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Discrete choice models are generally used for analyzing route choices in
real networks. There are two main challenges associated with estimating the
parameters of such models. First, the choice sets are unknown. Second, path
utilities may be correlated due to physical overlap in the network. In order
to address the first issue, either choice sets of paths can be sampled and
utilities corrected for the used sampling protocol, or the recursive logit (RL)
model (Fosgerau et al., 2013) can be used. These approaches are both based
on the multinomial logit (MNL) model and hence cannot adequately address
the second challenge. This paper presents an extension of the RL model that
relaxes the independence from irrelevant alternatives (IIA) property and the
resulting model therefore addresses both the two aforementioned challenges.

Before describing the methodology we give a brief literature review fo-
cusing on the gap that this research aims to fill. The choice set generation
problem has received a lot of attention in the literature and there are nu-
merous algorithms designed for generating choice sets of paths. Typically,
they are based on some kind of repeated shortest path search with a varying
generalized cost. Frejinger et al. (2009) note that depending on the choice set
definition, significantly different parameter estimates can be obtained for a
same model and a same data set. They therefore argue path utilities should
be corrected for the sampling of alternatives and they propose such a sam-
pling correction for the MNL model. Guevara and Ben-Akiva (2013) propose
a correction for generalized extreme value models but it has not yet been
used in a route choice context. These approaches can be used to obtain con-
sistent parameter estimates based on samples of alternatives but it is unclear
how to use the models for prediction and no correction for this case has been
derived. The RL model is based on the same underlying assumption as the
model based on sampled alternatives, namely, that the universal choice set
is composed of all paths in the network. Contrary to the path based model,
RL is easy and fast to use for prediction. RL is however equivalent to a MNL
model over all paths in the universal choice set and hence suffers from the
IIA property.

There are several models proposed in the literature to model correlation
between paths (e.g Bekhor et al., 2002, Chu, 1989, Frejinger and Bierlaire,
2007, Vovsha and Bekhor, 1998) but these models do to take into account that
the choice set is sampled. Those that correspond to a generalized extreme
value model can be corrected (Guevara and Ben-Akiva, 2013) while it is
unclear how to do it for the mixed logit models. Similar to the MNL models
using sampled alternatives, it is also unclear how to correct utilities when
using the models for prediction.

The nested RL model presented here fills a gap in the literature because
(i) the IIA property is relaxed and the model (ii) does not require sampling
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of paths and (iii) it is straightforward to use for prediction. The following
presentation of the model assumes some knowledge of the RL model and we
refer the reader to Fosgerau et al. (2013) for more details. Travellers choose
links in a sequential manner maximizing the instantaneous utility of the next
link (action) a given his/her current location in the network (link/state k).
In the RL model the instantaneous utility is u(a|k) = v(a|k)+ε(a) where the
random terms are independently and identically distributed extreme value
type I. For NRL these utilities are u(a|k) = v(a|k)+µkε(a) where 0 < µk ≤ 1
is a state specific scale parameter. The key part of the RL model is the value
function V (a) capturing the expected maximum utility from the sink node
of the action link a to the destination d. In RL they correspond to logsums
and are a solution to a system of linear equations. For the NRL this is not
the case. Indeed, the value functions given by the Bellman equation are

V (k) =

{
µk ln

∑
a∈A δ(a|k)e

(v(a|k)+V (a))
µk ∀k ∈ A

1 k = d
(1)

where A is the set of links in the network and δ(a|k) equals one if a and k
are sequential links. We solve this fixed point problem by value iteration.

The probability of choosing a given state k is given by the MNL model

P (a|k) = δ(a|k)
e

1
µk

(v(a|k)+V (a))∑
a′∈A(k) e

1
µk

(v(a′|k)+V (a′))
= δ(a|k)e

1
µk

(v(a|k)+V (a)−V (k))

and the likelihood of a path σ = {ki}Ii=0 is

P (σ) =
I−1∏
i=0

e
1
µki

(v(ki+1|ki)+V (ki+1)−V (ki))
. (2)

In this case the ratio of two path probabilities do not depend solely on their
respective utilities and the IIA property does therefore not hold. Note that
there are as many scale parameters µk as there are links in the network and we
cannot estimate all of them. We therefore assume that the scale is a function
of some link attributes each associated with a parameter to be estimated.
We derive analytical expressions for the gradient and Hessian and we show
that they can be effectively approximated by solving the system of linear
equation. This is important for the estimation but the detailed expressions
are quite involved and presented in the full paper.

We also note that solving (1) by value iteration is computationally much
more expensive than for the RL case. In order to improve the estimation
performance, we propose a simply method for solving the non-linear equation
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with dynamic accuracy. More precisely, the value iteration method is started
with some low number of iterations and we increase the number of iterations
as the estimated parameters are close to the optimal solution. We observed
that choosing the initial value functions that satisfy the system of linear
equation given by the RL model greatly improves the convergence speed.

For the numerical results we use the Borlänge data, same as the one used
in Fosgerau et al. (2013). Moreover, we use the same deterministic utility
specification as them except that we estimate the parameter associated with
u-turns and we have two additional parameters for the scale parameter. The
utility is

u(a|k; β, ω) = v(a|k; β) + V (a) + µk(ω)ε(a) (NRL2)

and in this case µk(ω) = exp(ωTTTTk+ωLFLFk) where TT is travel time and
LF link flow. For the sake of comparison we also estimate a NRL model with
fixed scales (NRL1) where the scales are proportional to link travel time.
The estimation results are presented in Table 1. The NRL2 specification
significantly improves the model fit while keeping the parameter estimates
from the RL model stable. We note that fixing scale proportional to link
travel time is not as a good idea.

Parameters RL NRL1 NRL2

β̂TT -2.494 -0.836 -2.572
Rob. Std. Err. 0.098 0.201 0.099

β̂LT -0.933 -0.303 -0.904
Rob. Std. Err. 0.030 0.09 0.030

β̂LC -0.411 -0.127 -0.344
Rob. Std. Err. 0.013 0.040 0.014

β̂UT -4.459 -1.453 -4.442
Rob. Std. Err. 0.114 0.379 0.133

ω̂TT - - 0.307
Rob. Std. Err. - - 0.276

ω̂LF - - -0.946
Rob. Std. Err. - - 0.088

LL(β̂) 6303.9 6298.8 6211.4

Table 1: Estimation results for real data

This is still ongoing research and in the final paper we plan to present an
illustrative example showing the correlation pattern resulting from the NRL
model. We will also investigate the link to the classic nested logit model.
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