Demand Based Timetabling of Passenger Railway Service

Tomáš Robenek Jianghang Chen Michel Bierlaire

hEART 2013 2nd Symposium of the European Association for Research in Transportation, Stockholm

September 5, 2013

Railway Planning

Line Planning Problem

Train Timetabling Problem – Non-Cyclic

Train Timetabling Problem – Cyclic

Arising Issues

Figure : Outside peak hour

Figure : Inside peak hour

Figure : Train station in China

Railway Planning Improved

1 Motivation

- 2 Ideal Train Timetabling Problem
- 3 Conclusions
- 4 Future Work

1 Motivation

2 Ideal Train Timetabling Problem

- Assumptions
- Inputs
- Decision Variables
- Objective
- Constraints
- Cyclicity
- Connections

3 Conclusions

4 Future Work

Assumptions II

Inputs

$t \in T$	_	set of time steps
$l \in L$	-	set of lines
f	_	fraction by which it is better to be early
d_t^I	_	demand captured along the line I, when scheduling
		a train at time <u>t</u>
$d_t^{\prime\prime\prime}$	_	connection demand captured along the line l and l' ,
		when scheduling a train at time <i>t</i> on the line /
n^{\prime}	_	number of trains available for line /
$h_1^{l'}$	_	relative headway to reach a connection point of lines
		/ and l' from the first station on line / and l'
<i>c</i> ′	_	size of the cycle on line /
5	_	preferred start of the planning horizon
$M \in \mathbb{M}$	_	set of sufficiently large numbers

Primary Decision(s)

$$\mathbf{x}_t' = \begin{cases} 1 \\ 0 \end{cases}$$

if a train on line *l* is scheduled at time *t*, otherwise.

Secondary Decisions I

- y_t^{lb} ∈ ℝ⁺ − cost of the passengers wanting to travel at time t on the line l, when taking a closest train at t or before
- y_t^{la} ∈ ℝ⁺ − cost of the passengers wanting to travel at time t on the line l, when taking a closest train after t
- $y'_t \in \mathbb{R}^+$ cost of the passengers wanting to travel at time t on the line /

Secondary Decisions II

$$z_t^{\prime} = \begin{cases} 1 \\ \end{array}$$

if passengers wanting to travel at time *t* on the line / take the closest train after the time *t*,

0 otherwise.

Objective

 $\min \sum_{l \in L} \sum_{t \in T} y_t^l \cdot d_t^l$

Constraints I

$$y_t^{lb} \ge (t - t') / f \cdot \left(x_{t'}^l - \sum_{t''=t'+1}^t x_{t''}^l \right)$$
$$y_t^{la} \ge (t' - t) \cdot \left(x_{t'}^l - \sum_{t''=t+1}^{t'-1} x_{t''}^l \right)$$

$$\forall l \in L, \forall t, \forall t' \in T : t \geq t',$$

$$\forall l \in L, \forall t, \forall t' \in T : t < t',$$

$$y_t^{lb} \ge M_1 \cdot \left(1 - \sum_{t'=s}^t x_{t'}^{l'}\right)$$
$$y_t^{la} \ge M_1 \cdot \left(1 - \sum_{t'=t}^T x_{t'}^{l'}\right)$$

 $\forall l \in L, \forall t \in T,$

$$\forall I \in L, \forall t \in T,$$

$$\begin{split} y_t^l &\geq y_t^{lb} - z_t^l \cdot M_2 & \forall l \in L, \forall t \in T, \\ y_t^l &\geq y_t^{la} - \left(1 - z_t^l\right) \cdot M_2 & \forall l \in L, \forall t \in T, \\ M_2 &> M_1 \end{split}$$

Constraints IV

1 Motivation

2 Ideal Train Timetabling Problem

- Assumptions
- Inputs
- Decision Variables
- Objective
- Constraints
- Cyclicity
- Connections
- 3 Conclusions
- 4 Future Work

Introducing Cyclicity

$$egin{aligned} x_{t+c'}^{\prime} &= x_{t}^{\prime} \ & \min(t+c', au) \ & \sum_{t'=t+1} x_{t'}^{\prime} &\leq \left(1-x_{t}^{\prime}
ight) \cdot M_{3} \end{aligned}$$

 $\forall l \in L, \forall t \in T : t + c^{l} \leq T : t \geq s,$ $\forall l \in L, \forall t \in T : t \geq s,$

Introducing Cyclicity

$$egin{aligned} & x_{t+c'}^{l} = x_{t}^{l} \ & \min(t+c', au) \ & \sum_{t'=t+1}^{minig(t+c', au)} x_{t'}^{l} \leq ig(1-x_{t}^{l}ig) \cdot M_{3} \end{aligned}$$

 $\forall l \in L, \forall t \in T : t + c^{l} \leq T : t \geq s,$

$$\forall I \in L, \forall t \in T: t \geq s,$$

1 Motivation

2 Ideal Train Timetabling Problem

- Assumptions
- Inputs
- Decision Variables
- Objective
- Constraints
- Cyclicity
- Connections
- 3 Conclusions
- 4 Future Work

Extra Decisions I

- y_t^{ll'b} ∈ ℝ⁺ cost of the passengers wanting to travel at time t on the line l, when taking a closest train at t or before and connecting to line l'
- y_t^{ll'a} ∈ ℝ⁺ cost of the passengers wanting to travel at time t on the line l, when taking a closest train after t and connecting to line l'
- y_t^{ll'} ∈ ℝ⁺ − cost of the passengers wanting to travel at time t on the line / and connecting to line l'

Extra Decisions II

 $z_t^{\prime\prime\prime} =$

1 if passengers wanting to travel at time t on the line / take the closest train after the time t and connecting to line l',

0 otherwise.

Objective

 $\min \sum_{l \in L} \sum_{t \in T} y_t^l \cdot d_t^l + \sum_{l \in L} \sum_{l' \in L} \sum_{t \in T} y_t^{ll'} \cdot d_t^{ll'}$

26 / 34

Extra Constraints I

$$\begin{split} y_t^{ll'b} &\geq (t-t') \ /f \cdot \left(x_{t'}^l - \sum_{t'''=t'+1}^t x_{t'''}^l \right) + \left(t'' - \left(t' + h_l' \right) \right) \cdot \\ & \left(x_{t''}^{l'} - \sum_{t'''=t'+h_l''+1}^{t''-1} x_{t'''}^{l''} \right) - M_4 \cdot \left(1 - x_{t'}^l + \sum_{t'''=t'+1}^t x_{t'''}^l \right) \\ & \forall l, \forall l' \in L : \ l \neq l', \\ & \forall t, \forall t', \forall t'' \in T : \ t \geq t' \ \text{and} \ t' + h_l' < t'', \\ & y_t^{ll'a} \geq (t'-t) \cdot \left(x_{t'}^l - \sum_{t'''=t+1}^{t'-1} x_{t'''}^l \right) + \left(t'' - \left(t' + h_l' \right) \right) \cdot \\ & \left(x_{t''}^{l'} - \sum_{t'''=t'+h_l'+1}^{t''-1} x_{t'''}^{l''} \right) - M_4 \cdot \left(1 - x_{t'}^l + \sum_{t'''=t+1}^{t'-1} x_{t'''}^l \right) \\ & \forall l, \forall l' \in L : \ l \neq l', \\ & \forall l, \forall l' \in L : \ l \neq l', \\ & \forall l, \forall l' \in T : \ t < t' \ \text{and} \ t' + h_l' < t'', \end{split}$$

Extra Constraints II

$$\begin{aligned} y_t^{II'} &\geq y_t^{II'b} - z_t^{II'} \cdot M_2 & \forall I, \forall I' \in L : I \neq I', \forall t \in T, \\ y_t^{II'} &\geq y_t^{II'a} - \left(1 - z_t^{II'}\right) \cdot M_2 & \forall I, \forall I' \in L : I \neq I', \forall t \in T, \end{aligned}$$

Constraints to add

Beginning and the end of horizon, when no connections are possible

- 2 Ideal Train Timetabling Problem
- 3 Conclusions
- 4 Future Work

- New planning phase, based on the demand
- User cost rather than demand to capture (no need for discrete choice model)
- Can handle bot non- and cyclic timetables
- Connections are demand imposed

- 2 Ideal Train Timetabling Problem
- 3 Conclusions
- 4 Future Work

- Methodology design (cyclic is tighter than the non-)
- Actually solving the problem
- Analysis of the general results
- Analysis of the connections

Thank you for your attention.