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1. BACKGROUND 

Recent rapid advances in information technology have led to various data collection systems which enrich 
the sources of empirical data for the traffic state estimation problems. In practice, traffic data are collected 
from loop detectors, floating cars, cell-phones, video cameras, remote sensing, etc. Particularly, the 
application of the Bluetooth (BT) technology to transportation has been enabling researchers to make 
accurate travel time observations, in freeway and arterial roads. These travel times are often presented 
through sufficient statistics, computed from the set of per-vehicle recordings at both upstream and 
downstream intersections. It is commonly reported that the BT enables fairly reliable travel time estimations 
but BT data neglect the dynamics of traffic flow within link so few studies carried out to reconstruct traffic 
states (i.e. transitions between free flow and congested situations) within links and network-wide. 
 
The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped 
with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of 
detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration 
Rate (BTPR). Not only is the BTPR unknown, but is also a function of time and space. Nevertheless, the 
detected vehicles will still flow according to the same macroscopic laws that describe the flow of all 
vehicles, observable and non-observable. The aim of this study is thus to precisely define the spatio-temporal 
relationship between the quantities that become available through the partial, noisy BT observations; and the 
hidden variables that describe the actual dynamics of vehicular traffic. The estimated results will be validated 
using taxi data, which are used as ground truth. 
 
In this work, we propose to study the traffic dynamics through a three-class continuum model; in which BT-
equipped vehicles are seen as belonging to one class and taxi and other non-equipped vehicles are considered 
the other class. We will incorporate our model into a Sequential Montecarlo Estimation (SME) algorithm, in 
order to unveil the current and future distributions of total flow and BTPRs. This is a so-called model-based 
traffic state estimator, which is an optimization problem of combining model predictions from a traffic model 
and traffic measurements from sensors. Our framework will be tested in the Brisbane Metropolitan region. 
 

2. METHODOLOGY 

In order to estimate the complete state of a system, through an observer-based estimator, a complete model of 
the system is needed. In this paper, the dynamics of the arterial traffic is described through a single-pipe 
three-class kinematic wave model. The three classes selected are the vehicles detectable by the Bluetooth 
scanners; taxi and the other undetected vehicles. As we shall see, the model proposed will enable the 
estimation of the traffic state; upon incomplete and noisy Bluetooth and volume observations. Our system is 
based on the LWR model: 
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where  and  are the density and flow, respectively, of the generic class , for example, u=1 for the 
Bluetooth  and u=2 for taxi class. The LWR model for the dynamics of the total traffic flow reads: 
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Since the Bluetooth and taxi vehicles represent a fraction, α and β , respectively, of the entire flow we can 
derive the following equations for the dynamics of the fraction: 
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Where V(k) denotes the mean speed of the entire traffic flow as we assume that all Bluetooth and taxi 
vehicles are moving with the same mean speed in the flow (i.e. no overtaking is considered). By definition 

 1 1 2 2,
t t t t

t t t t

k q k q
k q k q

α β= = = =
 

(4) 

The state of a road network is typically only partially observable. That is, the flow, density and speed of each 
cell are not directly available. Instead, only limited information is available at the intersections. For instance, 
if an intersection has stop-line detectors installed, in all lanes, on all approaches, one can measure the flows 
of the approaches at the intersections. With the taxi data available, it becomes possible to estimate the 
average speed that the individual (taxi) vehicles have maintained between any two scanners or intersections, 
within the observation time. The partial outflow and inflow as well as the travel time can also be extracted 
from the Bluetooth recording. Note that all observations contain some level of uncertainty or noise. This 
noise is to attribute, among other factors, to the location of the stop-line detectors and the aggregation time 
used to collect the vehicle counts, the variable scanning area, and the finite scanning frequency of the 
Bluetooth sensors. In this work, we shall assume that all uncertainties of the system are additive, Gaussian 
and zero-mean. Under this assumption, if we let  be the current state (vector) of the dynamical system, 
and 0, ,ty 

 the set of measurements available to date, the complete model of the system becomes 
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where  is an external input, which contains the known parameters that are input to the system. In the 
context of our work, these are the free-flow speed, the jam density, the maximum flow, the green-split, and 
the priority ratio for all approaches of the intersections.  and   are independent Gaussian noise terms of 
zero-mean and covariance matrices  and , respectively. The update function, , encompasses all 
models presented earlier for the update of the state variablesfor each cell when we discretize equations (2) 
and (3). The state vector is mapped to the measurement vector, , through a function , whcih contains the 
quantities that can be observed: partial flow and travel time of Bluetooth vehicles, mean speed of taxi. 
System (4) is determined using a so-called Bayesian estimation technique (Arulampalam et al. 2002), which 
will be detailed in the full paper.   
 
Our case study concerns a section of an arterial road (Coronation Drive) of the Brisbane metropolitan area, 
linking four signalized intersections. The three road segments, connecting the four intersections, have length 
435m, 330m, and 710m. Travel time and flow of Bluetooth vehicles between intersections, mean speed of 
taxi vehicles at some locations in links on Wednesday 3 October 2012 were used in our simulation. The full 
results will be presented at the conference if the abstract is accepted 
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