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Abstract

Indices of sinuosity, eccentricity and accessibility play a major role in spatial plan-

ning, quantitative geography, and data-analytic studies. Optimal transportation, path

transformation and nodes clustering issues are discussed and illustrated on the com-

plete pedestrian network of Lausanne (27’219 nodes and 31’482 edges).

1 Introduction

The present study exploits and analyses the complete pedestrian network G = (V,E) of

the city of Lausanne (135’000 inhabitants, 16 km2), consisting of a total of |V | = 27′219

nodes and |E| = 31′482 edges, as managed by a GIS. “Named nodes” i = 1, . . . , n will in

the sequel refer to a subset of n = 9′613 nodes consisting of building locations, endowed

with an address, inhabited or not. The creation of the network was motivated by the need

to determine a fair scheme allowing the 12’016 schoolchildren to be granted free or semi-

supported access to the public bus transportation system, depending on the pedestrian

distance to the schools, as well as on the age of the children (Figure 1).

This paper investigates the spatial behaviour of the sinuosity, eccentricity and ac-

cessibility indices on a real, detailed dataset, consisting of the distances between pairs

(shortest-path and Euclidean) and the weights of nodes. Those indices are, beside their

descriptive value originating in quantitative geography, most central to planning issues



Figure 1: Complete pedestrian network of the city of Lausanne (left) together with the

number of schoolchildren, proportional to the nodes weight f (right).

(minimum transportation, minimum cost, short-cuts building) as well as data-analytic is-

sues (geometry of distances, clustering), a fact we shall attempt to exemplify and illustrate

in Sections 2, 3 and 4.

2 Distances comparison and sinuosity

Two sorts of distances between pairs (i, j) of nodes can be extracted from the ArcGIS

database: the straight or Euclidean distances deij and the pedestrian or shortest path

distances dspij . The latter are kept symmetric in this study, thus neglecting the noticeable

effect of slope in Lausanne: however interesting, a formally coherent approach involving

asymmetric distances seems yet to be constructed. Also, pedestrian walks arguably include

the anticipation and incorporation of return trips, thus cancelling the asymmetry.

In addition, nodes are weighted by a distribution f (with fi ≥ 0 and
∑n
i=1 fi = 1),

representing in this sudy the proportion of schoolchildren inhabiting node i. Uniform

distributions fi = 1/n yield unweighted graphs.

Analyzing scatterplots of dsp versus de yield a pertinent overview of the network con-

nectivity. Linear pattern indicates a good connectivity with dsp ≈ de (Figure 2), while

more diffuse or non-linear patterns indicate a lack of connectivity (Figures 3 and 4). Pos-

sible locations for new pedestrian shortcuts can be highlighted by visualizing cases with

low de and high dsp values (Figures 3 and 4).
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Figure 2: “Rue Centrale” district (441 nodes in the centre of Lausanne, left) and its

associated scatterplot (right), displaying linearity. The expected shortest-path distances,

as predicted by the Euclidean distances by unweighted linear regression on all pairs of

distinct nodes, are d̂spij = 1.17 deij + 46.3 (in meters), with r2 = 0.96.
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Figure 3: “Plaisance” district (255 nodes, North-East, left). Selecting points in scatter-

plots can identify possible new shortcut areas. Middle: S1 selection. Right: S2 selection.
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Figure 4: “Montoie ” district (195 nodes, South-West), together with three new pedestrian

shortcuts (left). Middle: actual configuration. Right: creating the shortcuts decreases

some shortest-path distances, and increases the linearity of the scatterplot.



Figure 5: Subpart of the “Plaisance” district. The average sinuosity Z (high values in red,

low values in yellow) detects nodes located in dead-ends or along sinuous streets.

By construction, the sinusoity index δij := (dspij −deij)/deij is non-negative. For instance,

the typical sinuosity in the “Rue Centrale” district is 0.17 at large distances, in view of

the results of the regression (Figure 2). The average sinusoity Zi :=
∑
j∈A δij/n(A) (where

n(A) is the number of nodes in district A) takes on its largest values at nodes located in

dead-ends or along sinuous streets (Figure 5; see also Emmanouilidis 2012).

3 Eccentricities and accessibilities

Let the distances d between nodes together with their weights f to be known. The eccen-

tricity ei and accessibility ai of node i are

ei :=
∑
j

fj F (dij) ai :=
∑
j

fj G(dij) (1)

where d stands for some distance (typically shortest-path dsp, or Euclidean de) and F (d)

is an increasing function of the distance d, defining a travel cost or effort. The average

eccentricity
∑
i fiei =

∑
ij fifjF (dij) is a measure of the spatial dispersion of the network.

The node i minimizing ei defines a centroid, coinciding with

• the gravity center of the district in the squared Euclidean case F (de) = (de)2

• the medioid for F (de) = de (e.g. Kaufman and Rousseeuw 1990)

• the p-median in the shortest-path set-up F (dsp) = dsp (e.g. Hakimi 1965).



Figure 6: Eccentricities t district of Lausanne (4392 nodes), with penalty functions F (d)

defined as de (top, left), dsp (top, right), (dsp)2 (bottom, left) and
√
dsp (bottom, right).

The cross denotes the corresponding centroid.

Remote locations are effectively taken into account iff F (d) is strongly increasing: when

F (d) is flat, little case is specifically made of peripheral contributions. In the context

of the optimal locations L(g) of facilities g = 1, . . . ,m, such as schools, setting a specific

functional form of F (d) hence defines a specific spatial equity scheme, paralleling the formal

issues involved with robust estimates of central tendency. Here the problem consists in

minimising the total cost facilities

C(Z,L) :=
n∑
i=1

m∑
g=1

fizigF (diL(g)) (2)

where Z = (zig) is a n ×m attribution or membership matrix zig (obeying zig ≥ 0 and∑
g zig = 1), specifying the proportion of children living at i to be sent at school g located

at L(g).

By contrast, G(d) in (1) is a decreasing of the distance d, a large value of which charac-

terises easily attainable locations, thus providing an alternative concept of centrality. G(d)



is the distance-deterrence function, discounting for walks at large distances, and behav-

ing as a physical potential in the Gravity model of geographers. Numerical calculations

show that long-range potentials (algebraic decay, typically) tend to produce unimodal

accessibilities, while short- range potentials (exponential decay, typically) act as a local

filter erasing the surroundings beyond some characteristic distance, hence alleviating the

difficulties associated with finite observation windows. Moreover, the latter turn out to

generate local maxima of accessibility (Figure 7).

Figure 7: Accessibilities in the North-West district of Lausanne, with distance deterrence

functions G(d) defined as 1/dsp (top, left, where identical nodes have been discarded),

1/(a + dsp) where a is the average unweighted shortest-path distance between pairs in

the district (top, right), exp(−λdsp) with λ = 0.01 (bottom, left) and λ = 0.03 (bottom,

right). The cross denotes the node with maximal accessibility. Note the appearance of

local maxima of accessibility for the short-ranged exponential potentials (bottom).



3.1 Within-districts and -groups: hard and soft

The eccentricity eAi and accessibility aAi of node i in (hard) district A (where A can vary

form the whole city to a single node) are defined as

eAi =
∑
j

fAj F (dij) aAi =
∑
j

fAj G(dij) fAj =
fj 1(j ∈ A)∑

k∈A fk
. (3)

Here fAj is the straightforward restriction of fj to some district A of Lausanne (recall the

characteristic function to be 1(S) = 1 if S is true, and 1(S) = 0 otherwise). Figure 6

depicts the eccentricities for the North-West district, and Figure 7 the accessibilities.

Similarly, “soft districts” g = 1, . . . ,m, together with associated eccentricities eg and

accessibilities ag can be defined by replacing fA in (3) by the “fuzzy profile” fg defined as

fgi :=
fizig
ρg

ρg :=
∑
i

fizig

obeying fgi ≥ 0 and
∑
i f

g
i = 1 as well as ρg > 0 and

∑
g ρg = 1, where Z = (zig) is the

(generally non-binary) membership matrix in (2).

3.2 Euclidean transformations of the distances

The Euclidean (or not) nature of the network distances d has important consequences:

if d is Euclidean, the nodes can be embedded by multidimensional scaling (MDS) in a

continuum of dimension at most n−1 (e.g. Mardia et al. 1979), on which new locations can

be created, typically by mixtures of nodes coordinates. But no such underlying continuum

exists in general for non-Euclidean distances d, where the only candidates of locational

optima of any kind are restricted to the n nodes themselves.

Transformations of distances, as defined by the penalty and potential functions F (d)

and G(d), are in that respect relevant to pure and applied geometry, besides their ability

to assess nodes centrality and accessibility. Interestingly enough:

• the shortest-path distance dsp is not Euclidean, but general theorems (Joly and Le

Calvé 1986) guarantee the existence of a threshold α0 ∈ (0, 1) such that F (dsp) =

(dsp)α is indeed an Euclidean distance, for any α ∈ [0, α0] (Figures 8 and 9)

• short-range penalties of the form Fλ(de) = 1 − exp[−λ(de)2], with λ > 0, known

as Gaussian radial basis kernel in Machine Learning, transforms an Euclidean dis-

tance de into a squared Euclidean distance. Such is also the case of mixtures (over



λ) of penalties Fλ(de). As a matter of fact, the latter class of so-called Schoen-

berg transformations does constitute the most general class of Euclidean-preserving

transformations (e.g. Bavaud 2011).

Figure 8: Pedestrian network, district South. Transforming the shortest-paths distances

as (dsp)α produces Euclidean distances for 0 ≤ α ≤ 0.37
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Figure 9: Exact multidimensional scaling (MDS) nodes reconstruction of the pedestrian

network of district South, from the Euclidean distances de := (dsp)0.37. Nodes are em-

bedded into a higher-dimensional Euclidean space, thus disrupting the planarity of the

network. The first four factorial dimensions depicted above express only 32% of the total

inertia 1
2
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2.

4 Clustering

Another stimulating development considers the construction of new clustering algorithms

aimed at partitioning the city into m regions, optimal from the point of view of pedes-

trians in that they minimise the average spatial trip penalty to facilities (schools, shops,



services) located (or not) at the centroids of the regions. Clustering the network consists

in attributing each of the n nodes to one group g = 1, . . . ,m, where the number of groups

m is here hold as fixed. In general, the clustering attempts to minimise a given objective

function such as the total cost C(Z,L) in (2), or to maximise the total accessibility

A(Z,L) :=
n∑
i=1

m∑
g=1

fizigG(diL(g)) (4)

where G(d) is a distance-deterrence function.

If F (d) is an Euclidean distance, the optimal locations L(g) can be freely chosen in

the underlying continuous embedding space (section 3.2), as in the K-means algorithm.

In the general case, F (d) is not Euclidean and the optimal location candidates L(g) are

restricted within the set of existing nodes, as assumed here.

In any case, the resulting clusterings are hard, that is node i is attributed to the

(supposedly unique) group g = arg minmh=1 F (diL(h)) for the total cost clustering, or g =

arg maxmh=1G(diL(h)) for the total accessibility clustering. In particular, the memberships

zig take on binary 0/1 values only.

Soft clusterings, allowing multiple nodes-groups attributions, may also be produced by

minimizing an “entropy-augmented cost” of the form

min
Z,L

C[Z,L] + TI[Z] = min
Z

C[Z,L(Z)] + TI[Z]

where the additional entropy term I[Z] is the nodes-group mutual information, and T > 0

is a free parameter, favoring multiple memberships, interpretable as a temperature (Rose

1998; Bavaud 2010). Soft clusterings may be preferred because of their better aptitude

to adequately characterise nodes located at the border of two groups, or for improving

iterative clustering algorithms by “simulated annealing” techniques (Rose 1998).

In the soft, cost-driven, non-Euclidean case, the optimal membership Z = (zig) and

locations L(g) can be shown (e.g. Bavaud 2010) to obey the conditions (yielding to an

obvious iterative solving scheme):

ρg =
n∑
i=1

fizig L(g) = arg
n

min
i=1

∑
j

fjzjg
ρg

F (dij) zig =
ρg exp(−βF (diL(g)))∑m
h=1 ρh exp(−βF (diL(h)))

(5)

Here β := 1/T > 0 is the inverse temperature controlling for the sharpness of the groups.



In the limit β → ∞, one recovers the usual hard clustering iterating procedure, where

the group g = g[i] to which i belongs, and its location L(g) are determined by

g[i] = arg
m

min
h=1

F (diL(h)) L(g) = arg
n

min
i=1

∑
j∈g

fjF (dij) = arg
n

min
i=1

egi (6)

Another family of spatial clusterings arises from constrained facilites problems, where

locations L∗(g) and weights ρ∗g are fixed, as for schools, each endowed with a relative

capacity ρ∗g with
∑
g ρ
∗
g = 1. The constrained total cost problem

min
Z
C(Z,L∗) = min

Z

n∑
i=1

m∑
g=1

fizigF (diL∗(g)) with
∑
i

fizig
!

= ρ∗g

is nothing but the famous optimal transportation problem of operations research. Inter-

estingly enough, in the squared Euclidean case F (de) = (de)2, the objective can be shown

to reduce to

C(Z,L∗) = ∆W [Z] +
∑
g

ρ∗g(d
e
L(g)L∗(g))

2 (7)

where ∆W [Z] is the within-cluster dispersion (Bavaud 2010), to be minimised in Ward

clustering method, and deL(g)L∗(g) is the distance between the gravity center of the group

L(g)[Z] and the real location L∗(g).

A soft clustering scheme for constrained facilites problems can be constructed following

the same lines as the unconstrained case, and results in memberships - compare with (5):

zig =
ρ∗gεg exp(−βF (diL∗(g)))∑
h ρ
∗
hεh exp(−βF (diL∗(h)))

where
1

εg
=

∑
i

fi exp(−βF (diL∗(g)))∑
h ρ
∗
hεh exp(−βF (diL∗(h)))

(8)

Here εg > 0 is a parameter controlling for the weights constraints ρ∗g. Its value can be

iteratively determined by the second identity in (8).

4.1 Illustrations

Let us restrict to the most straightforward (zero-temperature, unconstained) clustering

algorithms, aimed at minimising the total cost (2), and consisting of the iterative scheme

contained in (6). The resulting hard partitionings, initiated by the same set of g =

1, . . . ,m = 4 of initial centroid locations L0(g), are depicted in Figure 10.

Shortest-path and Euclidean clusters behave similarly in this example, and demon-

strate a noticeable contrast between the weighted, versus the unweighted version. The

latter is virtually identical to the (weighted or unweighted) squared Euclidean case.



Figure 10: Total cost-based clustering ot the North-West district, unconstrained, hard,

weighted (left) and unweighted (right), on m = 4 groups. Top: shortest-path distance

F (dsp) = dsp. Middle: Euclidean distance F (de) = de. Bottom: squared Euclidean

distance F (de) = (de)2.

5 Conclusion

Pedestrian networks are transportation networks, intimately coupled to other transporta-

tion networks. Sinuosity, eccentricity and accessibility indices can be defined for any



undirected network, weighted or not, endowed with a shortest-path and an Euclidean

distance. This paper has attempted to demonstrate how those indices, originally rooted

in quantitative geography, are equally relevant in classical operations research and data

analysis. In particular, a broad family of nodes clusterings (constrained or not, hard or

soft, Euclidean-embedded or not) can be unified in a common framework, based on those

quantites. Among other results, Euclidean transformations and representations of the

network, as well as identities (7) and (8) appear as original. Future work will carry on

the application and development of the descriptive tools and clustering algorithms in an

applied spatial planning perspective, such as the assessment, creation or modification of

pedestrian short-cuts as well as school locations and capacities in the city of Lausanne.
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