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Abstract 
 
In transport we need to understand and quantify the importance people attach to 
the different attributes of travel and how changes in these attributes might affect 
what they do. The traditional approach was to use an orthogonal fractional 
factorial design but this places severe limitations on the number of variables and 
their levels as the number of choice situations generally increases exponentially 
with increasing number of attributes. This led to the recent design approach 
based on the principle of ‘efficiency’ rather than the traditional principle of 
‘orthogonality’. Efficient designs are typically nonorthogonal; however they are 
efficient in the sense that the variances and covariances of the parameter 
estimates are minimized. However, existing algorithms such as modified Fedorov 
or RSC-algorithm for generating such designs do not guarantee that the 
optimized design is level balanced, especially if the starting design is 
unbalanced.  A balanced design is desirable for least two reasons; In the 
presence of an unbalanced design, psychological side effects are likely to 
determine biased results since it is very likely that a respondent could think that 
there is a reason why a level appears more often than others in a presented set 
of choice situations; Having attribute level balance ensures that the parameters 
can be estimated well on the whole range of levels, instead of just having data 
points at only one or a few of the attribute levels, which intuitively provides a 
good basis for estimation.   
 
We have proposed new algorithms for generating balanced efficient designs. 
Experimental analyses show that designs generated by our proposed algorithms 
are in additional to being balanced, statistically more efficient than the modified 
Fedorov algorithm.  
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1. Introduction 
 
In transport we need to understand and quantify the importance people attach to 
the different attributes of travel and how changes in these attributes might affect 
what they do. This analysis was traditionally based on Revealed Preference (RP) 
data; that is choices and decisions that have actually been made in the 
marketplace and the attributes that are measurable or quantifiable (Train, 2009). 
But there are inherent practical limitations associated with the RP approach, 
largely connected with survey costs and lack of variations in relevant attributes 
during estimation (Train, 2009). Also in many practical applications the Analyst 
will want to examine people’s responses in situations that do not currently exist, 
such as the demand for park and ride and revealed-preference data are simply 
not available for these new situations.  Even for choice situations that currently 
exist, there may be insufficient variation in relevant attributes to allow estimation 
with revealed-preference data. This lack of variation could lead to attributes that 
are most important to travellers exhibiting the least variation leading to 
insignificant coefficients as their importance might be difficult to detect (Train, 
2009).   
 
Stated preference (SP) is aimed at solving the problems encountered in using 
revealed preference data (Hess and Rose, 2008; Sanko et al, 2002; Louviere et 
al., 1991; Toner, et al, 1999; Toner et al, 1998; Hensher et al, 1996; Hensher, 
1994; Fowkes and Wardman, 1993).  In a typical SP experiment respondents are 
presented with hypothetical choice situations that are described with a set of well 
defined attributes (e.g., travel time, cost, etc), describing alternatives, where each 
attribute may have two or more levels (Toner et al, 1998). The hypothetical 
alternatives and the attributes describing them are generated through 
experimental design (Kessels et al., 2006; Sándor and Wedel 2001, 2002, 2005). 
A simple and well known experimental design is the Full factorial design. A full 
factorial design consists of all possible combinations of the levels of each 
attribute (Rose and Bliemer, 2007). For example, with 5 attributes, each with 3 
levels, there are 243 (=35) possible different choice situations. The attractiveness 
of this type of design is the fact that it has many desirable properties including 
being able to estimate all main effects, two-way, and higher-order interactions 
from the resulting data.  This means the Analyst can obtain the maximum 
possible information about the design parameters through this type of 
experiment. The disadvantage with this experiment is the practical difficulty of 
presenting all the 243 choice situations to each respondent. Additionally many of 
the choice situations do not add any significant information about the design 
parameters. This makes this type of design too cost-prohibitive, tedious and 
unattractive in practice (Rose, and Bliemer, 2007).  
 
For this reason, many Analysts often use a fraction of the ‘full factorial design’ 
called a fractional-factorial design, which still retains most of the desirable 
properties of the full-factorial design. The basic difficulty is how to construct such 
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a fractional-factorial design that can retain as many desirable properties as 
possible of a full factorial design but with much fewer choice situations.  
 
A special type of fractional-factorial design is the orthogonal array, in which all 
estimable effects are uncorrelated. Orthogonal arrays are categorized by their 
resolution (Kuhfeld 2005), where the resolution identifies which effects, possibly 
including interactions, are estimable. Higher resolutions require larger choice 
situations. Orthogonal arrays come in specific numbers of choice situations (e.g., 
16, 18, 20, 24, 27, 28, etc) for specific numbers of attributes with specific 
numbers of levels. Although these designs are orthogonal and significantly 
reduce the number of choice situations compared with full factorial designs, they 
can only be available for relatively small number of very specific problems for the 
following reasons: 
 
1. The number of choice situations also generally increases exponentially with 
increasing number of attributes. 
 
2. The number of choice situations cannot be freely chosen by the Analyst 
(Bliemer and Rose, 2007; Kuzmanovia and Vukmirovia, 2005) 
 
3. They may not be available when the number of attribute levels is different for 
most of the attributes and when some combinations of attribute levels are 
unfeasible (Kuzmanovia and Vukmirovia, 2005), 
 
4. They may also contain irrelevant choice situations as in full factorial designs 
(Bliemer and Rose, 2007) 
 
5. Generally two-way interactions and higher-order interactions are not estimable 
(Bliemer and Rose, 2007).  
 
The above limitations have led to the current state-of-the-art design principles 
based on design ‘efficiency’ rather than the traditional principle of orthogonality 
(e.g., Huber and Zwerina 1996; Kessels et al. 2006; Sándor and Wedel 2001, 
2002, 2005). Efficient designs aim to produce stable and reliable parameter 
estimates in a fractional design setting by minimising at least one property of the 
information matrix (e,.g, the determinant or trace) of the log-likelihood function of 
the chosen logit model (Huber and Zwerina, 1996). In this paper we focussed on 
minimizing the determinant (D-error) of the information matrix of the multinomial 
logit (MNL) models.  The choice of multinomial logit model in this study was 
partly motivated by the fact that it is probably the most popular discrete choice 
model for designing stated choice experiments and as noted by (Ortuzer and 
Willumsen, 2011) designs optimised for the MNL model typically perform well 
when analysed using other model forms such as Nested logit (NL) or Mixed logit 
models (MXL) models (Bliermer et al, 2009; Sandor and Wedel, 2002; Bliermer 
and Rose, 2008).  Although there exist several other measures of efficiency such 
as the A-error (which minimizes the trace of the information matrix), G-error 
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(which minimizes the maximum prediction variance over the design region) and 
the V-error (which minimizes the average prediction variance over the design 
region), it was demonstrated in Kessels et al, (2006) that the D-error measure of 
efficiency is the best criterion for measuring design efficiency and is also 
computationally very efficient.  
 
In addition to the D-error or D-efficiency, there are four other desirable properties 
in the literature that characterise an efficient design as noted in Huber and 
Zwerina (1996).  These desirable properties are: level balance (attribute levels 
are presented in equal frequency in each choice set); orthogonality (attribute 
levels are uncorrelated to one another and their combinations do not exhibit a 
certain pattern); minimum overlap (for each choice set the repetition of an 
attribute level is minimised); utility balance (alternatives within a choice set 
should have nearly equal attractiveness to the respondents)..  
 
Kessels et al, (2006) introduced a measure scaled to be in the range 0 and 100 
for computing the utility balance of a given design with values close to 100% 
considered more utility balanced.  In this paper we proposed a measured also 
scaled between 0 and 100 for measuring the level balance of an efficient design.  
 
Finding an efficient design usually involves selecting the required or desired 
number of choice situations from a candidate set (list of potential choices or 
scenarios) that is usually generated by full or fractional factorial designs (Rose 
and Bliemer 2007). The problem that rises is how to find an algorithm that 
efficiently selects the best or optimal desired choice situations from the candidate 
set.   An efficient algorithm is an algorithm that finds the optimum solution of 
every instance of the problem in polynomial time. Unfortunately no such 
algorithm exists for this type of problem (Garey and Johnson 1979). Existing 
algorithms such as branch and bound, dynamic programming and ‘brute force’ 
are known to have exponential running times. For example a design with only 5 
attributes each with 3 levels will result in 243 possible combinations using full 
factorial design. Assume the analyst wants to select the best 12 from the 243 
possible lists using the ‘brute force’ approach. This algorithm will find the best 
solution by evaluating over 6.7x1019 possible choice situations and select the 
best. That means if it takes a computer a microsecond (10-6) to evaluate one 
design, then this algorithm will take about 2 million years to select the best 
design 
 
The fruitful approach is to relax the notion of global optimality and be content with 
algorithms that generate near-optimal designs with polynomial running times. 
These algorithms are generally called heuristic algorithms as there is no way of 
determining exactly how far they are from the ‘true’ solution although they are 
known to produce good solutions.  Special heuristic algorithms developed for 
efficient designs include Dykstra's (1971) sequential search method, which starts 
with an empty design and adds candidate points so that the chosen efficiency 
criterion is maximized at each step. This algorithm is fast, but it is not very 
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reliable in finding a globally optimal design. Also, it always finds the same design 
(due to a lack of randomness).  
 
The Federov (1972) algorithm simultaneously adds one candidate point and 
deletes one design point. Cook and Nachtsheim (1980) define a modified 
Federov algorithm that finds the best candidate point to switch with each design 
point from the candidate points. The resulting procedure is generally as efficient 
as the Federov algorithm in finding the optimal design and it is up to twice as 
fast. For example consider a desired design with n = 5 choice situations and a 
candidate set of N = 20 choice situations. The Fedorov algorithm calculates 100 
D-error values for all the n * N = 100 possible couples and suggests only a 
couple for exchange. By contrast, the modified version of the algorithm starts 
with the first design point and compares it with the 20 candidate points in the 
candidate set and suggests the candidate point to swap with the first design 
point. By doing so the Modified Fedorov algorithm calculates only 20 D-error 
values for an exchange to be made. The algorithm then goes on with the next 
design point and so on.  
 
The RSC-algorithm comprises three sub-algorithms, namely relabelling (R), 
swapping (S) and cycling (C), thereby constructing a so-called RSC-design. 
Relabelling and swapping have been introduced by Huber and Zwerina (1996) in 
combination with the use of nonzero prior point coefficients. Cycling has been 
added by Sandor and Wedel (2001). The Relabelling modifies a design by 
permuting the levels of the attributes across choice sets and searches for a 
combination of permutations for which the corresponding design has the highest 
efficiency. Swapping involves switching two attribute levels among alternatives 
within a choice set and testing if the swap improves the criterion value. Cycling is 
a combination of cyclically rotating the levels of an attribute and swapping them. 
All cycles and swaps are examined for design improvements and if an 
improvement emerges, the corresponding design is stored. If, after a while, no 
improvement is possible, then the last stored design is the one with the largest 
efficiency gains and is called the optimal RSC-design. 
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2.0. Proposed algorithms for generating efficient designs 
 
2.1. Level Balance efficiency criterion: 
 
We proposed a criterion called level balanced efficiency (LBeff) scaled between 0 
and 100% as an indicator of how balanced a given design is. First the level 
balance for each alternative is computed followed by the weighted average over 
all the alternatives.  
 
The level balance (LB) for alternative j is given as: 
 
 
 
 
 
Where 
 
 
 
 
 
The overall level balance over all alternatives: 
 
 
 
 
 
 
 
 
Where flij is the number of occurrences of level l of attribute i in alternative j  
Lij is the number of levels of attributes i in alternative j 
S is the number of choice scenarios and  
Aj is the number of attributes available for alternative j.  
 
By construction, a design with say LBeff of 60% means that the design is on 
average 60% balanced.  For example, given the design below with two 
alternatives and two attributes each with two levels: 
 
Scenario Alternative X1 X2 

1 1 0 1 
1 2 0 0 
2 1 1 0 
2 2 0 1 
3 1 0 1 
3 2 0 1 
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4 1 1 0 
4 2 1 0 
5 1 0 0 
5 2 0 1 
6 1 1 1 
6 2 1 0 
7 1 0 1 
7 2 1 1 
8 1 1 1 
8 2 0 1 

 
Separating the design into alternatives and counting the frequency of each 
attribute level we have: 
 

Alternative 1  

Levels X1 X2 

0 4 3 

1 4 5 

eta 1 0.75 
 
The level balance for alternative 1 = (1+0.75)/2 = 0.875 
The level balance for alternative 2 = (0.75+0.75)/2 = 0.75 
The overall level balance over the two alternatives = (2*0.875 + 2*0.75)/(2+2) = 
0.8125 
 
Thus the above design is 81.25% balanced. 
 
 
 
2.2. PDC Algorithm 
 
The basic idea behind the algorithm we proposed is to randomly select a design 
from a candidate set, ensure it is level balanced and then employ an 
improvement algorithm (e.g., swap or simulated annealing algorithm) to improve 
the solution.  
 
The algorithm has the following features: 

1. Generate a candidate set using a full or fractional factorial design. 
2. Randomly select the desired number of choice situations (Xcur) from the 

candidate set  
3. Use  the PDC level balance algorithm (Section 2.3) to balance the design 
4. Apply the swap or Simulated annealing algorithm (Section 2.4) to optimize 

the design 
5. Repeat steps 2 to 4 until the specified number of iterations or a given 

stopping criterion is reached.  
 

Alternative 2  

Levels X1 X2 

0 5 4 
1 3 5 

eta 0.75 0.75 
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 2.3 PDC Level balanced algorithm 
 

1. For each attribute under each alternative in the design compute the 
maximum number of times that each level for that attribute can occur 

 

      






=

L

S
Lmax

  (The smallest positive integer greater than or equal to S/L) 

 
Where L is the number of levels of current attribute, S the number of 
choice situations  

 
1.1.     Count the frequency of each level  
1.2. Find the level that occurred least (fmin) and the most (fmax) 
1.3. If fmax < Lmax goto step 2 else compute fmax – Lmax 

            1.4.     Replace fmax-Lmax number of the level that occurred the most 
with the 
                       level that occurred the least.  

1.5.     Repeat steps 1.1 to 1.5 until no level is greater than Lmax.  
 
       2. Repeat step 1 for all attributes for that alternative  

 
 3. Repeat steps 1 and 2 for all alternatives  

 
For example figure 2 below shows how an unbalanced design is balanced. 
 

 
Fig 2: Balancing an unbalanced design 
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2.4. Improvement algorithms 
 
We proposed two improvement algorithms for improving the balanced design. 
The two algorithms are the swap and the simulated annealing algorithms. Each 
of these two algorithms is described detail below.  
 
2.3.1 The Swap algorithm 
 
The basic principle behind the swap algorithm is to look for the best position of 
each level of an attribute of the design. The algorithm starts with the attribute 
level in first position, and suggests swapping it with the level at the second 
position provided the couple are not the same. If the swapping improves the 
design, the swap is made permanent, and this new level in the first position then 
competes with the level in third position and so on. A swap is only made 
permanent if it results in improved design efficiency; otherwise the two levels 
remain in their original positions. The algorithm starts with the first attribute under 
the first alternative and then loops over all attributes and then over all 
alternatives. 
 
2.3.2. Simulated Annealing version of the swap algorithm 
 
Simulated Annealing (SA) is a random-search optimisation technique (Kirkpatrick 
et al, 1983) inspired by the manner in which a metal crystallizes in the process of 
annealing or in which liquids freeze. The technique involves heating and 
controlled cooling of a material to increase the size of its crystals and reduce 
their defects. The heat causes the atoms of the metal to become unstuck from 
their initial positions (a local minimum of the internal energy) and wander 
randomly through states of higher energy; the slow cooling gives them more 
chances of finding  configurations with lower internal energy than the initial one.  
The law of thermodynamics state that at temperature, T, the probability of an 
increase in energy of magnitude ∆E is given by: 
 
 
 
 
 
Where T is the temperature, L is known as Boltzmann’s constant. This constant 
is usually dropped as it was introduced to cope with different materials.  
 
By analogy with this physical process, each step of the SA algorithm attempts to 
replace the current solution by a random solution (often constructed from 
solutions near the current solution). The new solution may then be accepted with 
a probability given above. This probability depends both on the difference 
between the corresponding function values and also on a global parameter T 
(called the temperature), that is gradually decreased during the process. The 
dependency is such that the choice between the previous and current solution is 
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almost random when T is large, but increasingly selects the better or "downhill" 
solution (for a minimization problem) as T goes to zero. The allowance for "uphill" 
moves potentially saves the method from becoming stuck at local optimum—
which are the bane of greedy algorithms such as the ‘swap’ algorithm.  
 
In this paper we adapted this optimization technique to generate efficient 
designs. The version of the algorithm we implemented is described as follows:  
 
Step1. Initialisation  
 
1.1. Let Xcur be the current design with D-error D(Xcur)  and Xnew with D-

error D(Xnew) be the design after a swap operation on Xcur. X* is the 
optimum design during the iterations.   Let Lm, Ln (m,n =1, 2, ..S) be the level 
points of an attribute in choice situation s (s = 1,…, S).  
 

1.2.  Let Xcur = Xnew;  X* = Xnew. Compute and set D(Xnew) = D(Xcur) = 
D(X*).  Choose Initial temp T= To and a cooling schedule b 

 
Step2. Apply the following procedure for each attribute in the design 
 
2.1. Generate design Xnew by swapping level points Lm and Ln in design Xcur 
using the swapping technique in section 2.3.1.  
 
2.2. Compute the D-error, D(Xnew) for the new design.  
 
2.3. If D(Xnew) < D(Xcur), 
         2.3.1 Xcur

 
=Xnew , D(Xcur) = D(Xnew) 

 
         2.3.2. if D(Xnew)<D(X*);  D(X*) = D(Xnew) and X*=Xnew 
 
 2.4. Else generate a uniform random number U Uniform (0,1)  
 
       2.4.1. If 

        






 −
<

T

d
U exp     

 
             Xcur

 
=Xnew, D(Xcur) = D(Xnew) 

 
                          Where d = D(Xnew) - D(Xcur) 
 
        2.4.2. Else 
             Discard the new design Xnew. 
 
         2.4.3. Reduce the system temperature according to the cooling schedule. 
 
2.5. Repeat steps 2.1 to 2.4 for all Lm and Lm where Lm is not equal to Ln 
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Step3. Next attribute in the design 
 
   3.1. Xcur = X* 
 
   3.2. Repeat step 2 for attributes. 
 
Step4. Next alternative in the design 
 
      4.1. Repeat steps 2 and 3 for all alternatives and stop. 
 
 
The choice of the initial temperature and the temperature Schedule (which 
determines the temperature to use for the current iteration step) has a significant 
impact on the method's effectiveness. Unfortunately, there are no choices of 
these parameters that will be good for all problems, and there is no general way 
to find the best choices for a given problem. 
 
In this study we experimentally chose the initial temperature to be 1 and then 
reduced by 10% in each iteration.  Thus 
 
T = To*0.9 
 
Where T is the updated temperature, To is the initial temperature. 

 
 
 
 

3. Experimental study of algorithms for generating efficient designs 
 
3.1. Introduction 
 
For the sake of identification we called the PDC algorithm with swap 
improvement algorithm the PDC algorithm, whilst the simulated annealing 
version is called the PDC+SA algorithm. A simple experiment was conducted to 
ascertain the strengths and weaknesses of the two proposed heuristics and the 
modified Fedorov (MFD) algorithm. 
 
All the algorithms have a polynomial running time, and so we concentrated on 
the quality of the designs. Conducting experiments to test the quality of the 
heuristic algorithms is more scientific (Rardin and Uzsoy  2001) and also gives 
an indication of how much the results can be trusted. Thus analysis of using 
averages (measure of central tendencies) and standard deviations (measure of 
variability) for a given set of instances, gives a better picture of how the 
algorithms may perform in practice.  
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3.2. Assumptions about design parameters 
 
In the literature there exist least three types assumptions about the about the 
design parameters. In the first approach, the Analyst assumes all the parameters 
are zero (e.g., Burgess and Street 2003; Huber and Zwerina 1996; Street and 
Burgess 2004; Street et al. 2001). This approach is probably the most common in 
practice as the non-linear model becomes linear and so allows the use of linear 
techniques such as orthogonal coding to generate efficient designs. As noted in 
Kuhfeld et al, (1994) efficient designs for linear models such as linear regression 
do not depend on the actual values of the design parameters. Thus the Analyst 
has the freedom of generating the design using the multinomial logit model, but 
can analyse the data using any of the complex model types (e.g., Multinomial 
logit (MNL), Nested logit (NL), Cross nested logit (CNL), mixed logit (MXL), etc). 
Lazari and Anderson (1994) and Kuhfeld et al. (1994), argue that efficient 
designs for linear models also work well for the nonlinear choice models. One 
limitation of this design type is that fact that the true parameter values will in 
reality be non-zero and so the design could be a sub-optimal design (Hess et al, 
2008).  
 
The second approach assumes non-zero design parameter values (e.g., Huber 
and Zwerina 1996; Rose and Bliemer 2005). The values are usually obtained 
from the literature, experience or previous studies. The designs resulting from 
this type can best be described as local optimum as different values may result in 
different designs. Additionally, not all parameters values can be borrowed and 
used in the design, especially parameters associated with qualitative attributes. 
Another strong limitation of this type of design is that it is model specific. As 
stated, earlier efficient designs are obtained by minimizing an objective function 
that is a function of the covariance matrix of an assumed model.  That is the 
analyst must have a priori assumption about the model to fit the data on, so that 
the covariance matrix of the model is minimised during the design stage. In 
practice it will be a big gamble to conduct the survey with the assumption of 
fitting it on only one model type because there is every possibility that the model 
may not result in reliable or intuitive parameter estimates. Although it is generally 
accepted to use a design based on one discrete choice model as an 
approximation for other choice models, there is no way of determining how far it 
is from optimality.  
 
The third approach is called the Bayesian approach (Sándor and Wedel ,2001). 
This type of design does not assume a precise knowledge of the design 
parameter values but assumes that the true parameter values fall within some 
distribution of possible priors. The designs are created by optimising over several 
parameter values drawn from the chosen probability distribution. This design type 
inherits all the limitations of the second approach except that the design obtained 
is averaged over several values. Another limitation about the type of design is the 
choice of the distribution of each design parameter value(s) and how many draws 
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should be used before the Bayesian measure of efficiency will converge to the 
true efficiency level. 
 
In this study we adopt the first approach, where all the parameter values are 
assumed to be simultaneously zero. Our choice of this approach was partly 
motivated by the following reasons: 
 

1. It allows us to generate hundreds of different design instances and 
compare the performance of different algorithms without worrying about 
the values of the design parameters. 

2. It makes it possible to compute a design efficiency measure called D-
efficiency to range from 0 and 100% thus providing useful insights into the 
meaning of 100% efficiency and less than 100% efficient designs.  

3. Freedom to minimise the covariance matrix of a multinomial logit (MNL) 
model in generating the designs (McFaddden 1974). With the assumption 
of zero parameter values there is no benefit in using a more complex 
model as the unconditional probabilities of the alternatives in each choice 
set of all discrete choice models (e.g., NL, GNL, MXL etc) reduce to those 
of the multinomial logit model. 

4. The utility balance (Kuhfeld et al, 2004) property of efficient designs is 
automatically achieved as all alternatives have equal probability and 
hence equal chance of being chosen. The importance of utility balance 
designs is demonstrated in Huber, and Zwerina, (1996).  
 

 
 
 
3.3. Instance Generation 
 
Since there is essentially no reference benchmark available, we developed our 
own instance generator for this study. In this experiment, 3 different attribute 
levels are  drawn from the set {2,3,4}, 3 different alternatives numbers selected 
from the set {2,3,4}, 9 different attribute numbers selected from the set 
{2,3,4,5,6,7,8,9,10}, and 5 different choice situations selected as a function of the 
number attributes and levels such that a feasible and level balance design, can 
be achieved by the algorithms. That is the minimum number of choice situations 
selected was the smallest multiple of the number of attribute levels greater than 
or equal to the number of attributes. For example if there are 4 attributes, each 
with 3 levels, then the smallest choice situation becomes 6. The next one will be 
6 +3 = 9, followed by 6+2*3 = 12 and so on.  We also restricted the maximum 
number of choice situations to be less than LA, where L is the number of levels, 
and A is the number of design attributes since it is the number of choice 
situations in a corresponding full factorial design. So in all we generated a total of 
371 feasible design instances for each of the three algorithms.  
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3.4. Analysis of results 
 
In this section, we compare the performances of our two proposed algorithms 
and the well known Modified Fedorov algorithm (MFA) in terms of D-efficiency 
and level balance efficiency. Both performance criteria are scaled in the range 0 
and 100 such that designs with D-efficiency or level balance efficiency values 
approaching 100% are considered more desirable or more efficient and 
balanced. The algorithms proposed are the PDC and PDC+SA algorithms. The 
PDC+SA algorithm was proposed to improve the performance of the PDC 
algorithm so that it doesn’t get trapped in local optimum during the swapping 
process. 
 
 
3.4.1 Analysis of results with Level balance efficiency 
 
The main strength of the proposed PDC algorithms is the guarantee of 
generating level balance designs irrespective of the number of attributes, 
attribute levels, alternatives or number of choice situations. The ability of the 
modified Fedorov to generate level balance designs worsened with increasing 
number of attribute levels as shown figure 3. The two PDC algorithms produced 
level balanced designs for every instance of the problem. The Modified Fedorov 
algorithm produced less balanced designs with increasing attribute levels. On 
average, the modified Fedorov algorithm generated designs that are only 67% 
balanced.  The PDC algorithms on the other hand were 100% level balanced in 
all cases. Constraining the Modified algorithm to produce level balance designs 
could most likely produce worse efficiency results. 
 
 

 
Fig 3: Level balance of the three algorithms averaged over all the 371 instances 
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3.4.2 Analysis of results with D-efficiency 
 
We first investigated the performances of the algorithms by fixing the other 
variables but varying the alternatives. The result for this analysis is shown in 
figure 4. The figure shows that all the algorithms increase in efficiency with 
increasing number of alternatives.  The two PDC algorithms are consistently 
better than the modified Fedorov algorithm over all alternative numbers. There is 
however no noticeable difference between the 2 PDC algorithms. 
 
We also investigated the performances of the algorithms by fixing the other 
variables but varying the attribute levels.  Figure 5 shows the results for this 
analysis. The figure shows that the performances of the algorithms got worse 
with increasing attribute levels.   
The two PDC algorithms were again consistently better than the modified 
Fedorov algorithm over all attributes levels. The figure also reveals that the 
reduction in performance was worse for the modified Fedorov algorithm with 
increasing attribute levels than the 2 PDC algorithms. Here again, we found no 
noticeable difference between the 2 PDC algorithms. 
 
 

 
Fig 4: Algorithms performaces with increasing number of alternatives 
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Fig 5: Algorithms performaces with increasing number of attribute levels 
 
 
 
3.4.3. Overall performance of the algorithms 
 
Here we look at the overall performances of the three algorithms over the 371 
generated design instances for each algorithm. We also conducted hypothesis 
tests to determine whether the noticeable differences in the performances of the 
algorithms were significant.  
 
Our analysis of the results showed that the average D-efficiency of the modified 
Fedorov (MFD) algorithm (94.28%) could be increased to 97.33% by using the 
PDC algorithm and to 97.28% by using the PDC+SA algorithm. Thus on average 
the PDC and the PDC+SA algorithms were 3.05% and 3.0% respectively better 
than the modified Fedorov algorithm as shown in table 1 and figure 6.  The 
higher standard deviation of the modified Fedorov algorithm also implied that the 
Modified Fedorov algorithm was more likely to generate worse designs than the 
two PDC algorithms. Between the two PDC algorithms, the simulated annealing 
algorithm performed slightly better than swap version under two level attributes. 
The swap algorithm was however slightly better than the simulated annealing 
under the 4 level attributes. 
 
Finally we conducted a hypothesis test to determine if the noticeable differences 
in the performances of the algorithms were significant. The analysed results are 
shown in table 2 and 3.  The p-value in table 2 was approximately 0 indicating 
the performances of the three algorithms were significantly different at 95% 
confidence level. This conclusion was supported by further hypothesis testing 
using Fisher’s least significant difference (LSD) test.  Thus the performances of 
the two PDC algorithms were shown to be significantly better than the modified 
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Fedorov algorithm. There was, however no difference in efficiency between the 
two PDC algorithms. The LSD test results are shown in table 3. 
 
Table 1: Average D-efficiencies with standard deviations for the generated 
design instances 
  Mean Standard Deviation 

Levels 
Modified 
Fedorov PDC  PDC + SA 

Modified 
Fedorov PDC 

PDC + 
SA 

2 97.59 99.49 99.54 3.82 0.76 0.70 
3 93.63 97.28 97.27 6.08 3.85 3.66 
4 91.85 95.36 95.19 6.82 5.27 5.56 

Average 94.28 97.33 97.28 6.21 4.18 4.27 

 
 

 
Fig 6: Overall performances of the three algorithms 
 
Table 2: Analysis of Variance (ANOVA) of experimental results 

Source of Variation SS df MS F P-value F crit 

Between Groups 3204.10 2 1602.05 63.02 1.17E-26 3.0038 
Within Groups 28369.45 1116 25.42     
          
Total 31573.54 1118         

 
Table 3: Fisher’s least Significant difference (LSD) hypothesis results 
Algorithms  Difference Fisher LSD Conclusion 
MFD vs PDC 3.5731 0.7244 Reject 
MFD vs PDC+SA 3.6058 0.7244 Reject 
PDC vs PDC+SA 0.0328 0.7244 Do not reject 
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4. Conclusion 
 

The objective of this paper was to attempt to develop the best possible heuristic 
algorithms that are capable of generating level balance designs without 
significantly affecting the efficiency of the design. Two algorithms were proposed 
and their performances were compared with the well known Modified Fedorov 
algorithm for generating efficient designs. The proposed heuristics were called 
PDC and PDC+SA algorithms and the qualities of designs they generated have 
been tested through experimental studies. 
 
The experimental studies revealed that the ability of the modified Fedorov to 
generate level balance designs worsened with increasing number of attribute 
levels. The overall average level balance efficiency was only 67%. The PDC 
algorithms on the other hand were 100% level balanced in all cases. In terms of 
D-efficiency, PDC and PDC+SA algorithms are on average 3.05% and 3.0% 
respectively better than the modified Fedorov algorithm 
 
The PDC+SA algorithm was proposed to improve the performance of the PDC 
algorithm so that it did not get trapped in local optima during the swapping 
process.  However the PDC+SA ability to escape from the local optimum heavily 
depended on the choice of initial temperature and the cooling schedule, which 
seemed to be dependent of the problem instance. More research is needed to 
test for suitable temperatures and cooling schedules, preferable those that can 
be generated for a given problem instance. Although there were few cases where 
the PDC+SA outperformed the PDC especially with lower attribute levels, the 
average performance of the two algorithms were not significantly different. More 
work is also needed to test the algorithms on real problems with possible prior or 
Bayesian parameter assumptions.  
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