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Abstract INTRODUCTION 

Modern life is supported by mutually dependent complex networks such as 
electricity, communication or transportation networks. In recent years, 
potential risks behind such interdependency have been recognized. For 
example, a failure in communication network can cause serious problems in 
transport network. As the complexity and interaction strength increase, such 
systems can create uncontrollable situations1). It is extremely difficult to 
predict and/or control spreading of failures in such interdependent network 
systems2). When a local failure occurs in one network, this may trigger 
continuous failures in the same network. When the networks are dependent 
each other, the sequence of failures is not limited to the firstly damaged 
network. The interdependency across different networks generates continuous 
breakdowns in other networks. As a result, mutually dependent network 
systems suffer catastrophic damage as a whole. This phenomenon is referred to 
“cascading failures in interdependent networks”. 
This study aims to analyze the effects of the strength of dependency on the 
vulnerability to cascading failures. Most of the preceding studies have focused 
on the limited case of a single and isolated network3)-8). Only a few papers 
have conducted research on interdependent networks, but almost all of them 
have turned their eyes on the fully interdependent case2), 9). Weak 
interdependency may change a robust network into extremely fragile one. 
Thus, the degree of interdependency on cascading failures of network systems 
should be studied in detail. 
METHODOLOGY 
(1) ASSUMPTIONS FOR INTERDEPENDENT NETWORKS 
As shown in Fig. 1, this study targets mutually dependent two networks, A and 
B, with the same number of nodes. A node in network A is connected to a node 
in network B. Number of links in two networks can be different. For simplicity, 
network flow is assumed that one unit of the quantity is exchanged between 
every pair of nodes along the shortest path in each network. The flow in 
network A remains within the network and does not enter to network B, and 
vice versa. The interdependency is assumed to be one-on-one correspondence 

between nodes of two networks. and denote the connected nodes in 

network A and B, respectively. The functioning of node depends on the ability 

of node , and vice versa. If node is broken, node which depends on node 

can be also broken with a probability indicating the degree of 

dependency of network A on network B. denotes the probability for 

network B.  corresponds to the case of two independent 

networks, and corresponds to the fully interdependent case. 
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Fig. 1 Interdependent networks 
(2) MODEL FOR CASCADING FAILURES 
Cascading failure in this study refers to a phenomenon that damaged nodes and 
links are removed one after another from two networks. Model for cascading 
failures in interdependent networks consists of four parts, a) normal state, b) 
initial failure, c) sequence of failures, and d) ultimate state. 
a) Normal state 
In the normal state, all nodes of each network are connected and one unit of 

the quantity is exchanged between every pair of nodes. The load of 

node is equal to the betweenness centrality of node , 
  

(1) 
  

where is a set of nodes in network A, is the number of the 

shortest paths between a pair of two nodes in network A, and 

is the number of the shortest paths passing through 7). The 
betweenness centrality of a node is equivalent to the traffic flow through the 
node when unit OD matrix is assigned to the shortest path. 
The capacity of a node is the maximum load that the node can handle. The 

capacity of node is assumed to be proportional to its initial load , 
  

(2) 
  

where the constant denotes the capacity parameter, that is prepared for 
discussing the effects of the mergin of the capacity on the vulnerability of the 

networks. and in network B are also defined as the same manner. 
We assume that a link does not have its capacity.  
b) Initial failure 

An initial failure occurs at a single pair of nodes in networks A and B, , 
these nodes are removed from the networks. This initial failure can change the 
shortest paths and flows in each network, which can trigger continuous 
breakdowns. 
c) Sequence of failures 
The chain of failures is divided into two parts, failures caused by overload in 
each network and failures caused by dependency between two networks. 



Assume that, after the initial failure, these two types of failures occur by turns 
until the network conditions converge to the ultimate state shown below. 
When the shortest paths in each network change due to the failures of nodes, 

the load of node can be also represented by Eq. (1). Only the 

difference is that a normal node set is substituted by a set of alive 

nodes in a damaged network. If the load of a node exceeds its 
capacity, the node is removed with its connecting links from the network. The 
overload failures are calculated in both network A and B, respectively. 
On the other hand, the failures in one network can be propagated to the other 

network due to dependency between two networks. If node is broken, node 

which depends on node can be also broken with a probability . If 

node is broken, node is removed with its links from network A. This 
process occurs as the same in network B. 
d) Ultimate state 
The set of alive nodes will shrink with the sequence of failures, and result to the 
decrease of the overall loads to the network. If the load of every alive node is 
smaller than the capacity of the node, the sequence of failures terminates and 
two networks settle in a certain state. This state is defined as the ultimate 
state: 
  

(3) 
  
  

(4) 
  

where is the load of node and is a set of alive nodes in 

network A at the ultimate state. and are also defined in the 
same way. 
(3) DAMAGE EVALUATION 
Damage is defined as the ratio of the number of a damaged pair of nodes with 
the number of a pair of nodes in the normal network. This is represented by; 
  

(5) 
  

where denotes the damage of network A, is the number of connected pair 

of nodes in network A in the normal state, and is the number of connected 
pair of nodes in network A in the ultimate state. The damage of network B is 
also defined.  
Initial failure may occur for every pair of nodes, thus, the damage is calculated 
for every initial node failure and then the average value of the damage is 
evaluated. 
NUMERICAL EXAMPLE 



We prepared two different networks for numerical caluculation. One is Small-
World (SW) network10) as a relatively fragile network and the other is Scale-
Free (SF) network11) as a highly robust network. Both SW and SF networks 
have 200 nodes. Fig. 2 shows the damage of two networks in symmetrical case 
assuming that the strength of dependency represented by the value of 

dependency probability is the same for two networks; . For 

different values of capacity parameter , the damages of SW network and SF 
network are caluculated. 

 
Fig. 2 Damage evaluation of SW-SF networks 
According to Fig. 2, SF can turn into extremely fragile when it depends on SW. If 

the capacity parameter is equal to 0.5, the damage of both SW and SF shows a 
gradually increasing from 0.05 to 0.25. However, when the capacity parameter 

is equal to 0.2, there is a remarkable increase from 0.05 to 0.75. The damage 
rises greatly even when the strength of dependency is small. SF network is 
robust as a single independent network, however, it becomes fragile when it is 
connected with SW network. 
CONCLUSIONS 
This study shows a simple methodology for assessing the vulnerability to 
cascading failures in interdependent networks. The numerical example implies 
the vulnerability can increase greatly even if the mutual dependency of two 
networks is not so strong. There is a risk of underestimating network 
vulnerability when we ignore the interdependency of network systems. By 
introducing the degree of dependency, this model can be easily applied to 

asymmetrical interdependent cases;  . Case studies will be 
presented in the conference presentation. 
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