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Problem statement

The increasing availability of detailed, individual-level mobility data enables the es-
timation of complex discrete choice models of travel behavior. The corresponding
choice contexts, however, may be difficult or impossible to observe and hence need to
be imputed. In this work, we focus on the effect of uncertainty in the modeling of travel
time attributes for very simple route choice models. Such uncertainty results in partic-
ular if the decision maker is exposed to a changing and/or stochastic environment and
the analyst is unaware of the concrete information acquisition and learning protocol
implemented by the decision maker.

The analysis is constructed around a synthetic two-route network, where a large
number of travelers select their routes according to a logitchoice model that only ac-
counts for congestion-dependent travel times. Synthetic observations, consisting of
the number of travelers choosing either route per day, are used to analyze the charac-
teristics of two different estimators of model parameters (specifically, the travel time
coefficient) and of attribute uncertainties (specifically,a parametrized travel time co-
variance matrix). Travel times are assumed to be unavailable to the analyst and hence
need to be imputed in the estimation. In brief summary, the joint estimation of travel
times and their (co)variances appears feasible.

Two-routes example

Consider a microscopic traffic assignment model that equilibrates congestion-dependent
route choice. There areN decision makers that select from identical route choice sets
Cn = C = {A,B}. The choice of travelern is written asin ∈ C. Letting

ni =

N∑

n=1

1(in = i) (1)

be the flow on routei ∈ {A,B}, its sole attribute is its congestion-dependent travel time

ti = aini + bi (2)

1



where1(·) is the indicator function andai, bi are known parameters of the congestion-
dependent network loading mechanism. Travelern assigns to routei the random utility

Uni = µE{ti}+ εni (3)

whereµ is a coefficient for the expected (mean) travel timeE{ti} andεni is a stochastic
error term, leading to a random utility model that assigns the probabilityPn(i | t;µ) to
the event of travelern choosing routei given travel timest = (tA, tB) and travel time
coefficientµ.

We now assume that the analyst is uncertain about the travelers’ perception of travel
time because of recent fluctuations in the network conditions and the unavailability of
a model describing the travelers’ perception and learning of these fluctuations. Letting
the random variable

Zni = E{ti}+ ηni (4)

represent the (to the analyst unknown) perception of travelern of routei’s travel time,
with ηni being a stochastic error term, one obtains the model

Uni = µZni + εni

= µE{ti}+ (µηni + εni). (5)

The challenge in estimating this model is the fact that the error termsηni may have
a fairly complicated dependency structure. First, there may be dependency across al-
ternatives. This dependency is at least in parts owed to the fact that the information
processed by the traveler consists of previously observed travel times, which were gen-
erated by a physical process of network flow propagation withstrong interactions be-
tween routes. Second, there may be dependency across individuals because all decision
makers were exposed to and hence have observed the same physical environment.

Methodology

This work is based on the assumption that real decision makers implement some kind
of learning and exploration protocol on which they base their behavior, but it is not
assumed that the analyst is able to model this protocol. The analyst should hence
model the corresponding attributes of alternatives as random variables, including a
realistic dependency structure.

This is possible by generating these attributes within a stochastic process frame-
work that in other work has been used as an approximation of actual learning. In the
present work, however, the purpose of this stochastic process approach is to simulate
stochastic attributes with a realistic dependency structure, without any claim to model
human learning.

The following stochastic process model is considered.

1. Give each travelern some initial informationZn = (ZA,n, ZB,n) about route
travel times.

2. Repeat the following process until stationarity is attained.
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(a) Let each traveler select a route according to the modelPn(i | µ,Zn).

(b) Compute the resulting route flows and route travel timesT = (TA, TB).

(c) Update each traveler’s travel time information according to

Zn ← αZn + (1− α)T

with α ∈ [0, 1) controlling the degree of smoothing in this update process.

Assuming, for simplicity, (i) that all travelers share identical information and (ii) that
the mapping of current knowledgeZ on (choices on flows on) resulting travel timesT
is approximated well by a linear model, one obtains

E{Z} = E{T} (6)

VAR{Z} =
1− α

1+ α
VAR{T}. (7)

That is, the stochastic travel time update process (i) does not introduce a bias into
the simulated travel time perception, (ii) exhibits the same correlation structure as the
unfiltered travel times, and (iii) has a level of randomness that is parametrized by the
parameterα, ranging from almost zero (forα→ 1) to that of the unfiltered travel times
(for α = 0). This stochastic process model can hence be used to simulate route choice
decisions based on imputed and congestion dependent traveltimes with a parametrized
covariance structure. The simulation-based nature of thisapproach needs to be stressed,
in that the travel time covariance matrix is not explicitly specified but results from the
iterative congestion feedback loop.

Experiments

Synthetic data is generated by a verbatim implementation ofthe stochastic process
model described before. This clearly is a simplification (itwas previously explicitly
assumed that the analyst is unaware of the concrete learningprotocol implemented by
the travelers), but it is a useful first step to investigate the identifiability of the model.

A homogeneous population ofN = 1000 travelers is assumed, all of which select
a route in every day based on a logit-form choice modelPn(i | Z, µ). Different setting
of µ andα lead to different stationary dynamics of this process. Figure 1 shows several
histograms overR = 1000 independent realizations of the stationary flow on routeA,
indicating oscillations for low smoothing coefficientsα in conjunction with high travel
time coefficientsµ.

Two different estimators of the parameters(η, α) are then investigated. Both are
simulation-based in that they incorporate the previously described stochastic process
model in order to capture travel time variability. Their objective functions, however,
are different. The first estimator is based on a nonlinear least squares objective func-
tion, while the second estimator uses a maximum-likelihoodformulation. The main
difference of the two estimators is that the least squares estimator implicitly assumes a
univariate flow distribution, whereas the maximum likelihood estimator also allows for
multivariate distributions.
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Figure 1: Histogram of stationary traffic flow on routeA
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Figure 2: Least Squares objective functions
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Figure 3: Log-likelihood functions
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These properties are also reflected in the objective functions, shown in Figure 2
and 3, the latter displaying the negative log-likelihood function. In all Figures, the
blue dashed cross represents the true parameter values (based on which the simulated
observations were generated), and a red square is put on the grid point with overall
smallest objective function value. Due to the relatively high computational cost, the
functions are plotted on a coarse grid that is somewhat rugged in both cases. While
a comprehensive discussion of these and further results is postponed to the full paper,
the following observations can already be made based on thisfirst visual impression.

1. The least squares objective function is relatively ill-behaved, with long valleys
and multiple optima. A search algorithm would have difficulties in identifying a
global optimum, and the alpha parameter appears hardly identifiable.

2. The maximum-likelihood estimator is better behaved, with multiple optima oc-
curring only in the case of oscillating system behavior. Theα parameter appears
identifiable, and it appears possible to recover theµ parameter without bias.
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