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1 Introduction 

In traffic models certain presumptions are often made to simplify the complex systems 

that rule the world of traffic flow. This is necessary as not every variable can be considered. 

Furthermore, it is commonplace that equilibrium states are sought that give a good average, 

or rather deterministic, representation of the dynamics of traffic. Such an approach makes 

presumptions of traffic demand and supply for a (non-existent) average situation. However 

there must be a realisation that traffic is hardly ever ‘average’ [1]. It is especially in the terms 

‘average’ and ‘deterministic’ that a realisation must exist that these terms are composed of 

extensively varying situations. By considering real stochasticity in these processes, a more 

complete picture of the traffic system is gained [2, 3].    

 

2 Stochasticity in Traffic Models 

Stochasticity is generally incorporated in traffic modelling through two main methods: 

analytical, or replicative simulations through Monte Carlo simulation or a derivative thereof. 

The latter is often seen as a simpler approach, however demands a high computational effort 

[4]. It is in an effort to reduce this computational load and speed up stochastic calculation, 

that advanced methods of sampling are investigated in this contribution for their ability to do 

so. This contribution describes two advanced sampling methods to reduce computational load 

in probabilistic traffic modelling, demonstrates their efficiency in an experimental case, and 

makes a comparison between the methods and simple Monte Carlo simulation. The objective 



of this contribution is to demonstrate the effectiveness of these methods for computational 

reduction when considering multiple variations in demand and supply variables. Initial results 

are shown hereof.      

 

3 Advanced Sampling 

The considered sampling methods in this research are Importance sampling and Latin 

Hypercube sampling. Simulations are also applied for simple random sampling as a reference 

method. Importance sampling is a technique used in Monte Carlo simulation that gives extra 

consideration to the outlying sections of a distribution which have a lower probability of 

being sampled, but have a relatively large influence on the output variable [5]. By giving the 

extremities of a distribution a greater probability than they originally, a higher chance of 

being sampled is created and therefore the rate at which the output distribution is ‘complete’ 

is greater.  

Latin hypercube sampling is a stratified sampling technique that, other than general 

stratified sampling, ensures that the entire sample space for multiple input variables is 

sufficiently covered [6, 7]. The method is an extension of quota sampling. The basic method 

sees variables evenly sampled from the sample spaces, also known as a d-dimensional 

hypercube. Combinations of the samples are randomly generated, such that a good spread of 

samples is achieved to form a single target function. This can be applied on any number of 

dimensions of variables, but is applied in this research in two dimensions.  

 

4 Case Study 

A comparison is made between the two sampling methods and on a reference method. 

This is performed through their application in a dynamic macroscopic traffic model on a real 

urban freeway network. For each method the values of both the capacity and of the traffic 

demand are varied according to predefined distributions (see Fig. 1 and 2), which apply a 

certain multiplication factor for each simulation. Each method is applied with varying 

samples for 200 simulations. The travel time along the main corridor is recorded in each 

simulation. These results are collected and are analysed for convergence using distribution 

convergence using the squared error of the distribution (SEd) from the Central Limit 

Theorem (CLT). Furthermore an analysis is made of the resulting travel time distributions to 

test the accuracy of the results.   
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Fig. 1-2: Cumulative Density Function of the Capacity factor (left) and Traffic Demand factor 

(right) 

The convergence method of the Central Limit Theorem (CLT) states that for large 

number of samples n, the random sum Sn has a distribution that increasingly approximates a 

normal distribution with expectation nµ and variance σ2. The rate at which the distribution of 

Sn approaches the normal distribution acts as a convergence indicator tested against the 

squared error in the area of the distribution in comparison to the normal distribution. The 

CLT states that: 

 �� − ��
�√� 	→ 
~	�
0,1�				��		� → ∞ 

(1) 

 

Therefore the mean square error of the distribution is written as such: 

 

 � =�

� − �
0,1���
�

 
(2) 

 where:  Yn is the normalised distribution of Sn 

 

The results of the three methods are collected as distributions from the CLT method. An 

example of the convergence towards the normal distribution for the CLT is given for the 

Latin Hypercube method for increasing iterations in Figure 3. Here the convergence towards 

the normal distribution is evident. 

 

 

 

 

    

 

 

Fig. 3: Central Limit Theorem distributions for convergence. Travel time with input samples from 

Latin Hypercube.  
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5 Results 

The CLT squared distribution error for increasing sample size n, depicting the rate of 

convergence, is given in Figure 4 for each method. There it is shown, on a logarithmic and 

linear scale that the Latin Hypercube method converges at a greater rate than that of simple 

random sampling. This is especially the case for the initial samples. However the 

improvement is not large. Importance sampling in this experiment however does not show a 

significant improvement, but rather a decrease in convergence speed. 

 

   

 

 

 

 

 

 

 

 

 

Fig. 4: Central Limit theorem convergence rate for three sampling methods on a  

logarithmic-scale (left) and on a linear scale (right). 

 

A greater rate of convergence allows a practitioner to reduce the required number of 

simulations and therefore the required calculation time in applying the Monte Carlo 

technique. This is the case as seen with the improvement for the Latin Hypercube method. 

This result is in line with expectations, as the method is far more structured in the manner that 

samples are taken and therefore can give a far more representative distribution of the system 

with fewer samples than with random sampling. The method of Importance sampling should, 

in theory, also show an improvement. However this method has the drawback that a 

predefined ‘dummy’ distribution is required which acts to focus sampling on certain values. 

Determining the best distribution to apply is not trivial and may often require a certain 

amount of trial-and-error. In this research, up to now, the applied distribution is obviously not 

optimal, even after a few attempts. The fact that one requires a nominal ‘dummy’ distribution, 

however, does make the application of this method somewhat more cumbersome in 

comparison to methods that do not require such tweaking in advance. 



6 Conclusion 

In conclusion, the results of this research have so far shown that Latin Hypercube 

sampling is an effective method for reducing the computational load in such a way. 

Importance sampling was not shown to improve convergence, however this method is very 

dependent on the initial nominal distribution and therefore is harder to apply effectively. 

However the full effectiveness of Latin Hypercube method has not yet been conclusively 

proven. In the full paper further experimental results demonstrating the full potential of 

advanced sampling are given.  A more comprehensive description is given of the methods 

and their mathematical properties. Convergence is also tested according to the Berry-Esseen 

theorem of CLT convergence. Furthermore a greater in-depth analysis is performed on all the 

results and their implementations for assisting probabilistic modelling. 
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