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1 Introduction 

In first-order macroscopic dynamic network loading (DNL) models, the link model provides 

the demand Si of incoming links i (the maximum flow (veh/h) that can be sent) and the supply 

Rj of outgoing links j (the maximum flow that can be received) as constraints to the flow 

solution of the intersection (or node) model. In urban environments, the intersection model 

should additionally impose internal supply constraints due to limited supply of conflict points 

on the intersection itself. 

This paper presents a general methodology to include internal supply constraints into the 

DNL intersection model, analogous to how the external Rj are typically treated. Most 

importantly, it is shown that – under realistic behavioral assumptions - the solution of the 

intersection model may be non-unique.  

 

2 State-of-the-art 

[1] shows that virtually all existing models fail to comply with some fundamental 

requirements for macroscopic DNL intersection models. [1] and [2] present intersection 



models that do comply with these requirements. The details of these requirements and models 

are provided in the full paper. Here, we only explain what is essential to understand the 

remainder.  

The intersection models of [1] and [2] find the flows qi – which fully determine all qij 

given the turning fractions fij from each i to each j – given the external constraints Si and Rj. 

Finite, strictly positive priority parameters ijα  (together with fij) determine the strength of 

each competing i for the supply in j. This core modeling principle is shared by most other 

existing DNL intersection models. This makes for the general nature of the findings in this 

paper. 

Although the internal supply constraints are largely responsible for the traffic problems 

in many regional and urban networks, they are rarely considered in state-of-the-art models. 

Intersection models that do include internal supply constraints are presented by [2]-[7]. 

However, only [2] complies with all of the modeling requirements of [1]. [2] observes the 

possibility of solution non-uniqueness in the presence of internal supply constraints. In 

Section 4 of this paper, this problem is more generally analyzed and a uniqueness condition is 

found. First, Section 3 briefly discusses the general introduction of these internal constraints 

into the intersection model. 

 

3 Internal supply constraints 

The merging conflicts into outgoing links are typically considered as external conflicts 

(captured by the supplies Rj). At roundabouts, however, internal merging conflicts are to be 

considered at the entering points of the roundabout arcs. Other internal conflicts include 

crossing conflicts and traffic controls (the latter is not considered here). 

We generally introduce the following formulation of the internal supply constraint 

function for an internal conflict point k: 

 

 � ( ) 0kN ≤q  (1) 

 

where q is the vector of all qi. Further detailing (1) is a complex problem in itself. [8] 

provides more elaboration. Here, it is important to note that: 

- The internal supply constraints depend on the resulting flows qi, not the demands Si. 

- All qi that compete in k may be restricted; in contrast to formulations of restricted 

minor flows as functions of unrestricted prioritized flows. 



 

The latter implies that (1) is analogous to external supply constraints. Hence, analogously, the 

distribution of the internal supply in k over all competing i can be expressed via priority 

parameters ikα . This is illustrated in the following section. 

 

4 Solution non-uniqueness 

Figure 1 depicts a 2x4 example, where the solution is bounded by the demand constraints and 

two internal, crossing conflicts1. The priority rules for such conflicts typically state that the 

left-turning movements have to yield to the straight movements. This is modeled by setting 

23 14 1α α= =  and 
13α  and 24α  arbitrarily small.  

 

 

Figure 1: Solution non-uniqueness of the intersection model 

 

Now, this problem has three possible solutions (A, B, and C). In A, the solution (q1, q2) is 

dictated by � 3N , with q2 having priority (q2 = S2), leaving the remaining supply for q1. 

                                                
1 The internal supply constraint functions are not necessarily linear. For generality, we depict non-

linear constraints that form an upper bound to the solution (q1, q2).  



Likewise, B results from � 4N . Even in C the model definitions are met, with q1 and q2 being 

constrained by � 3N  and � 4N  respectively, each leaving the remaining supply for the other 

flow. In summary, realistic behavioral assumptions (corresponding to the priority rules) can 

lead to multiple solutions.  

We identify the source of the solution non-uniqueness as the fact that flows qi are faced 

with multiple, ambiguous priority ratios in the distribution of different supplies in outgoing 

links j or internal conflicts k. Given arbitrary boundary conditions (demands, supplies and 

turning fractions) the following is a sufficient condition for solution uniqueness:  
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Condition (2) implies that the same priority ratio is used in the distribution of any supply. 

Specification (2) is also a necessary condition for the vast majority of real intersection 

topologies where the flows of at least two incoming links are mutually dependent in at least 

two common supply constraints (as in the example in Figure 1). Proof is provided in the full 

paper.   

 

5 Conclusion 

In this paper, internal supply constraints are introduced that generally extend (the main 

principles of) most existing DNL intersection models. It is found that only under condition 

(2) solution uniqueness is guaranteed. Existing models that do not meet this condition are [5] 

and [9]-[11]. 

However, condition (2) appears behaviorally unrealistic when introducing internal 

supply constraints. Indeed, it is (often) in contradiction with how one would naturally define 

the priority parameters to govern the distribution of internal supplies (see the example in 

Figure 1). Blindly imposing single-valued priority ratios without any consideration of the 

ambiguity that seems inherent to reality is therefore unadvisable. Hence, at least in 

deterministic DNL modeling, a transformation of the non-unique solutions into one 

prevailing flow pattern is needed. We distinguish two types of approaches: 



- pre-processing of the priority parameters so that the model produces a unique 

solution 

- computing non-unique solutions that result from ambiguous priority parameters and 

then post-processing these into one solution 

 

Preferably, the decision of how to treat the solution non-uniqueness, which appears in the 

model under realistic behavioral assumptions, should be supported by empirical research.  

 

References 

[1] Tampère, C.M.J., Corthout, R., Cattrysse, D. and Immers, L.H., “A generic class of first 

order node models for dynamic macroscopic simulation of traffic flows”, Transportation 

Research Part B 45 (1), pp. 289-309, 2011. 

[2] Flötteröd, G. and Rohde, J., “Operational macroscopic modeling of complex urban road 

intersections”, Transportation Research Part B 45 (6), pp. 903-922, 2011. 

[3] Buisson, C., Lesort, J.B. and Lebacque, J.P., “Macroscopic modeling of traffic flow and 

assignment in mixed networks”, Proceedings of the Berlin ICCCBE Conference, pp. 

1367-1374, 1995. 

[4] Ngoduy, D., Hoogendoorn, S.P. and van Lint, J.W.C., “Modeling Traffic Flow Operation 

in Multilane and Multiclass Urban Networks”, Transportation Research Record 1923, pp. 

73-81, 2005. 

[5] Yperman, I. “The Link Transmission Model for Dynamic Network Loading”, Ph.D. 

Thesis, Katholieke Universiteit Leuven, 2007 

[6] Chen, L., Jin, W-L. and Zhang, J.H., “An Urban Intersection Model Based on Multi-

Commodity Kinematic Wave Theories”, Proceedings of the 11th International IEEE 

Conference on ITS, pp. 269-274, 2008. 

[7] Raadsen, M.P.H., Mein, E.H., Schilpzand, M.P. and Brandt, F., “Implementation of a 

single dynamic traffic assignment model on mixed urban and highway transport networks 

including junction modeling”, Presented at the Third International Symposium on 

Dynamic Traffic Assignment (DTA 2010), Takayama, Japan, July 2010. 

[8] Corthout, R., Viti, F. and Tampère, C.M.J., “Macroscopic first-order intersection models 

with internal supply constraints”, Submitted for presentation at the ISTTT conference, 

forthcoming. 

[9] Adamo, V., Astarita, V., Florian, M., Mahut, M. and Wu, J.H., “Analytical modeling of 

intersections in traffic flow models with queue spill-back”, IFORS' 99 15Th Triennial 



Conference (ORSC), Beijing, PR China (also published in CRT di Montreal. Publication 

CRT 1999 nr. 52. National Libraries of Quebec and Canada), 1999. 

[10] Gentile, G., Meschini, L. and Papola, N., “Spillback congestion in dynamic traffic 

assignment: A macroscopic flow model with time-varying bottlenecks”, Transportation 

Research Part B 41, pp. 1114-1138, 2007. 

[11] Gentile, G., “The General Link Transmission Model for Dynamic Network Loading 

and a Comparison with the DUE Algorithm”, New Developments in Transport Planning: 

Advances in Dynamic Traffic Assignment, pp. 153-178, 2010. 


