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1 Introduction

This paper considers simulation-based optimization (SO) problems that rely on noisy,

stochastic and computationally expensive evaluations of the underlying objective func-

tion. The focus of this paper is on the use of stochastic microscopic traffic simulators

to solve nonlinear continuous constrained transportation problems. These are challeng-

ing SO problems. Additionally, we focus on developping methods with good short-term

performance, that is we evaluate our algorithms under tight computational budgets (e.g.

allowing only for a small and limited number of simulation runs or run-time).

This paper considers metamodel techniques for SO. Metamodels are simplified models

of the underlying simulation model. The most common metamodels are analytical and

deterministic functions, their functional form is typically chosen based on asymptotic

properties or their computational efficiecy. Metamodels are typically used to approximate

the stochastic objective function or constraints of the problem.

Metamodels have been classified as either functional (also called general-purpose) mod-

els and physical models (Søndergaard, 2003; Serafini, 1998). The latter are problem-



specific approximations of the objective function or constraints. They have parameters

that have a physical or structural interpretation. Reviews of metamodels include Barton

and Meckesheimer (2006) and Kleijnen (2008).

In past work, we have proposed a metamodel that combines a physical metamodel

with a functional metamodel (Osorio and Bierlaire, 2010). The functional component is a

quadratic polynomial, which ensures asymptotic metamodel properties (needed to analyse

asymptotic convergence properties), whereas the physical metamodel provides stuctural

information about the underlying problem, and more importantly its functional form de-

pends on the actual problem and objective function considered. The metamodel combines

information from a low-resolution but computationally efficient analytical queueing model

with high-resolution simulated data. The use of the combined metamodel has allowed us

to achieve excellent short-term algorithmic performance.

The focus of this paper is to further enhance the short-term performance of SO al-

gorithms. In this paper, we propose to use metamodels to go beyond the approximation

of the problem formulation. We propose to use them to improve the point selection step

(also known as selection procedure). At a given iteration, the algorithm must determine

whether the newly identified point (called trial point) has improved performance compared

to the point currently considered the best (called current iterate). This decision is called

the point selection step.

2 Methodology

In this paper, we use the SO algorithm proposed in Osorio and Bierlaire (2007). We first

describe the main steps of this algorithm, and detail its point selection step. We then

present the novel point selection step.

The algorithm is a derivative-free trust region (TR) algorithm, which is based on the

method proposed in Conn et al. (2009). For an introduction to TR methods, we refer

the reader to Conn et al. (2000). They summarize the main steps of a TR method in the

Basic trust region algorithm. The main idea of TR methods is to build, at each iteration,

a model of the objective function which one “trusts” in a neighborhood of the current

iterate (which is the point currently considered as the best), called the trust region.

The method proposed by Conn et al. (2009) builds upon the Basic TR algorithm by



adding two additional steps: a model improvement step and a criticality step. For a

detailed description, see Conn et al. (2009).

A given iteration k of the algorithm considers a metamodel mk, an iterate xk and a

TR radius ∆k. Hereafter, the subscript k refers to the iteration. Each iteration consists

of 5 steps:

• Criticality step. This step may modify mk and ∆k if the measure of stationarity

is close to zero.

• Step calculation. Approximately solve the TR subproblem to yield a trial point,

which is a point that the metamodel predicts has improved performance compared

to the current iterate.

• Point selection step: acceptance or rejection of the trial point. The actual

(i.e. simulated) reduction of the objective function is compared to the reduction pre-

dicted by the model, this determines whether the trial point is accepted or rejected.

• Model improvement. Either certify that mk is fully linear (i.e. satisfies Taylor-

type bounds) in the TR or attempt to improve the accuracy of the metamodel.

• TR radius update.

Let xk denote the current iterate, xk + sk the current trial point, f̂(xk) (respectively,

f̂(xk + sk)) the performance of the current iterate (resp. trial point) estimated by the

simulator, mk(xk) (resp. mk(xk + sk)) the performance of the current iterate (resp. trial

point) approximated by the metamodel. The simulated estimates are typically sample

averages of the replications run at that point. The existing point selection step computes

ρ̂k =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρ̂k ≥ η1, then the trial point is accepted (i.e. it becomes the current iterate: xk+1 =

xk+sk); otherwise it is rejected. The parameter η1 is the trial point acceptance threshold.

The current algorithm merely compares sample averages, and thus does not account

for the stochasticity of f̂(xk) and f̂(xk + sk) when testing for improvement. In this paper,

we replace the existing point selection step with a probabilistic metric that accounts for

this stochasticity.



Accounting for this stochasticity is particularly important when the sample averages

are computed based on small samples. This is typically the case when SO algorithms

are used under tight computational budgets, e.g. when the number of simulation runs is

limited and small. This is the case of the urban transportation applications that motivate

this work.

The new point selection step proceeds as follows. If

Pr(ρ̂k ≥ η1) ≥ p0, (1)

then we accept the trial point; otherwise we reject the trial point. The parameter p0 is an

exogenous threshold probability.

The main challenge we face is that this probability is usually estimated by combining

sample average and sample variance information. Nonetheless, when the SO algorithms

are used under tight computational budgets the number of replications of each point is

very small (e.g. only a couple of replications for each point). Thus, the sample variance

may be large, and thus the method is not effective at identifying trial points with improved

performance.

To overcome this, we propose to interpret the probability in Equation (1) as that arising

from a posterior distribution of a Bayesian framework. We use higher-order information

from a probabilistic analytical metamodel to estimate the parameters of the corresponding

prior distributions.

This paper uses the Bayesian framework proposed in Inoue (2000), along with infor-

mation provided by the queueing model (i.e. the physical component of the metamodel) to

fit the parameters of the prior distributions. We expect this to improve the effectiveness of

the point selection step, particularly for small sample sizes. Thus, we expect this approach

to improve the short-term performance of the considered SO algorithm.

3 Empirical analysis

To evalaute the short-term performance of this approach, we consider a fixed-time traffic

signal control problem as formulated in detail in Osorio and Bierlaire (2007) and in Osorio

and Bierlaire (2009).

We evaluate and illustrate the use of this framework with a case study based on the road

network of the Swiss city of Lausanne. We use a calibrated microscopic traffic simulation
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Figure 1: Empirical cdf’s of the average travel times in the subnetwork.

model of the Lausanne city center. This model (Dumont and Bert, 2006) is implemented

with the AIMSUN simulator (TSS, 2008). Details regarding the Lausanne network are

given in Osorio and Bierlaire (2009). This network considers demand for the evening peak

period.

We consider a set of 48 roads and 15 intersections. The signalized intersections have

a cycle time of either 90 or 100 seconds. Nine intersections are signalized and control the

flow of 30 roads.

We consider two different initial points, which are randomly drawn signal plans. For

each initial point, we proceed as follows. We consider a tight computational budget,

which is defined as a maximum number of simulation runs that can be carried out. The

computational budget is set to 150 runs. We run each algorithm 3 times, and each time

allow for these 150 simulation runs. This yields three different “optimal” solutions. We

then use the simulator to evaluate in detail the performance of these solutions.

To evaluate the performance of a given signal plan, we run 50 replications of the

simulation model, and plot the empirical cumulative distribution function (cdf) of the

average travel times over these 50 runs. The empirical cdf’s of the different signal plans

are then compared.

Figures 1 and 2 display results for two different intial points. Figure 1 displays the cdf’s

of the average travel time in the controlled subnetwork. This figure contains two plots, one

for each initial signal plan. Each plot displays 4 empirical cdf’s. The solid curves are the

cdf’s of the signal plans proposed by our method. The dashed curve is the cdf of the initial

signal plan. For both initial points, the proposed methodology systematically identifies
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Figure 2: Empirical cdf’s of the average travel times in the full network (entire city of

Lausanne).

signal plans with improved performance even under tight computational budgets.

Figure 2 represents the results for the same 2 intial points, but displays the average

travel time of the full network (i.e. accounting also for the roads otuside the subnetwork).

This figure indicates that the proposed plans systematically provide improvement of travel

times at the full city-scale.

References

Barton, R. R. and Meckesheimer, M. (2006). Metamodel-based simulation optimization,

in S. G. Henderson and B. L. Nelson (eds), Handbooks in operations research and

management science: Simulation, Vol. 13, Elsevier, Amsterdam, chapter 18, pp. 535–

574.

Conn, A. R., Gould, N. I. M. and Toint, P. L. (2000). Trust-region methods, MPS/SIAM

Series on Optimization, Society for Industrial and Applied Mathematics and Mathe-

matical Programming Society, Philadelphia, PA, USA.

Conn, A. R., Scheinberg, K. and Vicente, L. N. (2009). Global convergence of general

derivative-free trust-region algorithms to first- and second-order critical points, SIAM

Journal on Optimization 20(1): 387–415.



Dumont, A. G. and Bert, E. (2006). Simulation de l’agglomération Lausannoise SIMLO,

Technical report, Laboratoire des voies de circulation, ENAC, Ecole Polytechnique

Fédérale de Lausanne.

Inoue, K. (2000). Decision-theoretic comparison of alternate system configurations using

stochastic simulation, PhD thesis, University of Michigan.

Kleijnen, J. P. C. (2008). Design and Analysis of Simulation Experiments, Springer, New

York, USA.

Osorio, C. and Bierlaire, M. (2007). An analytic finite capacity queueing network cap-

turing congestion and spillbacks, Proceedings of the Sixth Triennial Symposium on

Transportation Analysis, TRISTAN VI, Phuket, Thailand.

Osorio, C. and Bierlaire, M. (2009). A surrogate model for traffic optimization of con-

gested networks: an analytic queueing network approach, Technical Report 090825,

Transport and Mobility Laboratory, ENAC, Ecole Polytechnique Fédérale de Lau-

sanne.

Osorio, C. and Bierlaire, M. (2010). A simulation-based optimization approach to per-

form urban traffic control, Proceedings of the Triennial Symposium on Transportation

Analysis (TRISTAN), Tromsø, Norway.

Serafini, D. B. (1998). A framework for managing models in nonlinear optimization of

computationally expensive functions, PhD thesis, Rice University.

Søndergaard, J. (2003). Optimization using surrogate models - by the Space Mapping

technique, PhD thesis, Technical University of Denmark.

TSS (2008). AIMSUN NG and AIMSUN Micro Version 5.1, Transport Simulation Sys-

tems.


