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Problem statement

The increasing availability of detailed, individual-léveobility data enables the es-
timation of complex discrete choice models of travel bebaviThe corresponding
choice contexts, however, may be difficult or impossiblelieayve and hence need to
be imputed. In this work, we focus on the effect of uncertaimthe modeling of travel
time attributes for very simple route choice models. Suateutainty results in partic-
ular if the decision maker is exposed to a changing and/ehsistic environment and
the analyst is unaware of the concrete information acdoseénd learning protocol
implemented by the decision maker.

The analysis is constructed around a synthetic two-rout@ork, where a large
number of travelers select their routes according to a Idysice model that only ac-
counts for congestion-dependent travel times. Synthdigekvations, consisting of
the number of travelers choosing either route per day, ad tesanalyze the charac-
teristics of two different estimators of model parametspegifically, the travel time
coefficient) and of attribute uncertainties (specificalyjparametrized travel time co-
variance matrix). Travel times are assumed to be unaveiltatthe analyst and hence
need to be imputed in the estimation. In brief summary, tivg pstimation of travel
times and their (co)variances appears feasible.

Two-routes example

Consider a microscopic traffic assignment model that dupaites congestion-dependent
route choice. There afd decision makers that select from identical route choice set
Cn = C ={A, B}. The choice of travelet is written asi,, € C. Letting
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be the flow on routé € {A, B}, its sole attribute is its congestion-dependent traved tim

ti = aini+ by (2



wherel(-) is the indicator function and;, b; are known parameters of the congestion-
dependent network loading mechanism. Travalassigns to routethe random utility

uni = HE{ti}+5ni (3)

wherep is a coefficient for the expected (mean) travel tigfé; } ande,; is a stochastic
error term, leading to a random utility model that assigresgtobabilityP,, (i | t; i) to
the event of travelen choosing routé given travel times$ = (ta, tg) and travel time
coefficienty.

We now assume that the analyst is uncertain about the travplrception of travel
time because of recent fluctuations in the network conditeomd the unavailability of
a model describing the travelers’ perception and learnfrijese fluctuations. Letting
the random variable

Zni = E{ti} +1ni (4)

represent the (to the analyst unknown) perception of temvebf routei’s travel time,
with n;,,; being a stochastic error term, one obtains the model

uni = Hzni + €ni
= pE{tit+ (Unni + eni). )

The challenge in estimating this model is the fact that tmerdgermsn,,; may have
a fairly complicated dependency structure. First, therg beadependency across al-
ternatives. This dependency is at least in parts owed toattetiiat the information
processed by the traveler consists of previously obseragdlttimes, which were gen-
erated by a physical process of network flow propagation stithng interactions be-
tween routes. Second, there may be dependency acrosslimalbecause all decision
makers were exposed to and hence have observed the sameapbgsironment.

M ethodology

This work is based on the assumption that real decision reakgrlement some kind
of learning and exploration protocol on which they baserthehavior, but it is not
assumed that the analyst is able to model this protocol. Tadyst should hence
model the corresponding attributes of alternatives asaandariables, including a
realistic dependency structure.

This is possible by generating these attributes within a stochastic process frame-
work that in other work has been used as an approximation of actual learning. In the
present work, however, the purpose of this stochastic process approach is to simulate
stochastic attributes with a realistic dependency structure, without any claimto model
human learning.

The following stochastic process model is considered.

1. Give each travelen some initial informatiorZ,, = (Za n,Zg,n) about route
travel times.

2. Repeat the following process until stationarity is aubai.



(a) Leteach traveler select a route according to the mbgél | 1, Z,).
(b) Compute the resulting route flows and route travel times (Ta, Tg).
(c) Update each traveler’s travel time information accogdd

Zn—oZn+(1—o)T
with « € [0, 1) controlling the degree of smoothing in this update process.

Assuming, for simplicity, (i) that all travelers share idieal information and (ii) that
the mapping of current knowledg@eon (choices on flows on) resulting travel times
is approximated well by a linear model, one obtains

E{(Z} = HET} (6)
1—«a

VAR{Z} = T 0(VAR{T}. @)
That is, the stochastic travel time update process (i) do¢sntroduce a bias into
the simulated travel time perception, (ii) exhibits the sazorrelation structure as the
unfiltered travel times, and (iii) has a level of randomnésd ts parametrized by the
parametet, ranging from almost zero (fat — 1) to that of the unfiltered travel times
(for o« = 0). This stochastic process model can hence be used to samalze choice
decisions based on imputed and congestion dependenttiraeslwith a parametrized
covariance structure. The simulation-based nature oéfifisoach needs to be stressed,
in that the travel time covariance matrix is not explicithesified but results from the
iterative congestion feedback loop.

Experiments

Synthetic data is generated by a verbatim implementatiothefstochastic process
model described before. This clearly is a simplificationa@s previously explicitly
assumed that the analyst is unaware of the concrete legwnitgcol implemented by
the travelers), but it is a useful first step to investigateitientifiability of the model.

A homogeneous population & = 1000 travelers is assumed, all of which select
a route in every day based on a logit-form choice mdygl | Z, 1). Different setting
of panda lead to different stationary dynamics of this process. Fédushows several
histograms oveR = 1000 independent realizations of the stationary flow on rolute
indicating oscillations for low smoothing coefficientsn conjunction with high travel
time coefficientsut.

Two different estimators of the parameténs «) are then investigated. Both are
simulation-based in that they incorporate the previouslsctibed stochastic process
model in order to capture travel time variability. Their etiive functions, however,
are different. The first estimator is based on a nonlineat Isguares objective func-
tion, while the second estimator uses a maximume-likelihfaochulation. The main
difference of the two estimators is that the least squatésa&®r implicitly assumes a
univariate flow distribution, whereas the maximum likelldlestimator also allows for
multivariate distributions.
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Figure 1: Histogram of stationary traffic flow on rouvie
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Figure 2: Least Squares objective functions
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Figure 3: Log-likelihood functions
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These properties are also reflected in the objective funstishown in Figure 2
and 3, the latter displaying the negative log-likelihooddtion. In all Figures, the
blue dashed cross represents the true parameter valuesl @asvhich the simulated
observations were generated), and a red square is put onithpajnt with overall
smallest objective function value. Due to the relativelgthcomputational cost, the
functions are plotted on a coarse grid that is somewhat diggéoth cases. While
a comprehensive discussion of these and further resultsstppned to the full paper,
the following observations can already be made based ofirtisisual impression.

1. The least squares objective function is relatively dhbved, with long valleys
and multiple optima. A search algorithm would have diffiegtin identifying a
global optimum, and the alpha parameter appears hardlyifidéte.

2. The maximum-likelihood estimator is better behavedhwiiultiple optima oc-
curring only in the case of oscillating system behavior. &hmarameter appears
identifiable, and it appears possible to recovernthmrameter without bias.



