A Novel Approach for Identifying the Locations of Potential Transit Rail Stations Using a GIS Based Model

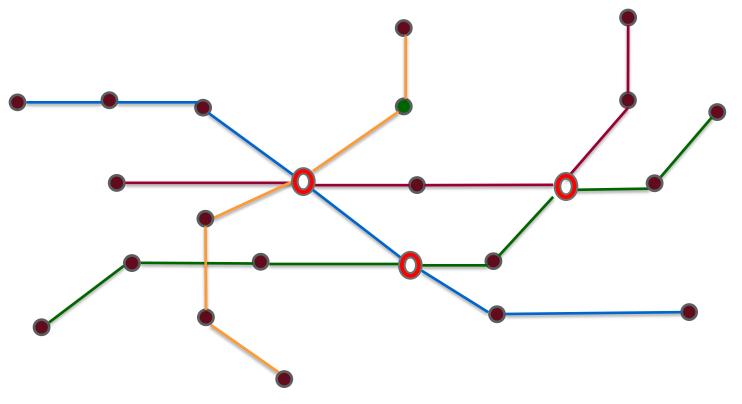
Chro Ahmed, Khalid Nur, and Washington Ochieng Center for Transport Studies

hEART 2014 - 3rd Symposium of the European Association for Research in Transportation

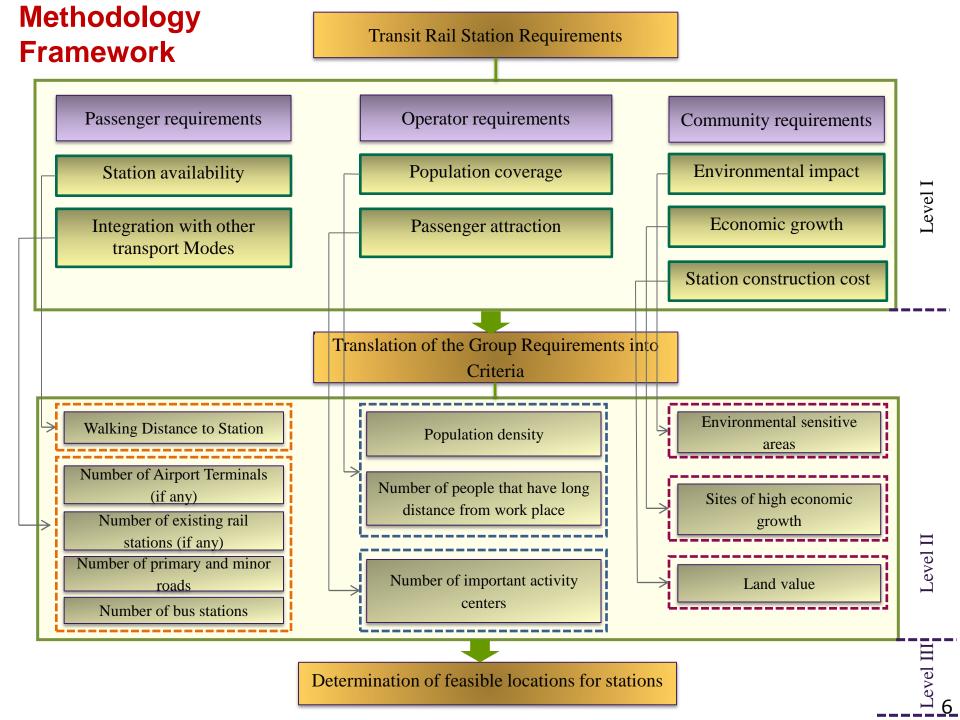
Outline

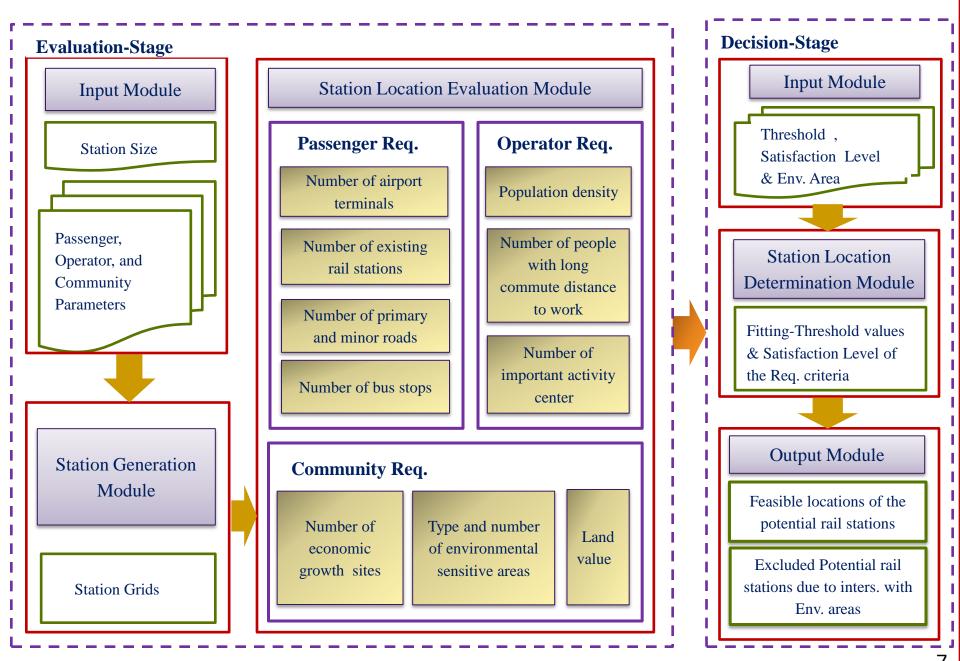
- Motivation
- Background & Aim
- Methodology Framework
- Model Framework
- □ Case Study
- Sensitivity Analysis
- □ Conclusion

Motivation


- Continuous growth of urban areas
 - increased need for mobility
 - traffic congestion on roads
- Transit rail network systems can :
 - relieve highway congestion,
 - decrease commute time,
 - reduce transport related air pollution,
 - provide quick and convenient services
 - improve economic activities

Transit Rail System Planning Aspects


- 1- Determination of station locations
- 2- Determination of line network linking the stations


Research Background and Aim

Limitations of the current models for station location determination

- Mainly consider a single objective for rail station planning
- Rail line alignment determined before station location determination
- Consider a single rail line with predetermined terminal stations
- Research contribution
 - Considers multiple objectives for rail station planning
 - Stations determined before line alignments
 - Considers multi rail lines with no need for predefined terminal stations

Level III – Determination of Feasible Station Locations

Evaluation-Stage (1/3)

- 1- Input Module: this is employed by transit rail planners (users) to input and adjust various planning parameters which include
 - a) Station Size

Input Station Length (Meters)			_
anjor crassification conget (receip)			
Input Served Area Boundary Layer (o	otional)		_
Same as layer Boarder LeicesterCityB	loundary	~	6
· · · · · · · · · · · · · · · · · · ·	Тор		
	310751.000000		
Left		Right	
453157.000000	Bottom	464641.000000	
	298430.000000	Clear	
Input a Directory (Feature Class) for 5	Saving Station Grids In		
		•	

Evaluation-Stage (1/3)

- b) Three stakeholders parameters:
 - Passenger Parameters
 - Operator Parameters
 - Community Parameters

Þa	Station Location Evaluation SubModel	- (<
Passenger Re	quirement Criteria-Input Walking Distance to Stations			~
	Meters		~	5.00
 Passenger Re 	quirement Criteria-Input Airport Terminals Layer	-	63	
) December De	quirement Criteria-Input Existing Rail Stations Layer (if any)			
Passenger Re	quirement Criteria-Input Existing Rail Stations Layer (ir any)	•	1	
Passenger Re	quirement Criteria- Input Primary Roads Layer			
		-	A	
Passenger Re	quirement Criteria- Input Minor Roads Layer			
		-	B	
Passenger Re	quirement Criteria- Input Bus Sations Layer			
		•	0	
Operator Req	uirement Criteria- Input Important Buildings Layer			
		•	2	
Operator Req	uirement Criteria- Input Tourist Areas Layer			
		-	6	
Operator Req	uirement Criteria- Input Population Density Layer			
		-	6	
Operator Req	uirement Criteria- Input People Commute Distace between Home and Work Plac		-	
1		_	6	
Community Re	equirement Criteria- Input Sites of Economic Growth Layer		C2	
l Community D	an increase Criteria Tanai () and Value (anno	<u> </u>		
Community Re	equirement Criteria- Input Land Value Layer	T	4	-
Community Pe	equirement Criteria- Input Regeneration Areas			
Community R	agerement entend anput regeneration Preda	•	1	
Save Evaluate	ed Requirement Criteria of the Potential Station Locations			
			3	~
		-		-
	OK Cancel Environments	Show H	Help >>	

Evaluation-Stage (2 & 3 / 3)

2- Station Generation Module:

- Divides the study area into grids (G_i) based on the station size inputs
- Creates a layer (Ω_s) for stations.

3- Station Location Evaluation Module:

- Evaluates the locations of the station grids generated with respect to the:
 - a- Passenger requirements
 - b- Operator requirements
 - c- Community requirements

Evaluation-Stage Output

at	ion L	ocation	Evaluation											
I	OID *	Shape *	Rail_Station	Primary_Roads	Minor Road	Bue Stop	Pon Dens	Long Distance	Important Building	Tourist Area	LandValue	Development_Project	Pegeneration	Area
	1878	Polygon	1	24	105	16	21.121016	246.070583	18	<null></null>	66.882437	2	Regeneration_	Alca
-	1879	Polygon	1	24	112	15	27.255444	299.336093	21	<null></null>	66.076342	2		-
	1880	Polygon	1	15	128	17	32.786933	348.533909	22	<null></null>	65.544067	2		-
	2085	Polygon	1	26	147	45	13.720133	146.305292	18	<null></null>	54.752431	2		1
	2086	Polygon	1	27	143	38	14.07032	151.573933	17	<null></null>	55.69769	2		1
	2087	Polygon	1	26	135	26	14.153523	152.756796	16	<null></null>	57.440139	2		-
	2088	Polygon	1	21	129	21	15.892578	165.426995	15	<null></null>	58.532339	2		-
	2089	Polygon	1	20	113	16	20.537627	198.665476	14	<null></null>	58.944232	2		1
	2663	Polygon	<null></null>	24	93	33	14,779471	154.316389	16	<null></null>	58.966277	2		-
	2664	Polygon	<null></null>	25	89	27	18.558676	186.212653	13	<null></null>	56.219129	2		
	2665	Polygon	<null></null>	26	98	21	22.577298	216.651985	12	<null></null>	53.510345	2		-
	2666	Polygon	<null></null>	27	102	16	27.051599	251.036682	10	<null></null>	50.763958	2		
	2667	Polygon	<null></null>	28	102	16	31.703506	289.546943	10	<null></null>	48.211968	2		
-	2668	Polygon	<null></null>	28	100	17	36,197305	327,384099	10	<null></null>	45.844531	2		
-	2669	Polygon	<null></null>	29	100	18	40.364387	362.754683	10	<null></null>	43.608158	2		
-	2844	Polygon	<null></null>	13	44	14	21.517979	269.489711	9	<null></null>	69,935544	2	<null></null>	
-	2845	Polygon	<null></null>	16	52	15	27.416764	338.36154	10	<null></null>	68.048699	2	<null></null>	
_	2846	Polygon	<null></null>	19	58	14	32.612603	398.633076	11	<null></null>	65.951537	2	<null></null>	
-	2847	Polygon	<null></null>	21	66	15	37.472927	453.212895	11	<null></null>	63.744952	2	<null></null>	
-	2848	Polygon	<null></null>	22	67	15	42.514938	509.655262	11	<null></null>	61.535432	2	<null></null>	
	2849	Polygon	<null></null>	23	73	17	47.771728	566.632737	11	<null></null>	59.52087	2	<null></null>	
-	2850	Polygon	<null></null>	24	79	15	53.391798	624.435733	12	<null></null>	57.586208	2	<null></null>	
	2851	Polygon	<null></null>	24	80	16	58.955269	680.850201	11	<null></null>	55.664891	2	<null></null>	
	2852	Polygon	<null></null>	24	84	16	63.861688	733.01234	12	<null></null>	54.092052	2	<null></null>	
	2853	Polygon	<null></null>	25	94	17	68.878601	790.008143	9	<null></null>	53.112495	2	<null></null>	
	2854	Polygon	<null></null>	24	98	16	73.597298	843.504534	10	<null></null>	52.329727	2	<null></null>	
	3021	Polygon	<null></null>	4	33	8	21.04442	291.157073	11	<null></null>	75.726881	2	<null></null>	
	3022	Polygon	<null></null>	3	35	8	29.547464	406.823889	13	<null></null>	75.611451	2	<null></null>	
	3023	Polygon	<null></null>	9	40	11	38.148132	523,438691	14	<null></null>	75.237565	2	<null></null>	
	3024	Polygon	<null></null>	15	50	12	45.387323	619.001021	15	<null></null>	74.392364	2	<null></null>	
	3025	Polygon	<null></null>	17	51	11	50.869387	688.191019	14	<null></null>	73.15416	2	<null></null>	
	3026	Polygon	<null></null>	20	51	13	55.895425	748.913306	12	<null></null>	71.661327	2	<null></null>	
	3027	Polygon	<null></null>	22	60	15	61.069743	811.026052	14	<null></null>	70.634897	2	<null></null>	
	3028	Polygon	<null></null>	24	66	14	66.858366	881.699879	14	<null></null>	70.895131	2	<null></null>	
	3029	Polygon	<null></null>	25	68	14	73.033662	954.975603	16	<null></null>	71.41909	2	<null></null>	
	3030	Polygon	<null></null>	26	70	14	79.373855	1030.065877	13	<null></null>	72.261307	2		
	3031	Polygon	<null></null>	27	79	13	86.256915	1113.534493	12	<null></null>	73.245027	2		
		Dohroon	>Mulls	28	97		03 440013	1202 205632	12		77 71301/		-Molls	

Decision-Stage (1/3)

- **1- Input Module:** this is employed by transit rail planners (users) to input and adjust various planning parameters which include :
 - a) Threshold values
 - b) Satisfaction level

¢.	Station Location Decision SubModel –	•
Passenger-In	put Required Minimum Number of Airport Terminals (optional)	
		SQL
Passenger-In	put Required Number of Existing Rail Stations (optional)	
		SQL
Passenger-In	put Required Minimum Number of Primary and Minor Roads (optional)	
		SQL
Passenger-In	put Required Minimum Number of Bus-Stops (optional)	SQL
Operator Jos	out Required Minimum Population Density (optional)	SQL
Operotor -Inf		SQL
Operator -In	put Required Minimum Number of People who have Long Commute Distance (optional)	setr
		SQL
Operotor -Inp	out Required Minimum Number of Important Activity Centers (optional)	
		SQL
Community -I	nput Required Minimum Number of High Economic Growth Sites (optional)	
		SQL
Community -I	nput Required Maximum Land Value (optional)	
		SQL
Input Require	ed Satisfication Level of Each Stakholder (optional)	SQL
Caus the Eve	luded Station Candidates (Environmental)	SQL
Save the Exc	uded stadon candidates (Environmental)	1
Save Designa	ted Station Location Candidates	
		P
	OK Cancel Environments Show He	elp >>

Decision-Stage (1/3)

c) Environmental Sensitive Areas

					- 1	2
Environmental Sensit	ive Areas-Input Hi	i <mark>storic A</mark> reas La	yers (optional)			
l					<u> </u>	2
Environmental Sensit	ive Areas-Input Si	tes of Special S	Scientific Interes	t-SSSI Layer (optional	·	- #
 	·		(_ [2
Environmental Sensit	ive Areas-Input W	rood Lands Lay	er (optional)		T	3
ı Environmental Sensit	ive Areas-Input Si	tes of National	Parks (Forests)	Laver (optional)		
			rano (rerea)		-	2
Environmental Sensit	ive Areas-Input Ri	ivers Layer (op	tional)			
					-	2
Environmental Sensit	ive Areas-Input La	akes Layer (opt	tional)			
					1	2
Environmental Sensit	ive Areas-Input O	ther Environme	ental Sensitive A	reas Layer 1 (optional	T	
) Fasting and the Council		ukata manana ang	and constants of			2
Environmental Sensit	ive Areas-input O	uter Environme	antal Sensitive A	reas Layer 2 (optional		2
Environmental Sensit	ive Areas-Input O	ther Environme	ental Sensitive A	reas Layer 3 (optional		
	are in cas input o				, 	- 3

Decision-Stage (2/3)

2- Station Location Determination Module: consists of three subroutines:

- a) Environmental Sensitive Area Exclusion ():
 - Find Stn_Grid intersect from Env. Sensitive areas and Exclude

 $\Omega_f = \Omega_s \cap \Omega_i$

- b) Station Location Assessment ():
 - Compare Stn_Grid_Requirement to Threshold Values
 - Assign binary values to Stn_Grid
- c) Station Location Determination():
 - Aggregate weights of the requirement criteria satisfied by Stn_Grid
 - Determine Stn_Grid that meet Satisfaction level

Decision-Stage (3/3)

3. Output Module

able												□ ×	\sim
∷ • 뭠•	📲 🔂 🖻	1 🖗 🗙											
Candidate	Potential	Station Loo	ations									×	158157
OBJECTID	* AT-Ferg	. RS_Freq P	R-Freq	MR-Freq	BS-Freq.	PD	PL	IB-Freq.	TA-Freq	DA-Freq	UA-Fero		
*	1 (0.50	6	169	32	56	1713	5	0	0	0		155
	2 0	0.00	12	192	32	51	1866	3	0	0	0	200 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	3 (0.23.0	6	174	39	45	1532	13	0	0	0		151 152153
	4 0	0.50	8	196	47	49	2038	8	0	0			147 148
	5 0	2. U22VG	6	168 151	31 30	48 53	1759	14	0	1	0	20 00000000000000000000000000000000000	143 144 145 148
-	7 0		20	151	28	35	1701	8	0	0	0		136 137 138 139 140 141 142
1	8 0	0.22.0	15	146	41	47	2333	8	0	1			131 132 133 134135
	9 0	0.50	17	109	33	41	1835	3	0	0		108.23	122123 124 125 126 127 128 129 130
	0 0	0.50	16	80	27	30	1627	6	1	0		98.25	114 15116 117 118 119120 121 108105 110 111112 113 106
- D. D.	1 0	2. 0223/2	12	106	34	42	2214	6	0	1		103.33	97 98 99 100 101 102 104 106 107
1	2 0	0 0	7	138	37	50	2362	6	0	1	0	94.72	50 91 52 53 94 1 ⁰³ 95 56
	3 0	2. U22VG	0	102	32	44	1672	4	0	0	0	85.66	80 81 82 83 84 85 88 87 88 89
	4 1	0.2226	16	80	11	30	1520	3	0	0		118.63	6 8 6 9 70 71 72 73 74 75 76 77 78 79
	5 0		9	118	32	41	2077	6	0	1		97.58	e1 e2 e3 e4 e6 e6 e6 e7
	6 0	112 YO	12	99	33	41	2018	8	0	0		102.96	25 56 57 58 59 60 47 48 49 50 51 52 53 54
	7 1		18 3	104 33	36	41 15	2008	9	0	0		93.88	47 43 49 50 51 52 53 54 42 43 44 45 46
- D.	8 (9 (5. (J.2016)	11	110	24	42	2018	4	0	0		93.88	
	0 0	0,77.0	17	95	24	42	1663	8	0	1		84.33	27 28 29 30 31 32 33 34 35
2		0.50	12	67	25	27	1209	8	1	0	0		23 24 25 28
	2 0		26	94	19	47	1941	8	0	0			21 11 11 11 11 11 12
2	3 0	0 0	16	55	18	17	684	5	1	1	0	86.93	
	4 (0 0	24	57	24	20	685	6	0	0	0	85.89	18 15 16 17 19
	5 0		24	72	24	30	1091	8	0	1	0		
	6 (0.000	20	133	23	52	2305	19	0	1		2 C	
	7 0	0.77.0	19	113	24	27	1168	7	0	0			
	8 0		17	93	16	15	654	2	1	1	0		4 5
2	9 0	0 0	28	66	25	10	325	5	0	1	0	87.79 🗸	2 3

The Model Output

Case Study

Table 1: Input data and output results of the applied case study, Leicester City

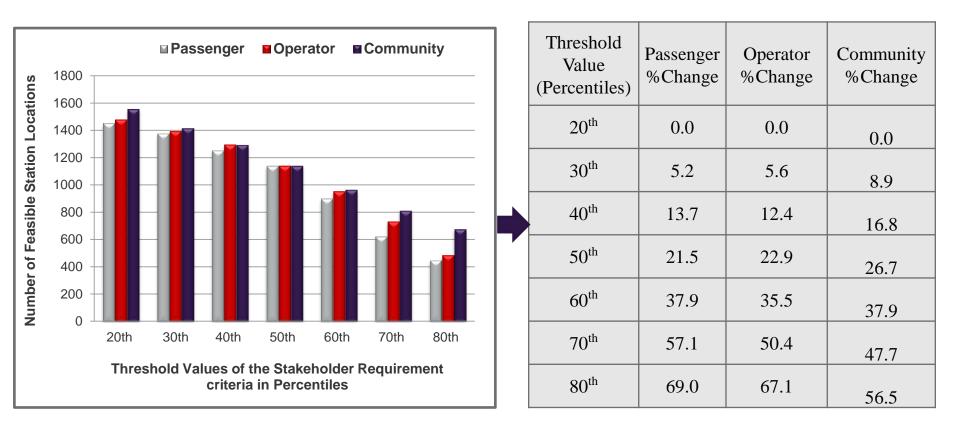
In	put Data	Output R	esults
Station Size	50 m for width	Station Grids	4566
Station Size	300 m for length	Feasible Station Location	1031
Threshold values	50 th percentiles of all the Requirement criteria	Excluded Stations due to Intersection with Env. Areas	475
Satisfaction Level	More than 50% of each stakeholder	Excluded Feasible Stations due to Intersection with Env. Areas	60


Sensitivity Analysis

Three categories of sensitivity analysis were carried out:

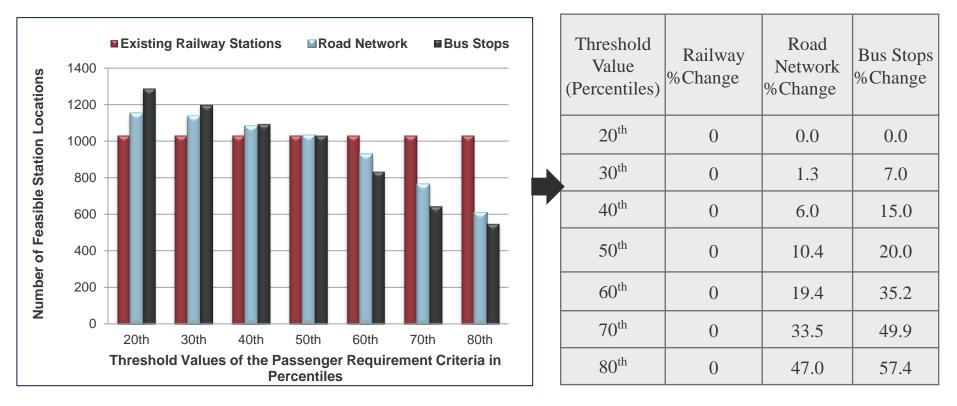
- 1. Impact of the requirement criteria threshold values.
- 2. Impact of the requirement criteria collectively at the stakeholder Level.
- 3. Impact of the requirement criteria individually at the stakeholder Level.

Sensitivity Analysis


1- Impact of the requirement criteria threshold values

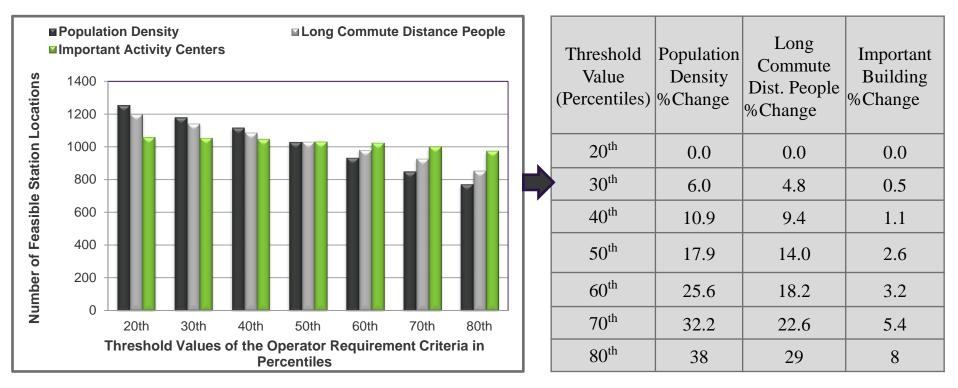
Number of Feasible Station Locations with Different Threshold Values of the Requirement Criteria Data sources: British Ordnance Survey and Leicester Council

Sensitivity Analysis


2- Impact of the requirement criteria collectively at the stakeholder Level

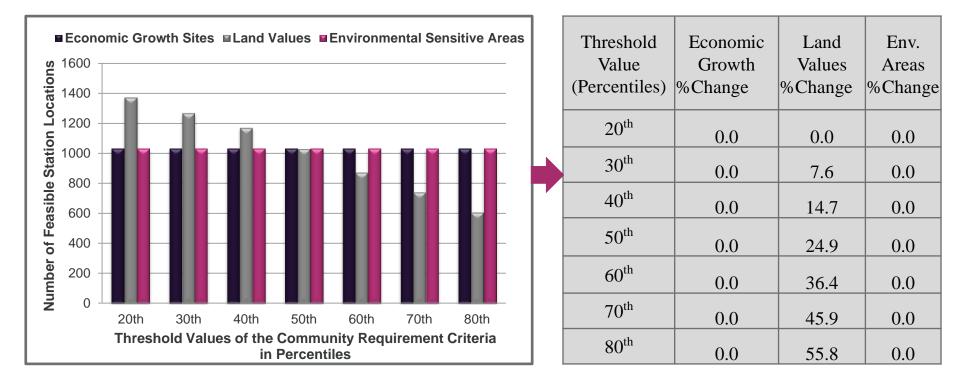
Number of Feasible Station Locations with Different Threshold Values of the Three Stakeholder Requirements Data sources: British Ordnance Survey and Leicester Council

Sensitivity Analysis


3- Impact of the requirement criteria individually at the stakeholder Level
 a- Passenger Requirements

Number of Feasible Station Locations with Different Threshold Values of the Passenger Requirements Data sources: British Ordnance Survey and Leicester Council

Sensitivity Analysis


3- Impact of the requirement criteria individually at the stakeholder Level
 b- Operator Requirements

Number of Feasible Station Locations with Different Threshold Values of the Operator Requirements Data sources: British Ordnance Survey and Leicester Council

Sensitivity Analysis

3- Impact of the requirement criteria individually at the stakeholder Level c- Community Requirements

Number of Feasible Station Locations with Different Threshold Values of the Community Requirements Data sources: British Ordnance Survey and Leicester Council

Conclusion

The proposed methodology can :

- (1) simultaneously consider multiple requirements and constraints.
- (2) incorporate both quantifiable and non-quantifiable requirement criteria.
- (3) find solution in large scale regions with complex topographies,
- (4) be expanded to include generation of the rail line network .

Acknowledgments

The authors wish to thank the following agencies for providing the required datasets:

- British Ordnance Survey
- UK data service
- · Leicester City Council for providing the required datasets, and

Chro Haider Ahmed

c.ahmed11@imperial.ac.uk

Centre for Transport Studies Imperial College London