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Understanding travel time variability has become extremely important, especially since it has been 

shown that drivers value travel time reliability somewhere between 50 and 80 percent as much as they 

value travel time [1, 2, 3]. Recent studies have developed empirical relationships between average 

travel time and travel time reliability which show an increasing relationship between mean travel time 

and travel time variance (a measure of the inverse of travel time variability) [4, 5, 6, 7]. However, 

more recent literature has found evidence that this relationship might be more complex. Figure 1 

shows data from a single bottleneck in which the relationship between mean travel time and travel 

time variance follows a clockwise pattern – travel time variance is greater during the dissipation of 

congestion than during the onset of congestion for a given value of mean travel time. This relationship 

was also observed in the case of a single link [9].  



 

 

Figure 1: Hysteresis observed on a 11 mile road section in Copenhagen [8] 

Though the study by Fosgerau [8] provides a theoretical proof for this anti-clockwise 

hysteresis pattern at a single bottleneck, it is still not clear what relationship exists between the mean 

and variance of travel time on a particular route or even across an entire network. Some recent 

empirical data collected on travel times on the street network in Leeds, UK suggests the existence of 

anti-clockwise loops at a network level; see Figure 2 [9].  However, it is not known if this pattern is 

typical of urban street networks or if other types of relationships should be expected. The existence 

and prevalence of different patterns on urban networks is interesting and extremely relevant to model 

correctly to understand network reliability. 

 

Figure 2: Hysteresis Observed in relationship between variance and mean travel time from 

Leeds in 2003 [Generated Using Data from 9] 

 

0

20

40

60

80

100

120

140

160

180

200

1000 1500 2000 2500

V
a

ri
a

n
ce

 o
f 

T
ra

v
el

 T
im

e
 

Travel Time (Seconds) 

07:15AM-08:20AM

08:20AM-11:00AM



Macroscopic models of urban traffic might yield some insight into the relationship between 

travel time and travel time reliability. One such model is the Macroscopic Fundamental Diagram 

(MFD) [10, 11], which describes the relationship between the average network flow and average 

network density. This relationship has been shown to exist in theory [11], simulation results [12], and 

empirical data [13] for networks in which drivers distribute themselves evenly across all links in a 

network. Recently, hysteresis has been observed in the MFD of urban networks [14] and freeway 

systems [15]. These hysteresis patterns can be attributed to natural instabilities that exist within traffic 

networks [12, 16]. This theoretical work also shows under what conditions the different hysteresis 

patterns shown in Figure 3 might arise on macroscopic traffic relationships. It was also found that a 

clockwise hysteresis is the most prevalent pattern for completely symmetric networks with uniform 

demand patterns [16]. 

 

Figure 3. Types of patterns observed in a Macroscopic Fundamental Diagram [16] 

This theoretical work has also shown that networks follow a stable and higher flow-density 

path as vehicles initially enter the network. However at the onset of congestion the flow-density paths 

become unstable and less predictable [16]. Small perturbations in vehicle distributions across the 

network when it is highly congested or is recovering from congestion can lead to different flow-

density paths on the MFD. Looking at these relationships over multiple days, day-to-day variations in 

supply or demand (i.e., fluctuations in the capacities of different links or intersections) can lead to 

stochastic variations in density in the system at a given time of day. While these variations in density 

should not change the path much during the stable loading period, they can lead to very different paths 

during congestion and recovery over different days.  

The day-to-day variations in the MFD and its relationship to the hysteresis observed in 

variance of travel time against mean travel time is examined here using a micro-simulation of an urban 

traffic network. The network chosen was a part of the downtown Orlando network that was built, 

calibrated and validated in the VISSIM software [17]. The simulation was run 28 times to capture day-

to-day in average travel time. Generalized speed, travel time, flows and density were estimated based 

on the vehicle trajectory data over a 120 second interval using Edie’s generalized definitions [18].  



 The average network flow-density relationship during the loading and recovery phases are 

displayed in Figure 4 for three randomly chosen days of simulation runs that are indicative of the 

entire 28 day simulation dataset. As expected by Gayah and Daganzo [16], this relationship shows a 

clear clockwise pattern. Notice how the flow-density relationships overlap as vehicles initially enter 

the network. However, as the densities get higher, at the onset of congestion, the flow-density paths 

start to vary significantly over the three days. This chaotic network behavior near capacity can be 

attributed to quick fluctuations in flow at capacity values that might end up violating the steady state 

assumptions that are critical to the MFD [19]. Another reason for this chaotic behavior near maximum 

flow is the instability that arises as the network transitions from loading to recovery states [16]. During 

the recovery period, the paths followed on the three days are significantly different from each other 

due to this inherent instability.  

 

 

Figure 4. The evolution of flow and density for three days 

Loading paths on a flow-density diagram that are similar over many days indicate that travel 

speeds on the network will be similar during the loading period. However multiple values of flow 

observed at the onset of congestion and during recovery imply that over many days different network 

speeds will be observed at a given time. Therefore, a lower variance in travel speed (and, thus, travel 

time) is observed during loading as compared to during recovery. The evolution of the variance in 

average travel time per mile and mean travel time per mile is displayed in Figure 5. Note that, as 
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expected, variance in travel times is low during loading. When the average travel time becomes high 

(i.e., the network becomes congested), the variance in travel times starts to increase due to the various 

paths taken on the MFD. The variance in travel time remains high during recovery again due to the 

multiple recovery paths followed on the MFD.  

 

Figure 5. Relationship between variance in travel time per mile and density 

Though an anti-clockwise hysteresis pattern between mean travel time and travel time 

variance was observed here, there were slight deviations which can be attributed to quick fluctuations 

in flow at capacity levels that might have violated steady state conditions. Further research needs to be 

undertaken to study this phenomena more carefully. Additionally, while this study focused on day-to-

day variations in travel time, there is a need to study variations in travel time across a network on a 

given day. 
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