle or vehicle tonne on the tracks. There are examples of a so-called bottom-up approach that 

use engineering models to estimate track damage caused by traffic (see Booz Allen Hamilton 

2005 and Öberg et al. 2007 for examples). Starting with Johansson and Nilsson (2004) previous 

studies have, however, mainly used econometric techniques to estimate the relationship between 

costs and traffic, and can be referred to as a top-down approach. To estimate the marginal costs 

from trains using railway infrastructure first requires the derivation of the cost elasticity when 

traffic varies and secondly to establish the average maintenance cost.  
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Most of the top-down approaches use a double log functional form, either a full translog model or 

quadratic and cubic terms for the output variables. However, another functional form that has 

recently gained popularity within this area of research is the Box-Cox model, which also can be 

used to test the appropriateness of different functional forms. See Link et al. (2008) and Wheat et 

al. (2009) for a list of these studies and their reported cost elasticities.  

In this paper we use the econometric – top down – approach, which is briefly presented in section 

2.1. There are some intricate challenges that have to be addressed in order to formulate a model 

that can be expected to deliver the relevant marginal cost estimates. The first concerns the 

appropriate transformation of variables. We therefore begin with the Box-Cox functional form, 

which is presented in section 2.2.  Another challenge concerns the choice between fixed and 

random effects assumptions when dealing with a 14-year panel of data; this is addressed in 

section 2.3. The static double log model to be estimated is presented in section 2.4.   

A hypothesis tested by Andersson (2008) was the cyclic fluctuation of maintenance activities, 

where costs in year t depend on costs in t-1. Section 2.5 considers a modelling approach with 

lagged maintenance costs as an explanatory variable, i.e. a dynamic double log model.  

 

2.1 An econometric approach 

The marginal cost of railway infrastructure wear and tear can be demonstrated to be the product 

of the cost elasticity of traffic (γ) and average cost (AC). To derive the cost elasticity, a general 

cost function is given by eq. (1) where there are i = 1, 2,…, N track sections and t = 1, 2,…, T 

years of observations. Cit is maintenance costs, Qit the volume of output (traffic density as 

defined below), Nit a vector of network characteristics and Zit a vector of dummy variables.  

     (           )         (1) 

We assume there is low variation in input prices, an assumption suggested by Johansson and 

Nilsson (2004) as well as by Andersson (2009), arguing that salaries for employees are rather 

similar across the country. Since then, maintenance activities have however been transferred from 

using in-house resources, including employees, to being competitively tendered. This may have 

increased the variation in salaries. A proxy for wages did, however, not affect maintenance costs 

at the contract area level in the model estimated by Odolinski and Smith (2014). Moreover, prices 
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on the materials used in the production can be assumed to be constant between entrepreneurs (and 

thus track sections) since the principal, Trafikverket, procures these on behalf of the maintenance 

producers without any price discrimination. Hence, no factor prices are included in the model. 

 

2.2 Box-Cox regression model 

Eq. (2) demonstrates a transformation of variable y where λ is a parameter to be estimated, 

developed by Box and Cox (1964): 

 ( )  
(    )

 
           (2) 

This functional form does not impose a specific transformation of the data, such as the 

logarithmic transformation in the double log functional form. Instead, the functional form is 

tested with a logarithmic transformation  ( )     ( ) if       and a linear functional form 

 ( )      if     . Eq. (3) is the general cost model to be estimated, referred to as the “theta 

model”: 

   
( )

         
( )

       
( )

                 (3) 

The dependent variable is subject to the transformation parameter θ and the explanatory variables 

are subject to a different transformation parameter, λ.     is gross tons and     a vector of 

network characteristics.     refers to variables that are not subject to a transformation, 

representing dummy variables and data that include zeroes. A “lambda model” can also be 

specified where the dependent and explanatory variables are subject to the same transformation 

parameter (λ), and is therefore more restrictive than the theta model. Likelihood ratio tests can be 

used to compare different values of the transformation parameters (for example 0 or 1) with the 

estimated values. 

 

2.3 Modelling unobserved effects 

With access to data for cross-sectional units observed over 14 years, we can estimate panel data 

models. Following Baltagi (2008), we first consider the linear model in eq. (4). Here, yit is the 

dependent variable and Xit is a vector of observed variables that can change across i (individuals, 
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here track sections) and t (time).  μi is the individual effect which contains features that predict y, 

but are not captured by the explanatory variables Xit. This value is assumed to be the same for 

each track unit over time. Finally, vit is the error term that is assumed to be normally distributed, 

α is a scalar and   a vector of parameters to be estimated: 

                     i = 1,2…N t = 1, 2…T    (4) 

If the unobserved individual effects are constant (or averaged out), we can estimate a pooled 

model using ordinary least squares (POLS). However, there is often variation in the unobserved 

individual effects, and a pooled regression would then produce inconsistent and/or inefficient 

estimates of β.
2
 Fixed effects and random effects are two approaches often used to model this 

variation. If μi is not observed and correlated with    , the fixed effects model can be used. A 

transformation is then performed by first using the average over time for each individual in eq. 

(4) where for example  ̅  ∑        : 

 ̅     ̅      ̅           (5) 

Subtracting (5) from (4) gives (6): 

     ̅   (     ̅ )  (     ̅ )         (6) 

The individual effect    is now eliminated and it is possible to estimate  ̃ from eq. (6). Taking the 

average across all observations in eq. (4) makes it possible to estimate   (eq. 7), where we use the 

constraint  ̅   .  

 ̿      ̿   ̿           (7) 

Here, double bars denote averages such as for example  ̿  
∑ ∑    

  
   

 
   

                    
. Summing (6) and 

(7) gives (8): 

     ̅   ̿      (     ̅   ̿)  (     ̅   ̿)      (8) 

Equation (8) is used for estimating the fixed effects model, producing unbiased estimates of   as 

long as the explanatory variables are strictly exogenous. The alternative approach, the random 

                                                           
2
 More specifically, the POLS estimator is inconsistent if the true model is fixed effects. If random effects model is 

the true model, the POLS estimator will be inefficient. 
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effects model, makes use of a weighted average of the fixed and between effects estimates from 

(8) and (5) respectively. Following Wooldridge (2009), the random effects transformations is: 

      ̅   (   )   (      ̅ )  (      ̅ )      (9) 

Here        
 (  

     
 )   ⁄⁄ . The random effects model assumes that the individual 

effects are random and normally distributed        (    
 ) and independent of    . However, the 

crucial assumption is that the unobserved individual effects μi are not correlated with    . 

Otherwise, the random effects model will produce biased estimates of  .  

Since μi may be correlated with    , the random effects model will often produce biased 

estimates. On the other hand, the fixed effects model may produce high variance in the estimated 

coefficients, i.e. produce estimates of   that are not very close to the true  . This can be the case 

when we have a low within-individual variation in the explanatory variable relative to the 

variation in the dependent variable. In that case, the random effects model will produce lower 

variance in the estimate of   by using information across individuals. The choice between fixed 

and random effects is therefore often a compromise between bias and variance (efficiency) in the 

estimates, considering there is some degree of correlation between μi and     (Clark and Linzer 

2013).  

The Hausman test (1978) is often used for the choice between the random and fixed effects 

models, and is a test for systematic differences between the estimates from two models 

(systematic differences indicate relatively high correlation between μi and    ). This test is not 

used for a robust covariance matrix as it relies on all the random effect model assumptions 

(Imbens and Wooldridge 2007). Mundlak’s (1978) test is an alternative approach to the Hausman 

test, and Arrellano (1993) extended the test for a robust covariance matrix.  

 We therefore estimate both the fixed and random effects version of our static double log model 

and perform the Hausman test and the test suggested by Arrellano (1993).  
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2.4 Modelling approach; static double log model 

We use a double log functional form and start with the flexible translog cost function. Dropping 

the firm and time subscripts, the translog functional form with M outputs, K network 

characteristics and P dummy variables is expressed by eq. (10): 
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  is the vector of parameters to be estimated, lnQm is the m
th

 output and lnNk is the k
th

 network 

characteristic. We estimate a model with gross tons as output as well as a model using freight and 

passenger gross tons as separate outputs.  

The Cobb-Douglas constraints are βmn = 0, βkl = 0 and δkm = 0. With symmetry restrictions 

        and        , we get eq. (11): 
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The ex-ante expectation is that costs increase with traffic so that     . In the baseline 

formulation of the model, only one proxy for output is used, eliminating the estimation of    . It 

is also worthwhile to consider a distinction between freight and passenger services, but without 

any prior. 

Several of the network characteristics are related to the size of each track section, and it is 

straightforward to assume that costs increase with track length, length of switches
3
 and length of 

tunnels and bridges. The older the tracks, the more likely it is that higher costs are required, 

which means we have a prior that      . The expectation goes in the opposite direction for the 

parameter RATIO_TR. This provides an indication of the length of tracks for a certain route 

length. For a section with single tracks the ratio is unity. Adding one place for meetings and over 

taking increases the numerator and for a double track section the ratio is 2. The a priori 

expectation is that more double tracking will make it easier to maintain the tracks, i.e. that costs 

are lower and     . 

 

2.5 Modelling approach; dynamic double log model 

Maintenance costs during one year can affect maintenance costs the next. Moreover, not all types 

of maintenance activities are undertaken every year. Hence, the maintenance costs may fluctuate 

even if traffic and infrastructure characteristics do not change. To address the possibility of inter-

temporal interactions, a dynamic-panel data model with a lagged dependent variable as an 

explanatory variable is tested. Both the Arellano and Bond (1991) and the Arellano-

Bover/Blundell-Bond (1995; 1998) estimators are used. These estimators essentially use first 

differencing and lagged instruments to deal with the unobserved individual effect and the 

autocorrelation. 

For a Cobb-Douglas functional form the model is expressed by eq. (12): 

                ∑         
 
    ∑   

 
          ∑         

            (12) 

                                                           
3
 The quality of the information about the number of switches seems to be lower than the quality of switch length 

information in that the variation between years in the first statistic is higher than for the second.  
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Lagged maintenance costs         are correlated with the individual effects   , and estimating 

this model with OLS would therefore produce biased estimates. First differencing (12) gives eq. 

(13). 

                (               )  ∑   (               )
 
    ∑   (

 
          

        )  ∑   (           )  (     )
 
    (         )     (13) 

This makes the individual effect    disappear.  However,          and the lagged independent 

variables are correlated with      . To deal with this endogeneity it is necessary to use 

instruments. We first consider         as an instrument for (               )          . This 

instrument is not correlated with       under the assumption of no serial correlation in the error 

terms. Holtz-Ekin et al (1988) show that further lags can be used as additional instruments 

without reducing sample length. To model the differenced error terms (         ), Arellano and 

Bond (1991) propose a generalized method of moment (GMM) estimator, estimating the 

covariance matrix of the differenced error terms in two steps. 

Note that as T increases, the number of instruments also increases. For example, with T=3 

(minimum number of time periods needed), one instrument,        is used for       . With T=4, 

both       and       can be used as instruments for       . The present data set comprises T=14. 

We therefore need to consider a restriction of the number of instruments used because too many 

instruments can over-fit the endogenous variables
4
 (see Roodman 2009a). If independent 

variables are predetermined ( (      )    for s<t and zero otherwise), it is feasible to include 

lagged instruments for these as well, using the same approach as for the lagged dependent 

variable. 

The approach by Blundell and Bond (1998), which is a development of the Arellano and Bover 

(1995) estimation technique, is called system GMM and does not employ first differencing of the 

independent variables to deal with the fixed individual effects. Instead, they use differences of the 

lagged dependent variable as an instrument. In our case         is instrumented with          

and assuming that           (      )   ; this must also hold for any other instrumenting 

                                                           
4
 We use the “collapse” alternative that reduces the number of instruments, even though this set of instruments 

contains less information.  
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variables. This means that a change in an instrument variable must be uncorrelated with the fixed 

effects, that is  (      )   .  

A lagged difference of the dependent variable as an instrument is appropriate when the 

instrumented variable is close to a random walk. Roodman explains this neatly (2009b; p. 114):  

“For random walk-like variables, past changes may indeed be more predictive of current levels 

than past levels are of current changes…” Hence, the system GMM will perform better if the 

change in maintenance costs between t-2 and t-1 is more predictive of maintenance cost in t-1, 

compared to how maintenance costs in t-2 can predict the change in maintenance cost between t-

2 and t-1.  

In addition to using lagged differences as instruments for levels, the system GMM also uses 

lagged levels as instruments for differences; the system GMM estimator is based on a stacked 

system of equations in differences and levels in which instruments are observed (Blundell and 

Bond 1998) 

Alonso-Borrego and Arellano (1999) perform simulations showing that the GMM estimator 

based on first differences (the Arellano and Bond (1991) model) have finite sample bias. 

Moreover, Blundell and Bond (1998) compare the first difference GMM estimator with the 

system GMM using simulations. They find that the first difference GMM estimator produces 

imprecise and biased estimates (with persistent series and short sample periods) and estimating 

the system GMM as an alternative can lead to substantial efficiency gains. 

Against this background, we estimate a Cobb-Douglas model
5
 (including a quadratic term for 

traffic) with         as an explanatory variable using the approach by Arellano-Bover/Blundell-

Bond (1995, 1998) system GMM (Model 2A) as well as the Arellano and Bond (1991) model 

(Model 2B). Traffic is assumed to be predetermined (not strictly exogenous) and is instrumented 

with the same approach as the lagged dependent variable.  

 

                                                           
5
 Testing the comprehensive Translog model turned out to be very sensitive to the number of instruments included. 

Moreover, some of the estimated coefficients for the network characteristics had reversed signs compared to model 

1. We also note that the Arellano and Bond (1991) and Arellano-Bover/Blundell-Bond (1995; 1998) estimators were 

designed for situations with a linear functional relationship (Roodman 2009b).  
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3.0 Data 

The publicly owned Swedish railway network is divided into approximately 260 track sections. 

The sections of today have a long history and are not defined based on a specific set of criteria. 

As a result, the structure of the sections varies greatly. For example, section length ranges from 

1.9 to 219.4 kilometres, and the average age of sections range from one (i.e. new tracks) to 83 

years; see table 3. 

   

Table 3 - Descriptive statistics for track units for the 1999-2012 period (No. obs. 2486) 

Variable Mean Std. Dev. Min  Max 

Maintenance cost incl. snow 

removal, SEK* 11 795 864 13 520 001 8 747 183 783 983 

Maintenance cost, SEK* 10 916 954 12 580 344 8 747 154 341 916 

Train gross tonnes 7 801 181 8 438 352 567 59 571 928 

Passenger train gross tonnes 2 951 660 5 433 973 0 48 813 129 

Freight train gross tonnes 4 632 609 5 349 039 0 30 332 703 

Track length, metres 69 327 51 323 4 200 290 654 

Route length, metres 53 190 41 283 1 889 219 394 

Track length over route length 1.61 1.06 1 8.1 

Average rail age, years 20.30 10.42 1 83 

Quality class** 3.20 1.20 1 6 

No. joints 167 134 1 1 203 

Length of switches, metres 1 766 1 721 58 14 405 

Average age of switches, years 20.73 9.27 1 55 

Length of bridges and tunnels, 

metres 1 141 2 722 3 23 212 

Average amount of snow per year, 

mm water 117 64 2.1 342.7 
* Costs have been inflated to 2012 price level using CPI, ** Track quality class ranges from 0-5, but 1 have been 

added to avoid observations with value 0. 

In the same way as in Anderson et al. (2012), as well as all other Swedish rail cost studies, most 

of information derives from the systems held by Trafikverket to report about the technical aspects 

about the network and about costs. Traffic data emanates from different sources. Andersson 

(2006) collected data from train operators for the period 1999-2002. Björklund and Andersson 

(2012) interpolated traffic using access charge declarations for years 2003-2006. Trafikverket has 

provided traffic data for 2007-2012. Weather data – for example average amount of snow – has 

been collected from the Swedish Metrological and Hydrological Institute (SMHI).  
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Previous cost analyses made a distinction between operations, primarily costs for snow clearance, 

and on-going maintenance. As of 2007 Trafikverket no more makes this separation and the 

(previously) separate observations of the two items have therefore been merged for previous 

years. Maintenance costs therefore comprise all activities included in tendered maintenance 

contracts which thus include costs for snow removal as well as other activities that in previous 

studies have been defined as operation. Though, the other activities - i.e. operation costs 

excluding snow removal – are rarely reported at the track section level and therefore constitutes a 

very small part of the total operation cost for track sections.  A sensitivity analysis with 

maintenance costs that do not include snow removal costs is also carried out. 

Many track sections includes one (or more) railway station(s). This is at least partly captured by 

the number of switches per track section; the larger the number of stations or places for meetings 

and overtaking on single track lines, the larger the number of switches. In some situations, a train 

station is however defined to be a track section of its own. Odolinski (2014) describes an 

algorithm for estimating traffic at stations-cum-track-sections based on information about traffic 

on adjacent track sections. As a result, an additional 24 cross section observations are included 

each year. A dummy is used to capture the possibility of different principles for handling the 

allocation of resources to stations compared to the main line sections (see Model 1). 

It is not feasible to include all track sections of the network in the analysis, one reason being that 

important information is missing. In particular, information about traffic is not available for many 

sections with low traffic density and sections used for industrial purposes. Moreover, marshalling 

yards have been omitted since the cost structure at these places can be expected to differ from 

track sections at large. Neither are privately owned sections, heritage railways, nor sidings and 

track sections that are closed for traffic included in the dataset.  

Data from previous studies has been supplemented with more years of observations and all in all, 

260 track sections are observed for the 1999 to 2012 period. A comprehensive matrix would 

therefore comprise (260 x 14 years =) 3640 observations. Due to missing information, 2486 

observations are available for analysis and the panel is thus unbalanced.  

It is important to note that gradually more observations become available during the period of 

analysis. In particular, information of 18 more track sections is available for 2007 than for 2006; 

see table 3. This gradual addition of information seems to primarily concern older parts of the 
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network, increasing the average age of tracks and structures more than the additional year net of 

reinvestment that same year. 

 

Table 4 - Descriptive statistics for track sections for 1999, 2006 and 2012. Numbers in brackets 

refers to stations that constitute a track section 

 
1999 2006 2012 

Variable Obs. Mean Obs. Mean Obs. Mean 

Maintenance + snow 

cost, m SEK 

169 [21] 9 [25.1] 168 [19] 11 [25.4] 182 [22] 16 [23.5] 

Maintenance costs only, 

m SEK 

169 [21] 8 [22.5] 168 [19] 10 [22.7] 182 [22] 15 [21.1] 

M train gross tonnes 169 [21] 6.7 [13.7] 168 [19] 8.1 [13.8] 182 [22] 8.0 [13.2] 

M passenger train gross 

tonnes 

169 [21] 2.5 [6.3] 168 [19] 2.8 [6.6] 182 [22] 3.5 [6.0] 

M freight gross tonnes 169 [21] 4.2 [6.7] 168 [19] 5.0 [6.5] 182 [22] 4.3 [6.6] 

Track length, km 169 [21] 55.8 [9.0] 168 [19] 54.3 [8.7] 182 [22] 52.0 [8.8] 

Route length, km 169 [21] 68.3 [29.3] 168 [19] 72.1 [28.7] 182 [22] 69.4 [28.3] 

Track length over route 

length (RatioTLRO) 

169 [21] 1.36 [3.57] 168 [19] 1.66 [3.62] 182 [22] 1.72 [3.54] 

Average rail age, years 169 [21] 18.7 [20.3] 168 [19] 19.9 [20.3] 182 [22] 22.6 [19.7] 

Quality class (no. 0-5, 

+1) 

169 [21] 3.3 [3.7] 168 [19] 3.1 [3.7] 182 [22] 3.1 [3.8] 

No. Joints 169 [21] 135.5 [228.8] 168 [19] 178.4 [231.3] 182 [22] 176.7 [215.9] 

Length of switches, km 169 [21] 1.6 [3.5] 168 [19] 1.8 [3.5] 182 [22] 1.8 [3.3] 

Average age of switches 169 [21] 18.3 [22.6] 168 [19] 21.1 [22.1] 182 [22] 22.2 [22.1] 

Track length of bridges 

and tunnels, km 

169 [21] 0.9 [1.7] 168 [19] 1.2 [1.8] 182 [22] 1.5 [1.5] 

Average amount of 

snow per year, mm 

water 

169 [21] 136.4 [135.1] 168 [19] 118.3 [128.7] 182 [22] 137.5 [137.3] 

 

 

4.0 Results 

Three models are estimated. Model 1 uses the Box-Cox regression model. Model 2 is a static 

model with a restricted translog functional form. Models 3A and 3B consider the dynamic 

dimension, estimating how past levels of maintenance costs affect current levels. Estimations are 

carried out using Stata 12 (StataCorp.11). 
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4.1 Model 1 – Box-Cox regression results 

The results from Model 1 are presented in table 5 where train gross tons is the output variable. 

Results from the Box-Cox regression with passenger and freight gross tons as separate outputs 

are presented in the appendix.  

We only present results with maintenance costs excluding snow costs as the dependent variable. 

The reason is that the theta model had problems converging when snow costs are included in the 

dependent variable.  

The transformation parameters are significantly different from zero in both models, suggesting 

that the log-transformation is not optimal. Table 6 shows the results from likelihood ratio tests of 

different values of the transformation parameters, i.e. functional forms, compared to the 

estimated values in table 5. The log-transformation (   ) have the highest log likelihood 

compared to the other functional forms (        ). 

 

Table 5 - Results from Box-Cox models 

 

Lambda model Theta model 

 

Coef. Std. Err. Coef. Std. Err. 

Lambda 0.1745*** 0.0117 0.0625** 0.0253 

Theta - - 0.1746*** 0.0113 

     Not transformed Coef. P>chi2(df) Coef. P>chi2(df) 

Cons. -4.1932 

 

-48.8730 

 JOINTS 0.0189 0.000 0.0220 0.000 

D.STATION SECTION 5.7084 0.000 5.9336 0.000 

YEAR00 -1.0223 0.262 -1.1394 0.210 

YEAR01 0.3797 0.675 0.2281 0.801 

YEAR02 2.5848 0.004 2.4578 0.006 

YEAR03 1.1752 0.200 0.9137 0.319 

YEAR04 2.6305 0.004 2.3511 0.010 

YEAR05 2.7008 0.003 2.4101 0.009 

YEAR06 1.2564 0.172 0.9878 0.283 

YEAR07 1.6268 0.070 1.5248 0.088 

YEAR08 2.5388 0.005 2.3849 0.008 

YEAR09 3.3889 0.000 3.2390 0.000 

YEAR10 2.3042 0.010 2.1446 0.017 

YEAR11 4.7804 0.000 4.5656 0.000 
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YEAR12 6.3986 0.000 6.0719 0.000 

     Transformed 

    TGTDEN 0.2747 0.000 1.4231 0.000 

TRACK_M 1.2752 0.000 4.2571 0.000 

RATIOTLRO -3.5066 0.000 -3.1187 0.000 

QUALAVE 2.8759 0.000 3.1774 0.000 

SWITCH_M 1.0538 0.000 2.0925 0.000 

RAIL_AGE 0.3797 0.098 0.7357 0.019 

SWITCH_AGE 0.5426 0.035 0.6597 0.057 

Sigma 8.3665 

 

8.3405 

 No. obs. 2486 

 

2486 

 Log likelihood -41146.071 -41136.387 
Note: ***, **, * : Signif. at 1%, 5%, 10% level. 

Definition of variables in table 5:
  

JOINTS = Nr. of joints 

D.STATION SECTION = Dummy variable for station track sections 

YEAR00-YEAR12= Year dummy variables, 2000-2012 

TGTDEN = ln (Tonne-km/route-km) 

TRACK_M = ln (Track length metres) 

RATIOTLRO = ln (Track length/Route length) 

QUALAVE = ln (average quality class); note a high value of average quality class implies a low speed 

line 

SWITCH_M = ln (Switch length metres) 

RAIL_AGE = ln (average rail age) 

SWITCH_AGE = ln (average age of switches) 

 

Table 6 - Likelihood ratio tests of functional forms 

Test H0: Restricted log likelihood chi2 Prob>chi2 

    

lambda = -1 -49895.967 17499.79 0.000 
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lambda = 0 -41271.957 251.77 0.000 

lambda = 1 -42957.204 3622.27 0.000 

    theta=lambda = -1 -49895.967 17519.16 0.000 

theta=lambda = 0 -41271.957 271.14 0.000 

theta=lambda = 1 -42957.204 3641.63 0.000 

 

The parameter estimates have the expected signs and most are statistically significant. The 

coefficient for stations sections show that these have a higher cost level compared to other track 

sections. 

In order to calculate the cost elasticity of output, we use the following expression (Andersson 

2011): 

 ̂     ̂ (
    

 

   
 )          (14) 

where θ=λ in the lambda-model. Eq. (14) shows that the output elasticities vary with the level of 

costs and output. The cost elasticity with respect to gross tons is 0.2505 (standard error 0.0011) in 

the lambda model and 0.2360 (standard error 0.0007) in the theta model.  

The marginal cost is calculated by multiplying the average cost by the cost elasticities: 

       ̂    ̂             (15) 

We use the predicted average costs, which is the fitted cost divided by gross tonnes kilometres:  

  ̂    ̂        ⁄            (16) 

Similar to Andersson (2008), we estimate a weighted marginal cost for the entire railway network 

included in this study, using the traffic share on each track section (see eq. 17). 

    ∑ [     
       

∑          
]           (17) 

The estimated average costs, marginal costs and weighted marginal costs for the two models are 

presented in table 7. The weighted marginal cost in the theta model (0.0058 SEK) is lower than 

the corresponding cost in the lambda model (0.0066 SEK). Both estimates have standard errors at 

0.0001.  
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Table 7 - Estimated costs; Box-Cox models 

Variable Obs. Mean Std. Err. [95% Conf. Interval] 

Average cost
a
 2486 0.2428 0.0445 0.1556 0.3300 

Average cost
b
 2486 0.3432 0.0809 0.1846 0.5018 

Marginal cost
a
 2486 0.0550 0.0090 0.0374 0.0726 

Marginal cost
b
 2486 0.0453 0.0066 0.0323 0.0583 

Weighted marginal cost
a
 2486 0.0058 0.0001 0.0056 0.0060 

Weighted marginal cost
b
 2486 0.0066 0.0001 0.0064 0.0069 

a
 Theta model, 

b
 Lambda model 

 

4.2 Model 2 estimation results; restricted translog model 

The results from Model 2 - with train gross tons as the output variable - are presented in table 8. 

Estimation results from a restricted translog model using passenger and freight gross tons as 

separate outputs are presented in the appendix but do not show a significant difference in cost 

elasticity for these outputs. 

Table 9 presents the results from the diagnostic tests. We first note that the Breusch and Pagan’s 

(1980) test show that random effects model is preferred to Pooled OLS. However, the test 

proposed by Hausman (1978) indicates that the fixed effects estimator is preferred. Moreover, the 

test developed by Arellano (1993) indicates that the random effects specification do not meet the 

orthogonality conditions ( (     )   ). Even more important, the main coefficient of interest 

for the present paper - gross tons - does not differ substantially between the fixed and random 

effects models. Hence, a low within-individual variation for output does not seem to be a problem 

in the fixed effects estimation. Accordingly, the results from this estimator are in focus for the 

following discussion.  

Rho (    
 (  

    
 )⁄  is a measure of the fraction of variance due to differences in the 

unobserved individual effects, and is lower in the random effects model compared to the fixed 

effects model (see table 8). This is what one would expect considering that the random effects 

estimator also uses variation between track sections, as opposed to the fixed effects (within) 

estimator. 
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As is standard in the literature we started with the full translog functional form, and tested down. 

In the end, based on tests of linear restrictions  - using the fixed effects model results - we could 

only retain a quadratic term for track lengths and the interaction term between track length and 

gross tons from the translog expansion.  

Before elaborating on the elasticity with respect to traffic, it is first reason to comment on the 

other parameter estimates. The coefficients for most year dummies are significant with 1999 as 

the baseline year. Tests of differences between the year dummies show that years 1999-2001 

have a lower cost level compared to other years. No significant difference is found between years 

2002 to 2010, while 2011 and 2012 have a significantly higher cost level than other years.  These 

changes may be due to variables not included in the model and/or that unit maintenance costs 

increase. At the same time, Odolinski and Smith (2014) show that the gradual transfer from using 

in-house resources to competitive procurement reduced maintenance costs (a reform that started 

in 2002). Without this change, the cost increase would have been even higher. 

 

Table 8 - Model 2 results; fixed and random effects  

 

Fixed effects Random effects 

MaintC Coef. Robust s.e. Coef. Robust s.e. 

Cons. 15.9295*** 0.0781 16.0835*** 0.0617 

TGTDEN 0.1816*** 0.0668 0.2113*** 0.0424 

TRACK_M 0.8207*** 0.2075 0.6624*** 0.0581 

RATIOTLRO -0.1403 0.0998 -0.1360* 0.0735 

RAIL_AGE 0.1034** 0.0402 0.0461 0.0395 

QUALAVE -0.2606 0.1811 0.0991 0.0854 

SWITCH_M 0.1765** 0.0784 0.2939*** 0.0508 

SWITCH_AGE 0.1281** 0.0514 0.0933* 0.0479 

SNOWMM 0.0689*** 0.0257 0.0900*** 0.0264 

YEAR00 0.0181 0.0368 0.0193 0.0390 

YEAR01 -0.0285 0.0374 -0.0456 0.0369 

YEAR02 0.1986*** 0.0468 0.1991*** 0.0470 

YEAR03 0.1641*** 0.0507 0.1804*** 0.0513 

YEAR04 0.1809*** 0.0568 0.1854*** 0.0575 

YEAR05 0.1884*** 0.0445 0.1985*** 0.0452 

YEAR06 0.1017** 0.0433 0.1161*** 0.0431 

YEAR07 0.1490*** 0.0466 0.1672*** 0.0443 

YEAR08 0.1484*** 0.0484 0.1698*** 0.0480 
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YEAR09 0.1712*** 0.0520 0.1859*** 0.0517 

YEAR10 0.1586*** 0.0506 0.1692*** 0.0507 

YEAR11 0.2887*** 0.0524 0.3389*** 0.0525 

YEAR12 0.3443*** 0.0516 0.3837*** 0.0505 

TRACK_M2 0.4852*** 0.1300 0.2694*** 0.0755 

TGTDENTRACK_M 0.1066* 0.0562 -0.0219 0.0287 

No. obs. 2486  2486  

    
 (  

    
 )⁄   0.7360  0.4430  

Note: ***, **, * : Significance at 1%, 5%, 10% level. 

Definition of variables in table 8:
a,b  

TGTDEN = ln (Tonne-km/route-km) 

TRACK_M = ln (Track length metres) 

RATIOTLRO = ln (Track length/Route length) 

RAIL_AGE = ln (Average rail age) 

QUALAVE = ln (Average quality class); note a high value of average quality class implies a low speed 

line 

SWITCH_M = ln (Switch length metres) 

SWITCH_AGE = ln (Average age of switches) 

SNOWMM = ln (Average mm of precipitation (liquid water) when temperature < 0˚Celcius) 

YEAR00-YEAR12= Year dummy variables, 2000-2012 

TRACK_M2 = TRACK_M^2 

TGTDENTRACK_M = TGTDEN*TRACK_M  

a 
We have transformed all data by dividing by the sample mean prior to taking logs 

b
 Quadratic terms are divided by 2 

 

Table 9 - Results from diagnostic tests; Model 2 

Breusch-Pagan LM-test for Random effects  Chi
2
(1)=1752.60, P=0.000 

Hausman’s test statistic* Chi
2
(10)=136.80, P=0.000 
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Arellano bond (1993) test: Sargan-Hansen statistic* Chi
2
(10)=88.38, P=0.000 

*Year dummies are excluded in the test (see Imbens and Wooldridge 2007) 

 

The parameter estimates for track length, rail age, switch length, average age of switches and 

average amount of snow are significant and have the expected signs.  

The cross product between traffic and track length is included in the model. In order to evaluate 

the cost elasticity with respect to traffic, it is therefore necessary to use eq. (18) where  ̂  is the 

first order coefficient for gross tonnes and  ̂  for the interaction variable. Based on this, table 10 

reports cost elasticities of traffic with respect to mean length of tracks. The mean cost elasticity is 

0.1507 with standard error 0.0552 (significant at the 1 per cent level). 

 ̂    ̂   ̂                     (18) 

To calculate the marginal costs we use eq. (15), (16) and (17). However, we now use a fitted cost, 

 ̂  , as specified in eq. (19), which derives from the double-log specification of our model that  

assumes normally distributed residuals (Munduch et al. 2002, and Wheat and Smith 2008).  

 ̂       (  (   )   ̂       ̂ )         (19) 

 

Table 10 - Mean cost elasticities of traffic (gross tonnes) 

MaintC Coef. Std. Err T P>t [95% Conf. Interval] 

 ̂   0.1507 0.0552 2.72 0.007 0.0418 0.2596 

 

The average and marginal costs are summarized in table 11. The lower value of costs deriving 

from the weighting procedure indicates that track sections with relatively more traffic have lower 

marginal costs than average. 

 

Table 11 - Estimated costs; Model 2 

Variable Obs. Mean Std. Err. [95 % Conf. Interval] 

Average cost 2486 0.4018 0.1225 0.1615 0.6421 
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Marginal cost 2486 0.0316 0.0083 -0.0153 0.0478 

Weighted marginal cost 2486 0.0059 0.0002 -0.0056 0.0063 

 

The mean weighted marginal cost is 0.0059 SEK (in 2012 prices), with standard error at 0.0002.  

Model 2 was also estimated with snow costs excluded from the dependent variable. We 

experience no noteworthy changes in the parameter estimates, except for the expected non-

significance of the coefficient for snow. The mean output elasticity is 0.1513 which is very close 

to the first estimate (0.1507). As expected, the weighted marginal cost is slightly lower with 

mean 0.0051 SEK and standard error 0.0001. 

 

4.2 Model 3 estimation results; a dynamic model 

Two dynamic models have been estimated: the system GMM (Model 3A) – proposed by 

Arellano-Bover/Blundell-Bond (1995, 1998) – and the difference GMM model (Model 3B), 

proposed by Arellano and Bond (1991). As described in section 2.5, both are used in order to 

estimate how the level of maintenance cost during one year affect the level of maintenance costs 

in the next. The estimation results are presented in table 12, where MAINTC t-1 is the variable 

for lagged maintenance costs. We use the Windmeijer (2005) correction of the variance-

covariance matrix of the estimators, and we therefore only report the two-step results
6
. 

 

Table 12 - Model 3 results 

 Model 3A  Model 3B  

MaintC Coefficient Corrected Std. Err. Coefficient Corrected Std. Err. 

Cons. 1.9541 1.6729 - - 

MAINTC t-1 0.1708*** 0.0602 0.1561** 0.0699 

TGTDEN 0.2690* 0.1385 0.1350 0.2102 

TRACK_M 0.4670*** 0.0532 -0.1855 0.2191 

RAIL_AGE 0.1087 0.0939 -0.0388 0.0796 

SWITCH_M 0.1844* 0.0996 0.1688* 0.0919 

SNOWMM 0.0733*** 0.0260 0.0279 0.0238 

                                                           
6
 Without the Windmejer (2005) correction, the standard errors are downward biased in the two-step results, which is 

a motivation for reporting the one-step estimation results together with the two-step results (Roodman 2009a).  
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YEAR01 -0.0342 0.0400 0.0148 0.0343 

YEAR02 0.1738*** 0.0418 0.2251*** 0.0416 

YEAR03 0.1159** 0.0487 0.1834*** 0.0445 

YEAR04 0.1380** 0.0551 0.2326*** 0.0499 

YEAR05 0.1260*** 0.0484 0.2120*** 0.0467 

YEAR06 0.0478 0.0502 0.1349*** 0.0482 

YEAR07 0.1142** 0.0537 0.2023*** 0.0483 

YEAR08 0.0982 0.0612 0.1873*** 0.0586 

YEAR09 0.1376** 0.0577 0.2426*** 0.0566 

YEAR10 0.1031 0.0671 0.2444*** 0.0659 

YEAR11 0.2337*** 0.0634 0.3365*** 0.0577 

YEAR12 0.2793*** 0.0646 0.4021*** 0.0600 

No. obs. 2269  2269  

No. instruments 32  30  
Note: ***, **, * : Significance at 1%, 5%, 10% level. 

 

To test for the validity of the lagged instruments, autocorrelation in the differences of the 

idiosyncratic errors is tested for. We expect to find a first-order autoregressive process – AR(1) – 

in differences because      should correlate with        as they share the      term. However, a 

second-order autoregressive process – AR(2) – indicates that the instruments are endogenous and 

therefore not appropriate in the estimation. We maintain the null hypothesis of no AR(2) process 

in our models according to the Arellano and Bond test, though in Model 3B we cannot reject the 

presence of an AR(2) process at a 10 per cent level of significance (see table 13). The test results 

presented in table 13 further show that we have valid instruments. The Sargan test of over-

identifying restrictions is a test of the validity of the instruments. We cannot reject the null 

hypothesis that the included instruments are valid. The null hypothesis of the Hansen test 

excluding groups of instruments is that these are not correlated with independent variables. 

Hence, a rejection is what we expect as we excluded them to avoid endogeneity.  

 

Table 13 - Results from diagnostic tests; models 3A and 3B 

 

Model 3A Model 3B 

A-B test AR(2) in first diff. z=1.61, Pr>z=0.108 z=1.70, Pr>z=0.090 

Sargan test of overid. restr. Chi2(13)=12.03, Pr>chi2=0.525 Chi2(12)=10.45, Pr>chi2=0.576 

   

GMM instruments for levels 
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Hansen test excl. group Chi2(12)=12.02 Pr>chi2=0.444 N/A N/A 

Difference (null H = 

exogenous):  Chi2(1)=0.01 Pr>chi2=0.912 N/A N/A 

 

gmm(MaintC L1, collapse lag(1 .)) 

Hansen test excl. group chi2(0)=0.00 Pr>chi2= . chi2(0)=0.00 Pr>chi2= . 

Difference (null H = 

exogenous) chi2(13)=12.03 Pr>chi2=0.525 chi2(12)=10.45 Pr>chi2=0.576 

 

gmm(tgtden, collapse eq(diff) lag(3 4)) 

Hansen test excl. group chi2(11)=7.84 Pr>chi2=0.727 chi2(10)=7.36 Pr>chi2=0.692 

Difference (null H = 

exogenous) chi2(2)=4.19 Pr>chi2=0.123 chi2(2)=3.10 Pr>chi2=0.213 

 

The results from the Arellano and Bond (1991) model (Model 3B) are unsatisfactory with respect 

to significance levels and the coefficients for track length and rail age have an unexpected 

negative sign.  As mentioned in section 2.5, Alonso-Borrego and Arellano (1999) and Blundell 

and Bond (1998) show that the GMM estimator based on first differences (Model 3B) can 

produce imprecise and biased estimates. We therefore focus on Model 3A estimation results, 

which according to Blundell and Bond (1998) can lead to efficiency gains. 

The estimation results from Model 3A suggest that an increase in maintenance costs in year t-1 

increases costs in year t, which is opposite to the results in Andersson (2008). The cost elasticity 

with respect to gross tonnes is 0.2690 with a standard error at 0.1385 (significant at the 10 per 

cent level). With a lagged dependent variable in our model, we are able to calculate cost 

elasticities for output that account for how changes in costs in the previous year affect costs in the 

current year: 

 ̂   
 

(   ̂ )
   ̂            (20) 

where  ̂  is the estimated coefficient for the lagged dependent variable and  ̂  is the cost 

elasticity for gross tonnes. The cost elasticity with respect to output and lagged costs is 0.3245 

with standard error at 0.1609 (significant at the 5 per cent level). We choose to call this elasticity 

the dynamic cost elasticity.  

Similar to equations (15), (16), (17) and (19), we use the predicted cost to estimate average cost 

and marginal costs, which are summarized in table 14. 
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Table 14 - Estimated costs; model 3A 

Variable Obs. Mean Std. Err. [95% Conf. Interval] 

Average cost 2269 0.1530 0.0215 0.1109 0.1951 

Marginal cost 2269 0.0412 0.0058 0.0298 0.0525 

Weighted marginal cost 2269 0.0078 0.0001 0.0075 0.0081 

Dynamic marginal cost 2269 0.0496 0.0070 0.0360 0.0633 

Dynamic  weighted marginal cost 2269 0.0094 0.0002 0.0091 0.0097 

 

The weighted marginal cost is 0.0078 SEK which is near 32 per cent higher than the estimate in 

Model 2. The dynamic weighted marginal cost is 0.0094 SEK with a standard error at 0.0002.  

 

5.0 Discussion and conclusion 

In this paper we have tested different econometric approaches for estimating the relationship 

between maintenance costs and traffic. The results are summarized in table 15. 

 

Table 15 - Cost elasticities and marginal costs with standard errors in parentheses 

Model Method Cost elasticity Weighted marginal cost, SEK 

Model 1* Box-Cox, theta model 0.2360 (0.0007)**  0.0058  

Model 2 Fixed effects 0.1507 (0.0552) 0.0059***  

Model 3A GMM 0.2690 (0.1385),  0.3245
a
 (0.1609) 0.0078, 0.0094

b 
 

* Snow removal costs not included in maintenance costs, ** not cluster-adjusted, 0.0051 SEK excl. snow 

removal, 
a
 Dynamic cost elasticity, 

b
 Dynamic weighted marginal cost 

The cost elasticity from the Box-Cox regression is higher than the elasticity produced by the 

restricted translog model (Model 2), while the weighted marginal cost is similar in both models. 

The Box-Cox results show that the double log functional form is preferred over the linear 

transformation. Though, the estimates of the transformation parameter are significantly different 

from zero which indicates that the double log transformation is not optimal (see table 5 and 6). 

However, the Box-Cox functional form does not fully use the panel structure of the data. 

Unobserved individual effects are assumed to be the same for all individuals, which introduce 

omitted variable bias if this assumption is wrong. The assumption of constant unobserved 
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individual effects is strongly rejected in Model 2 (see table 9). Thus, despite the similar weighted 

marginal cost estimates, the results from the Box-Cox regression should be interpreted with care.
7
 

We can conclude that more data did not make a difference with respect to the Box-Cox 

regression results. The estimated cost elasticity for total output is 0.236, and the cost elasticity is 

0.156 for passenger traffic and 0.076 for freight traffic in the model with separate outputs. The 

Box-Cox estimates from Andersson (2011), using 4 years of data, are similar (the cost elasticity 

for passenger traffic is 0.179 and 0.052 for freight traffic). 

When modelling unobserved individual effects using the fixed effects estimator (Model 2), we 

have slightly lower cost elasticity (0.1507 compared to 0.26 and 0.27) and weighted marginal 

cost (0.0051 SEK compared to 0.0081 and 0.0084 SEK) than earlier studies on Swedish data 

using the fixed effects estimator. A change in results from previous studies is not surprising 

considering the longer time period of our data, during which major changes in the organisation of 

railway maintenance have been carried out. Moreover, a major difference between our model and 

previous models by Andersson (2007 and 2008) is that we include more infrastructure 

characteristics. These were assumed to be constant in previous models, which can be a reasonable 

assumption using a fixed effects model on a short panel. 

The estimation result from the dynamic model stands out. Adding 10 years to the dataset 

certainly made a difference. A lower estimate for the cost elasticity and marginal cost is found in 

Model 3A, compared to the estimate in the dynamic model in Andersson (2008). More 

importantly, the dynamic cost elasticity and marginal cost is higher than the cost elasticity for 

output. The reason is that the results from our dynamic model show that an increase in 

maintenance costs in year t-1 predicts an increase in maintenance costs in year t. This is opposite 

to the previous results and might to some extent be counterintuitive. One would expect that an 

increase of maintenance costs should lower the need to maintain the track the following year. 

                                                           
7
 We tested the inclusion of a set of dummy variables for track sections in the Box-Cox regression in order to capture 

individual effects, though we are aware of the incidental parameters problem that may lead to inconsistent estimates 

(Neyman and Scott 1948)
7
. With this in mind, the estimated cost elasticities with respect to output is 0.1460 

(standard error 0.0026) in the theta-model and 0.1219 (standard error 0.0047) in the lambda model when dummy 

variables are included to capture the individual fixed effects. These estimates are closer to the elasticity in Model 2 

(0.1513
7
), which is a restricted translog model estimated with fixed effects. We also estimated Model 2 using Pooled 

OLS, which estimates a constant that is assumed to be the same for all individuals (similar to the Box-Cox 

regression). Interestingly, the mean cost elasticity is 0.2587 which is close to the elasticities from the Box-Cox 

regression. 
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However, the crux of the matter is that we have two main types of maintenance activities: 

preventive and corrective maintenance. A possible explanation (summarized in table 16) is the 

following: an increase in preventive maintenance should decrease the need for corrective 

maintenance the following year (scenario 1). An increase in corrective maintenance will, 

however, not reduce the level of maintenance the following year, rather the opposite. An increase 

in the frequency of corrective maintenance is in fact a sign of a track with quality problems, and 

is therefore expected to require further corrective maintenance the following year. The following 

year might even require additional corrective maintenance as the deterioration rate is likely to 

increase if mainly corrective maintenance is carried out (scenario 2b). Preventive maintenance 

can stop this, and is likely to be carried out on a track with high corrective maintenance the 

previous year (scenario 2a).  

 

Table 16 - Scenarios for preventive and corrective maintenance 

 

Scenario 1 Scenario 2 

Year Preventive maint. Corrective maint. Preventive maint. Corrective maint. 

t + 

  

+ 

t+1 - - +
a
 +

b
 

a
 scenario 2a, 

b
 scenario 2b 

 

Our results therefore suggest that we are in scenario 2 more often than in scenario 1; we have an 

increase in corrective maintenance compared to preventive maintenance. According to a report by 

Trafikverket (2012) the amount of corrective maintenance has indeed increased more than 

preventive maintenance since 2008. Though, this statement is a bit uncertain as almost a third of 

total maintenance costs are not registered as being corrective or preventive. 

Estimations with freight and passenger gross tonnes as separate outputs have been made (results 

are presented in the appendix). The restricted translog model estimation did not generate 

significantly different cost elasticities. The Box-Cox regression results confirm the result found 

by Andersson (2011), with higher cost elasticity with respect to passenger gross tonnes compared 

to freight gross tonnes. This is an unexpected result for track engineers in Sweden and should be 
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interpreted with care, especially since we have reason to suspect a bias in the estimates when 

assuming unobserved individual effects to be constant.
8
 

In summary, we can determine that the cost elasticity estimates are rather robust with respect to 

the previous estimates in European countries. Adding more data has not made a big difference for 

the static models. There seem to be strong evidence that cost elasticities for rail maintenance are 

generally below 0.4.  

Future research should aim at examining the dynamic costs more in depth. Budget restrictions 

and maintenance strategies will affect the amount and type of maintenance that can be carried out 

one year, which will have an effect on the required maintenance in future years. It is therefore 

important to consider the dynamics in maintenance costs. Data on the type of maintenance 

(preventive and corrective) carried out together with contract design can help to explain how 

current maintenance affect future maintenance.  
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Appendix 

 

Table 17 - Restricted translog model with separate outputs 

 

Fixed effects Random effects 

MaintC Coef. Robust s.e. Coef. Robust s.e. 

Cons. 16.0011*** 0.0781 16.2255*** 0.0695 

PGTDEN 0.0251 0.0399 0.1082*** 0.0324 

FGTDEN 0.0408 0.0401 0.0527** 0.0229 

TRACK_M 0.7730*** 0.2371 0.6610*** 0.0553 

RATIOTLRO -0.1201 0.1015 -0.1598** 0.0742 

RAIL_AGE 0.1111*** 0.0402 0.0811** 0.0392 

QUALAVE -0.2183 0.1764 0.2404*** 0.0890 

SWITCH_M 0.1791* 0.0953 0.3011*** 0.0463 

SWITCH_AGE 0.0406 0.0743 0.0122 0.0745 

SNOWMM 0.0842*** 0.0244 0.1024*** 0.0261 

YEAR00 0.0184 0.0372 0.0153 0.0405 

YEAR 01 -0.0049 0.0405 -0.0203 0.0404 

YEAR 02 0.1894*** 0.0497 0.1744*** 0.0495 

YEAR 03 0.2130*** 0.0558 0.2020*** 0.0559 

YEAR 04 0.2058*** 0.0632 0.1870*** 0.0632 

YEAR 05 0.2135*** 0.0497 0.2020*** 0.0488 

YEAR 06 0.1267** 0.0490 0.1179** 0.0465 

YEAR 07 0.1941*** 0.0483 0.1951*** 0.0459 

YEAR 08 0.1835*** 0.0505 0.1829*** 0.0499 

YEAR 09 0.2602*** 0.0509 0.2502*** 0.0488 

YEAR 10 0.1963*** 0.0522 0.1853*** 0.0517 

YEAR 11 0.3129*** 0.0553 0.3305*** 0.0533 

YEAR 12 0.3686*** 0.0542 0.3673*** 0.0533 

PGTDEN2 0.0041 0.0078 0.0159*** 0.0060 

FGTDEN2 0.0119* 0.0068 0.0147*** 0.0048 

TRACK_M2 0.2471*** 0.0714 0.1111*** 0.0328 

SWITCH_AGE2 -0.0709 0.0787 -0.0787 0.0656 

PGTDENFGTDEN -0.0212*** 0.0080 -0.0234*** 0.0059 

PGTDENSWITCH_AGE 0.0591** 0.0204 0.0370** 0.0161 

FGTDENSWITCH_AGE -0.0099 0.0263 -0.0116 0.0225 

No. obs. 2216  2216  

    
 (  

    
 )⁄   0.6120  0.3623  

Note: ***, **, * : Significance at 1%, 5%, 10% level. 

Definition of new variables in table 17:
 a,b
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PGTDEN = ln (Passenger train tonne-km/route-km) 

FGTDEN = ln (Freight train tonne-km/route-km) 

PGTDEN2 = PGTDEN^2 

FGTDEN2 = FGTDEN^2 

SWITCH_AGE2 = SWITCH_AGE^2 

PGTDENFGTDEN = PGTDEN*FGTDEN 

PGTDENSWITCH_AGE = PGTDEN*SWITCH_AGE 

FGTDENSWITCH_AGE = FGTDEN*SWITCH_AGE 

a
 We have transformed all data by dividing by the sample mean prior to taking logs 

b
 Quadratic terms are divided by 2 

 

Table 18 - Results from diagnostic tests; restricted translog model 

Breusch-Pagan LM-test for Random effects  Chi
2
(1)=1481.37, P=0.000 

Hausman’s test statistic* Chi
2
(16)=75.35, P=0.000 

Arellano bond (1993) test: Sargan-Hansen statistic* Chi
2
(16)=75.63, P=0.000 

 

In order to estimate the cost elasticities with respect to passenger train gross tonnes and freight 

train gross tonnes, we use the following expressions: 

 ̂  
   ̂ 

   ̂ 
              ̂ 

              ̂ 
                  (21) 

 ̂  
   ̂ 

   ̂ 
              ̂ 

              ̂ 
                  (22) 

The estimated cost elasticities are summarized in table 19. 

 

Table 19 - Estimated cost elasticities for passenger and freight gross tonnes 

Variable Coef. Std. Err. [95% Conf. Interval] 

 ̂  
 a

 0.0351 0.0304 -0.0249 0.0951 
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 ̂  
 a

 0.0550* 0.0326 -0.0092 0.1193 

 ̂  
 b

 0.1089*** 0.0253 0.0593 0.1586 

 ̂  
 b

 0.0669*** 0.0179 0.0318 0.1020 

Note: ***, **, * : Significance at 1%, 5%, 10% level.  
a 
Fixed effects estimator, 

b
 Random effects estimator 

 

The estimated cost elasticities from the fixed effects model are low, though only the estimate for 

freight gross tonnes is significant at the 10 per cent level. The cost elasticities with respect to 

output from the random effects estimator are higher and significant at the 1 per cent level. 

However, the difference between the freight and passenger cost elasticity is not significant 

(chi2(1)=1.74
9
, Prob>chi2=0.187). Moreover, according to the Hausman test and the test 

suggested by Arellano (1993), the fixed effects model is our preferred model. We note that the 

Box-Cox regression produce similar results as the random effects estimator, with respect to the 

difference in cost elasticities between freight and passenger gross tonnes (see table 22 below).  

 

Table 20 - Results from Box-Cox models with separate outputs 

 

Lambda Theta 

Maintc Coef. Std. Err. Coef. Std. Err. 

/lambda 0.1490*** 0.0119 0.1794*** 0.0214 

/theta - - 0.1419*** 0.0127 

     Not transformed Coef. P>chi2(df) Coef. P>chi2(df) 

Cons. -4.4239 

 

3.0521 

 JOINTS 0.0110 0.000 0.0089 0.000 

D.STATION SECTION 3.5364 0.000 3.0975 0.000 

YEAR00 -0.5214 0.384 -0.4098 0.444 

YEAR01 -0.5397 0.348 -0.4372 0.395 

YEAR02 1.6101 0.005 1.4852 0.004 

YEAR03 1.8285 0.002 1.7195 0.001 

YEAR04 1.7048 0.003 1.6016 0.002 

YEAR05 1.7939 0.002 1.6867 0.001 

YEAR06 1.0203 0.077 0.9880 0.056 

YEAR07 1.9784 0.000 1.8100 0.000 

YEAR08 1.9298 0.001 1.7860 0.001 

                                                           
9
 Wald test  
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YEAR09 2.6948 0.000 2.4449 0.000 

YEAR10 2.0617 0.000 1.8518 0.000 

YEAR11 3.7082 0.000 3.3748 0.000 

YEAR12 4.4303 0.000 4.0003 0.000 

     Transformed 

    PGTDEN 0.1952 0.000 0.1186 0.000 

FGTDEN 0.0889 0.000 0.0520 0.000 

TRACK_M 1.2730 0.000 0.8232 0.000 

RARTIOTLRO -1.5771 0.000 -1.5289 0.000 

QUALAVE 3.9118 0.000 3.4812 0.000 

SWITCH_M 0.7955 0.000 0.5912 0.000 

SNOWMM 0.4974 0.000 0.4055 0.000 

/sigma 5.0511 

 

4.5088 

 No. obs. 2290 

 

2290 

 Log likelihood -37993.231 -37991.717 
Note: ***, **, * : Significance at 1%, 5%, 10% level. 

 

Table 21 - Likelihood ratio tests of functional forms 

Test H0: Restricted log likelihood chi2 Prob>chi2 

lambda = -1 -42156.258 8326.05 0.000 

lambda = 0 -38074.997 163.53 0.000 

lambda = 1 -39657.921 3329.38 0.000 

    theta=lambda = -1 -42156.258 8329.08 0.000 

theta=lambda = 0 -38074.997 166.56 0.000 

theta=lambda = 1 -39657.921 3332.41 0.000 

 

We use expression (14) to calculate the cost elasticities with respect to passenger train gross 

tonnes and freight train gross tonnes. 

Table 22 - Estimated cost elasticities for passenger and freight train gross tonnes  

Variable Obs. Mean Std. Err. [95% Conf. Interval] 

 ̂      
a
 2336 0.1489 0.0008 0.1472 0.1506 

 ̂      
a
 2336 0.0735 0.0004 0.0727 0.0742 

 ̂      
b
 2336 0.1565 0.0010 0.1545 0.1585 

 ̂      
b
 2336 0.0755 0.0005 0.0746 0.0764 

a
 Lambda model, 

b
 Theta model 


