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1 Context

This article presents an analytical stochastic (i.e. probabilistic) traffic flow model, which is derived

from the widely accepted kinematic wave model (KWM; Lighthill and Witham (1955); Richards

(1956)). Both the KWM’s original link model and its more recently developed node models (e.g.

Daganzo (1995); Lebacque (1996); Lebacque and Khoshyaran (2005); Tampere et al. (2011);

Flötteröd and Rohde (2011); Corthout et al. (2012)) are deterministic. They describe space/time

average conditions but do not account for higher-order distributional information.

There has been a recent interest in the development of analytical stochastic link models. Most

studies have considered stochastic cell-transmission models (CTMs; Boel and Mihaylova; 2006;

Sumalee et al.; 2011; Jabari and Liu; 2012). While the CTM constitutes a converging numerical

solution scheme for the KWM, it is left unclear to what extenta stochastic CTM converges towards

a stochastic KWM.

Osorio et al. (2011) recently proposed a stochastic formulation of the link-transmission model

of Yperman et al. (2007), which is an operational instance ofNewell’s simplified theory of kine-



matic waves (Newell; 1993). The present article adds important dependency structure to this

previously developed model.

2 Methodology

Yperman et al. (2007) phrase Newell’s simplified KWM (Newell; 1993) within the sending/receiving

function framework of Daganzo (1994) and of Lebacque (1996). This framework postulates that,

at any interface within the network, the instantaneously transmitted flow is the minimum of an

upstream sending function and a downstream receiving function, reflecting the KWM’s principle

of local flow maximization (Ansorge; 1990).

This model can be equivalently rephrased based on a system oftwo finite capacity queues,

where the so-calledupstream queue(UQ) keeps track of the upstream boundary conditions of the

link, and the so-calleddownstream queue(DQ) keeps track of the downstream boundary condi-

tions of the link.

Both queues can hold at mostℓ vehicles. The UQ is defined such that the total amount of flow

being allowed to enter the link because of possible congestion spillback is equal to the available

space in the UQ. The DQ is defined such that the total amount of flow being allowed to leave the

link because of a possibly limited number of vehicles in the link is equal to the available vehicles

in the DQ.

The stochastic link model of Osorio et al. (2011) results from a stochastic modeling of UQ and

DQ, relying on finite capacity queueing theory, where the dynamic evolution of the distribution

of the number of vehicles in either queue is tracked through time. The dynamics of these queues

are guided by time-dependent arrival and service rates as well as the probabilities of the queues

being perfectly empty (i.e. being unable to send more flow) orperfectly full (i.e. being unable to

receive more flow). The model is a simplification in the sense that the distributions of UQ and DQ

are modeled independently, although both represent information about the congestion status of the

link. This article overcomes this confinement.

The approach is to add only two additional dimensions to the (UQ,DQ) state space, which are

called thelagged inflow queue(LI) and thelagged outflow queue(LO). The LI queue captures,

at an aggregate level, the distribution of all link entries that have not yet reached the DQ (i.e.

vehicles currently traveling forwards inside of the link).Symmetrically, the LO queue captures, at

an aggregate level, the distribution of all link exits that have not yet been removed from the UQ



Time interval: [0,999] [1000,1999] [2000,2999]

Profile 131 0.1 0.3 0.1

Profile 151 0.1 0.5 0.1

Profile 353 0.3 0.5 0.3

Table 1: Arrival rate profiles in veh/s

(i.e. “spaces” currently traveling backwards inside of thelink).

The full article details the mathematical development of the new model: The state space is

reduced to three dimensions by applying a mass conservationconstraint. The rate at which LI dis-

charges vehicles into DQ and the rate at which LO discharges “spaces” into UQ are modeled state

dependently; this is key to the precision of our approach. The only simplifying assumption made

is to neglect the stochastic temporal dependence between link inflows and outflows at different

time steps. The experiments given in the following section demonstrate the very minor effect of

this approximation.

3 Results

A single-lane link is considered. Nine experiments are conducted, combining three different ar-

rival rate profiles and three different link lengths (and, hence, different space capacitiesℓ). Each

experiment starts with an initially empty link at time zero and runs for 3000 one-second time steps.

The link has a fixed downstream bottleneck with a service rateof 0.3 veh/s. The arrival

profiles are displayed in Table 1. Profile 131 (resp. 151) corresponds to a step-change from under-

critical to marginally critical (resp. overcritical) conditions and back. Profile 353 corresponds to a

step-change from marginally critical to overcritical conditions and back.

The considered space capacities areℓ = 10, 20, 30, resulting in link lengthsL = 50, 100, 150m.

Table 2 labels the experiments for the resulting nine parameter combinations as concatenations of

the respective arrival profile and space capacity.

Particular attention is paid to the stochastic dependency between up- and downstream condi-

tions within the link, corresponding to dependency betweenUQ and DQ. For this, the results of the

proposed analytical model are compared to empirical distributions obtained from106 replications

of an event-based microsimulation. Since the microsimulation perfectly captures all dependencies,

it serves as a benchmark for the analytical model.
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Figure 1: Correlation between UQ and DQ over time



arrival profile 131 151 353

ℓ

10 “Exp 131 Cap 10” “Exp 151 Cap 10” “Exp 353 Cap 10”

20 “Exp 131 Cap 20” “Exp 151 Cap 20” “Exp 353 Cap 20”

30 “Exp 131 Cap 30” “Exp 151 Cap 30” “Exp 353 Cap 30”

Table 2: Experiments

Figure 1 shows for all nine experiments the evolution of the correlation between UQ and DQ

over time. The red crosses represent results from the analytical model, and the blue circles rep-

resent results from the event-based simulation. The deviations between simulation and analytical

model are visually negligible, indicating an excellent overall fit.

Figure 2 shows the joint distribution of LI, DQ and LO for different arrival profiles and at

particularly interesting points in time (shortly after thejump-changes in the arrival profile). Only

results forℓ = 10 are shown; the figures forℓ = 20, 30 do not reveal additional information. The

horizontal axis represents the indices of the different states, and the vertical axis represents their

probabilities. All feasible states of (LI, DQ, LO) are represented. One observes an almost perfect

match between simulated and analytical results, across allexperiments.

These experiments demonstrate an extremely high precisionof the analytical model when

approximating an event-based microsimulation of the exactstochastic KWM model for a homo-

geneous link. It hence is possible to analytically capture full link state distributions in consistency

with a stochastic KWM.
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Figure 2: Joint distribution of UQ and DQ
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