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Abstract

This paper introduces a new graph-based mixed-integer linear formulation for the multi-agent
scheduling problem arising in activity-based models. The proposed framework generalizes
existing approaches, notably that of Rezvany et al. (2023), by modeling activities, travel, and
coordination decisions within a unified labeled graph structure.

Each vertex represents an activity performed by a subset of agents at a specific location,
while arcs capture travel and transport mode choices. This representation enforces synchro-
nization compactly, eliminates redundant variables, and yields interpretable solutions, as each
agent’s schedule corresponds to a distinct path in the graph.

The formulation substantially improves computational performance compared to previous
models and provides a flexible foundation for representing new behavioral situations. Shared
activities are represented explicitly as vertices where the paths of multiple agents meet, making
coordination constraints both intuitive and compact. Additional features—such as mandatory
activity groups, participation limits, or shared resources—can be incorporated with minimal
effort.

Numerical experiments on real household data confirm the computational gains, showing
an average speed-up of almost one order of magnitude compared to the previous formulation,
while capturing a richer variety of coordination behaviors. These results illustrate the potential
of the proposed model for next-generation activity-based modeling.

Keywords: Activity-Based Modeling, Mixed-Integer Programming, Multi-Agent Scheduling.

1 Introduction

Activity-based models (ABMs) have gained significant attention in transportation and urban
planning due to their ability to realistically capture how individuals plan their activities and trav-
els over time. Unlike traditional trip-based models, ABMs account for the dynamic decision-
making processes of individuals, taking into account constraints like time, resources, and in-
terpersonal interactions. These models have been particularly useful for understanding and
predicting demand-side behaviors in transportation, energy, and other infrastructure systems
(Roorda et al., 2008, Pawlak et al., 2021).

While recent advancements have focused on intra-household interactions, such as the co-
ordination of schedules between household members (as seen in the work of Rezvany et al.,
2023), there is a growing need to extend these models to capture interactions beyond the
household. As modern urban environments become more interconnected, individuals coor-
dinate with a wide range of people—friends, colleagues, and mobility-sharing groups—when
planning their day. At the same time, the increasing richness of modern travel datasets further
motivates the development of models capable of capturing such interactions. Given this con-
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text, several challenges arise in extending activity-based modeling frameworks. First, how can
we effectively capture the social interactions that influence individuals’ daily decisions, partic-
ularly those that go beyond household settings? Second, how can the model be made flexible
enough to accommodate various types of interactions and choice dimensions while ensuring
scalability for real-world applications?

While existing frameworks, such as that of Rezvany et al. (2023), have made significant
progress in capturing joint activity participation within households, they only partially account
for more flexible forms of coordination—for example, when agents start a shared activity at
different times or choose different transport modes after meeting. To address this limitation,
our work extends and generalizes their framework to represent a broader range of scheduling
behaviors. The proposed model, formulated as a Mixed Integer Linear Problem (MILP) with
a distinct and more efficient structure, enables richer behavioral representations and improved
computational performance. Beyond households, these modeling capabilities are also applica-
ble to other forms of social interaction—among friends, colleagues, or participants in shared
mobility systems—where coordination extends beyond traditional family boundaries (Cirillo
and Axhausen, 2006).

Several works formulate the optimization problem underlying ABMs as an MILP (Recker,
1995, Pougala et al., 2022). However, limited attention has been devoted to improving the
structure and compactness of these formulations. Our model introduces a compact version of
the model by Rezvany et al. (2023), which can be easily extended with new features. By using a
graph-based approach, we also open the door to the diverse techniques developed over decades
to improve the solving of graph optimization problems, such as dynamic programming.

We propose a versatile and easy-to-apply model for casting the collective decision of a
(small) group of people who schedule their activities over a time period so as to maximize
their global utility. Methodologically, we formulate the problem as a multi-agent scheduling

problem. To solve it, we adopt a graph-based representation inspired by the approach of Gaul
et al. (2022) to solve the Dial-a-Ride Problem. The multi-agent scheduling problem is hence
reduced to a minimum-cost flow problem in a labeled directed graph, with some additional
constraints. We solve the resulting MILP using a commercial mixed-integer linear solver.

This paper makes three main contributions. First, we formulate the multi-agent schedul-
ing problem as a graph-based mixed-integer linear program that compactly represents activi-
ties, travel, and coordination decisions. Second, the proposed formulation generalizes exist-
ing household-based models by allowing flexible synchronization patterns, including staggered
participation and heterogeneous transport choices after the shared activities. Third, numerical
experiments demonstrate that the resulting model achieves computational improvements over
prior formulations while enabling richer behavioral representations. By combining the behav-
ioral realism of ABMs with the structural clarity and scalability of graph-based optimization,
our work contributes a flexible and extensible tool for modeling multi-agent activity scheduling.

The remainder of the paper is structured as follows. In Section 2, we first review the ex-
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isting activity-based modeling literature and identify the gaps in current research. We then
position our work within the operations research literature on vehicle routing problems (VRP),
emphasizing optimization formulations that are formally close to ours. Section 3 introduces
the multi-agent scheduling problem, providing the problem description and relevant notation.
In Section 4, we present the graph-based model and the solution methodology, detailing the
graph-based optimization approach and the MILP. Finally, Section 5 presents the numerical ex-
periments, comparing our model with Rezvany et al. (2023) on real-world data to demonstrate
its flexibility and scalability in capturing a wider range of social interactions.

2 Literature review

2.1 Activity-based models

ABMs have become a central tool in transportation research due to their ability to simulate
individuals’ activities and travel patterns over time and space. These models are grounded
on the behavioral assumption, conceptualized by Chapin (1974), that travel demand is not an
isolated phenomenon but is driven by participation in various activities, which are distributed
spatially and temporally. Hence, ABMs focus on individuals and their choice of activities,
while taking into account their spatial and temporal constraints.

The historical development of ABMs dates back to works such as the model by Adler
and Ben-Akiva (1979) and other early models reported in the study by Axhausen and Gärling
(1992). These works emphasize the importance of understanding activity participation and
scheduling for transport demand modeling. They laid the groundwork for the activity-based
approach, which has since evolved to include increasingly complex representations of human
behavior.

Despite their advantages, traditional ABMs face several limitations. A key challenge is that
many existing models focus on individual decision-making without considering the interactions
between agents (Bhat, 2005, Habib and Hui, 2017). This simplification assumes that individ-
uals make decisions in isolation, disregarding the fact that activities and travel plans are often
coordinated among family members or social groups. For example, when household members
are treated as independent agents, the model fails to capture the coordination required for joint
travel, childcare, and shared household responsibilities (Srinivasan and Athuru, 2005).

Early household-level models address intra-household interactions, such as car allocation,
joint activities, and travel arrangements. Notable works include Vovsha et al. (2003) and Gupta
et al. (2014), who introduce models that consider the coordination of activities and travel within
the household. These models still fall short in capturing the complexity of group decision-
making, particularly when considering heterogeneous time constraints and shared activity par-
ticipation.

Another limitation arises from the sequential scheduling approach used in many ABMs
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(Vovsha et al., 2005). These models treat scheduling as a series of discrete steps, where deci-
sions regarding one activity or trip are made before the next. While convenient, this approach
fails to capture the simultaneous interdependencies between different scheduling decisions,
such as the time of day an activity occurs and the transport mode used. A simultaneous ap-
proach, in which all decision dimensions are considered jointly, makes it easier to model trade-
offs compared to a model where a sequencing order is assumed.

To address the limitations of sequential ABMs, ABMs have been introduced, where all deci-
sion dimensions—activity choice, timing, location, and mode—are considered jointly (Ettema
et al., 2007). Examples include the Multiple Discrete-Continuous Extreme Value models (MD-
CEV) applied to activity scheduling (e.g., Lai et al., 2019, Palma et al., 2021) and the House-
hold Activity Pattern Problem (HAPP) formulated as an MILP (Recker, 1995, Gan and Recker,
2013). Although Lai et al. (2019) incorporate intra-household interactions and all decision
dimensions, their approach does not solve the activity scheduling problem using optimization
tools. Instead, once the behavioral parameters are estimated, daily schedules are generated
through probabilistic simulation based on the MDCEV choice structure, without computing an
optimal joint schedule for the household.

The HAPP models have been widely used to model activity scheduling as MILPs, drawing
from vehicle routing literature (Recker, 1995). However, HAPP models often face challenges
due to their prescriptive nature and difficulties in calibration. These models typically assume a
fixed set of activities and do not account for the variability in activity participation or duration.
Recent variants, such as those by Xu et al. (2018), allow for some flexibility in activity partici-
pation and duration but still use a sequential simulation approach, which limits their ability to
capture simultaneous interdependencies.

Building on previous optimization-based approaches, Pougala et al. (2022) propose an
activity-scheduling framework that integrates multiple choice dimensions—activity participa-
tion, location, start time, duration, and mode—into a single optimization problem, capturing
the complex trade-offs between scheduling decisions for multiple activities. The model repre-
sents all time-related choices as continuous variables, with a modular utility formulation that
allows preferences to be specified for each individual activity, and is implemented as an MILP
that can be extended with custom constraints. While Pougala et al. (2022) demonstrated the
framework on small samples, Rezvany et al. (2023) extended it to household-level modeling,
allowing the simultaneous scheduling of activities for all household members and accounting
for intra-household coordination. This framework, referred to as OASIS (Optimization-based
Activity Scheduling with Integrated Simultaneous choice dimensions), represents the most re-
cent advance in flexible and integrated activity-based modeling, combining multiple decision
dimensions while maintaining a behavioral basis (Pougala et al., 2023). Additionally, Manser
et al. (2024) demonstrated the operational relevance of this approach through an application
of the Pougala et al. model to the Swiss Railways, showcasing its practical applicability in
transportation scheduling.
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Existing frameworks, including the OASIS model for households (Rezvany et al., 2023),
have advanced the modeling of coordinated activity-travel behaviors but remain limited in the
diversity of interactions they can represent. In particular, they struggle to capture situations
where individuals coordinate flexibly in time, space, or mode choice—for instance, when par-
ticipants engage in different activities at the same location, join or leave a shared activity at
different times, or switch transport modes during a trip.

To overcome these limitations, our formulation generalizes and extends the OASIS frame-
work to encompass a much wider range of coordination patterns. It can represent: (a) agents
traveling together to perform different activities at a shared location; (b) staggered participation
in joint activities; (c) escorting behavior, where one agent accompanies another before contin-
uing elsewhere; (d) synchronized or independent execution of identical activity sequences; (e)
constraints requiring the presence of specific agents (e.g., escorting, caregiving, or shared ve-
hicle use); and (f) multimodal trip chaining, such as combining cycling with public transport.

Conceptually, the key innovation lies in the model’s structure: whereas OASIS links activi-
ties directly to their subsequent trips, our approach models activities and trips separately, with
activities represented as vertices and trips as arcs in a graph. This graph-based formulation en-
ables greater modeling flexibility, allowing for richer and more realistic coordination dynamics
among agents.

2.2 Related scheduling and routing problems

While optimization-based approaches, such as HAPP and OASIS models, enable simulta-
neous decision-making for activities, locations, and modes, they involve combinatorial de-
cisions. This makes the models computationally expensive, especially when scaling up to
larger numbers of agents or more complex scheduling scenarios. One of the key challenges
in optimization-based ABMs is hence ensuring flexibility while maintaining scalability.

A promising research direction lies in the vehicle-routing literature, where highly combina-
torial problems are routinely solved with efficient algorithms. In particular, the Vehicle Routing
Problem with synchronization (VRPs) and the Dial-a-Ride Problem (DARP) share fundamental
structural properties with ABMs: agents perform both individual and shared tasks, must respect
spatial and temporal constraints, and coordinate with others for joint activities. Moreover, the
number of participants in each shared activity remains small (e.g., passengers in a vehicle, for
DARP, or members of a working team, for VRPs), which makes these formulations aligned
with multi-agent ABMs.

In the DARP literature, Gaul et al. (2022) show that event-based formulations outperform
traditional models by representing each request through its pickup and drop-off events rather
than through spatial nodes. This event structure encodes precedence, capacity, and pairing con-
straints directly in the graph, removing the need for explicit constraints and yielding remarkable
performance on standard DARP benchmarks, even though it introduces a larger number of vari-
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ables.
Our model adopts a similar event-based philosophy for graph construction. Each vertex in

our graph corresponds to a specific location and a subset of agents who may jointly perform an
activity there. This design mirrors the event-based structure in DARP, where each vehicle state
is tied to a passenger subset. The number of vertices remains manageable because the subset
size is bounded (by vehicle capacity in the DARP, or by household size in our case). However,
unlike in the graph of Gaul et al. (2022), our vertices do not represent instantaneous events
with a start time to be determined. They represent activities for which both the start time and
the duration must be scheduled. As a consequence, the graph structure proposed by Gaul et al.
(2022) cannot be used directly in our setting, and a new graph is required to incorporate the
additional complexities of our problem.

Once the schedule of each agent has been modeled as a path in a graph, the problem be-
comes closely related to the vehicle routing problem with synchronization. The taxonomy pro-
posed by Drexl (2012) distinguishes between several types of synchronization, among which
exact operation synchronization is the most relevant to coordinated activity scheduling. It
requires that multiple agents perform actions simultaneously, such as jointly participating in
an activity. In the context of homecare—the most common application of exact operation
synchronization—several nurses with different skills must coordinate to jointly deliver a care
task to a patient at the same time. The formulation by Bredström and Rönnqvist (2008) exem-
plifies this concept, developed for homecare staff scheduling and forest operations, enforcing
both pairwise synchronization and temporal precedence between visits. Their MILP formula-
tion is mathematically the closest to ours once the graph representation is established, differing
mainly in the objective function and in the fact that their model requires every vertex to be
visited—a constraint later relaxed in their heuristic solution. However, it is important to note
that our formulation does not require this constraint, which is a key distinction between ABMs
and VRPs.

Table 1 summarizes the main characteristics of the three key interrelated works: the ABM
of Rezvany et al. (2023), which addresses the same multi-agent scheduling problem (MASP)
at the household level; the event-based DARP formulation of Gaul et al. (2022), which inspired
our vertex construction; and the VRP with synchronization of Bredström and Rönnqvist (2008),
whose MILP structure most closely matches ours. Together, these works form the conceptual
foundation for the proposed graph-based approach to the MASP.

In this comparison, direct formulations define decision variables directly over activities or
trips, without requiring any preprocessing or abstract graph representation. In contrast, event-
based formulations introduce an intermediate graph where each vertex represents an event and
a subset of present agents. Our approach follows this latter structure while preserving the
behavioral richness of activity-based models, i.e., preference of agents in the objective function,
modeling of shared trips and activities, choice of start, duration, location, and mode.
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Article Rezvany et al.
(2023)

Gaul et al.
(2022)

Bredström
& Rönnqvist
(2008)

This work

Problem MASP DARP VRPs MASP
Formulation Direct Event-based Direct Event-based
Solving method MILP solver MILP solver MILP solver +

heuristic
MILP solver

Preferences of
agents

Yes No No Yes

Shared trips By car only. Yes No Yes
Shared activities Yes No Yes Yes
Schedule All dimensions

(start, duration,
and location)

Only order of
events

Only order of
tasks

All dimensions
(start, duration,
and location)

Choice of mode Yes No No Yes
Coordination
flexibility

Limited (shared
activity implies
shared trip)

No High (indepen-
dent trip and ac-
tivity sharing)

High (indepen-
dent trip and
activity sharing,
multimodal,
staggered)

Table 1: Comparison of the modeling features of relevant articles.

3 The multi-agent scheduling problem

Activity-based models typically simulate a large number of groups of individuals. In this work,
we assume that group decisions are independent across groups and restrict our analysis to the
interactions occurring within each group. We are hence interested in the detailed scheduling
problem of one group of individuals over a period of time. Our model aims to determine
simultaneously which activities the individuals perform, their location, their schedule, and the
transport mode used to travel from one activity to another. We make the assumption that the
group’s objective is to maximize a joint utility function, which depends on the utility function
of all individual members.

To model this problem, we introduce the concept of agents, which encompasses both ac-
tual individuals and non-human resources such as private vehicles, EV chargers, or household
appliances (e.g., laundry machines). A resource is defined as any entity whose availability or
schedule constrains that of the individuals. This generalization makes it possible to represent,
for instance, the joint scheduling of several household members sharing one or more private ve-
hicles. In such cases, the agents of the system comprise both the individuals and their vehicles,
whose schedules must be coordinated.

In this section, we introduce the multi-agent scheduling problem (Section 3.1). As already
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stated in the introduction, this problem captures many concrete situations where a group of
people schedules its activities collectively. Section 3.2 explains why auxiliary activities are
needed in the model and how they are defined. A concrete example is given in Section 3.3,
where the high versatility of this problem is illustrated and emphasized.

3.1 Formalization

We denote by N the set of agents who want to schedule their activities and trips over a contin-
uous time period [0, T ] while maximizing their joint utility. We detail now the characteristics
of the agents, the activities, the trips, and the utilities. All notation is provided in Table 2.

3.1.1 Agents

We define an agent as any entity within the group that:

• has a schedule, i.e., a sequence of activities or states evolving over time,

• consumes or provides resources during these activities,

• imposes constraints on the schedules of other agents due to limited availability,

• requires coordination with other agents in the group to ensure overall feasibility.

In our framework, the notion of agent is flexible and can encompass both individual and
non-human resources. For instance, individuals typically participate directly in decision-making,
and their utilities contribute to the objective function with positive weights. By contrast, non-
human resources—such as vehicles, EV chargers, parking spaces, or teleworking offices—can
be considered as coordinating agents that enable or constrain activity schedules; their utilities
may therefore be assigned a weight of zero.

For each agent n, we define a set of possible activities An, a home location home(n),
and a financial budget Bn over the time period. The budget constraint is here modeled at the
individual level; however, it could equivalently be formulated at the group or household level
without affecting the generality of the framework.

3.1.2 Activities

The set of all activities is denoted by A :=
⋃

nAn. Each activity can be performed only at
some specific locations and the set of all possible locations for an activity a is denoted by La.
For instance, the activity of grocery shopping can be performed at any supermarket located in
the area where the agent lives or works.

Each activity a comes with a participation limit Ca, which is the maximal number of agents
of the group who can perform simultaneously the activity. This is particularly useful to model
activities related to private vehicles, with a limited capacity.
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Each activity a is associated with a collection Na of required agent configurations. To
be performed, at least one of these configurations must be selected, meaning that all agents
included in the chosen configuration jointly participate in the activity—at the same location
and time, while other agents may possibly perform the activity with them. This formulation is
particularly relevant for modeling trips by private vehicle, where both the vehicle itself and a
driver must be available. For instance, in a household with two adults holding a driving licence,
an activity a related to driving could have Na = {{car, adult 1}, {car, adult 2}}. It also
captures situations such as household dinners, where at least one adult needs to be present to
prepare the meal for young children.

If an activity a is performed at a location ℓ ∈ La, then it must be during opening hours

[γ−
aℓ, γ

+
aℓ], and its duration must last at least τmin

a and at most τmax
a . The majority of out-of-

home activities have restrictive opening hours (e.g., shopping, restaurants, leisure activities).
Each agent n that can perform an activity a has a preferred starting time x⋆an and a preferred

duration τ⋆an. For instance, activities like jogging or sleeping don’t have strict schedules, but
it is more convenient to perform them during certain times of the day. Performing an activity
a at location ℓ can also have a cost caℓ to be paid by each agent performing the activity (for
example, the cost of a leisure activity). We define K groups Gk of mandatory activities, linked
with an integer pk ⩽ |Gk|. Among this group, at least pk activities have to be performed. Note
that if Gk contains only one activity a and pk = 1, then activity a has to be performed by an
agent of the group. This feature is particularly useful for modeling household chores that need
to be done periodically, such as cleaning tasks.

Each agent n can choose which activities she performs among her set An of activities
and the starting time and the duration of these activities. Temporal consistency is enforced:
an agent can start a new activity only after completing the previous one and traveling to the
new location. Each activity is assumed to be performed at most once within the time period.
Formally, the activity set A is defined such that every element a ∈ A corresponds to a unique
occurrence of an activity. When an activity type recurs in reality—such as work performed in
both the morning and the afternoon, each occurrence is modeled as a distinct element of A.
This ensures that the scheduling problem remains well-defined, while still allowing the model
to capture repeated behaviors within the same horizon.

The schedule of every agent n must cover the entire time period, starting with an activity
dawn ∈ An and ending with an activity dusk ∈ An, both of them performed at location
home(n), the home of agent n.

3.1.3 Trips

To travel between two locations k and ℓ, agent n has to choose one of the available transport

modes Mkℓ
n . A trip from k to ℓ and a transport mode m have an associated cost ρkℓm and

duration dkℓm.
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We also assume that congestion is exogenous—that is, travel costs and travel times may
vary by time of day (e.g., during peak hours), but they are not affected by the group’s own
travel decisions.

3.1.4 Utility

The utility Un of each agent n is defined following Pougala et al. (2022), and consists of two
deterministic and two random components. All the elements entering this definition, apart from
the decision variables themselves, are exogenous: they do not depend on the agents’ choices,
must be precomputed, and are provided as inputs to the model. In practice, the utility functions
are calibrated from behavioral data, and the parameters are estimated using methods such as
discrete choice modeling (e.g., Greeven et al., 2005, Guarda and Qian, 2024).

For clarity, we introduce the following decision variables:

• xan: starting time chosen by agent n for activity a,

• τan: duration chosen by agent n for activity a,

• wan: binary variable equal to 1 if agent n performs activity a, and 0 otherwise,

• jann ′: binary variable equal to 1 if activity a is performed by agent n jointly with another
agent n ′,

• zℓℓ ′mn: binary variable equal to 1 if agent n makes the trip from ℓ to ℓ ′ using mode m,
and 0 otherwise,

• jℓℓ ′mnn ′: binary variable equal to 1 if the trip of agent n from ℓ to ℓ ′ using mode m is
shared with another agent n ′.

Based on these variables, the utility of agent n is composed of:

• The sum of the utility Un
aℓ for each activity a at location ℓ ∈ La performed by agent n.

• The sum of the random terms ξan over all the activities a performed by agent n.

• The sum of the utility Un
ℓℓ ′m for each trip (ℓ, ℓ ′) performed by agent n with transport

mode m.

• The sum of the random terms ξℓℓ ′mn for each trip (ℓ, ℓ ′) performed by agent n with a
mode m.

Hence, it is written as:

Un =
∑
a∈An

∑
ℓ∈La

wan

(
Un

aℓ + ξan

)
+
∑
ℓ,ℓ ′,m

zℓℓ ′mn

(
Un

ℓℓ ′m + ξℓℓ ′mn

)
.
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Let us now describe these components in detail. Each agent n derives a utility Un
aℓ from

performing activity a at location ℓ, written as:

Un
aℓ := raℓn +

∑
n ′∈N

r
joint
ann ′ jann ′ + θc caℓ

+ θx early
(
x∗an − xan

)+
+ θx late

(
xan − x∗an

)+
+ θτ short

(
τ∗an − τan

)+
+ θτ long

(
τan − τ∗an

)+
.

(1)

This utility is composed of:

• An exogenous reward raℓn, received for performing the activity a at location ℓ.

• An exogenous joint reward r
joint
ann ′ if the agent performs activity a together with another

agent n ′.

• A disutility θccaℓ proportional to the cost caℓ of activity a at the chosen location ℓ, where
θc is exogenous and expected to be negative.

• Two disutilities for the deviations from the desired schedule. To ease the definition of
these penalties, we introduce xan and τan the starting time and duration chosen by agent
n for activity a.

⋆ A disutility θx early(x
∗
an − xan)

+ + θx late(xan − x∗an)
+ proportional to the deviation

from the preferred starting time x∗an, with exogenous negative weights for starting
the activity too early, θx early, and too late, θx late. Here, (·)+ denotes the positive part
operator, defined as (y)+ = max(y, 0).

⋆ A disutility θτ short(τ
∗
an − τan)

+ + θτ long(τan − τ∗an)
+ proportional to the deviation

from the preferred duration τ∗an, with exogenous negative weights for a shorter du-
ration, θτ short, and a longer duration, θτ long.

Similarly, each agent n derives a utility Un
ℓℓ ′m from the trip between locations ℓ and ℓ ′ using

transport mode m, written as:

Un
ℓℓ ′m := rℓℓ ′mn +

∑
n ′∈N

(rjoint
ℓℓ ′mnn ′ jℓℓ ′mnn ′) + θttm dℓℓ ′m + θtc ρℓℓ ′m. (2)

This utility is the sum of:

• A reward rℓℓ ′mn, capturing the utility derived by agent n when using transport mode m

to travel from location ℓ to location ℓ ′. It reflects all factors other than cost and time, such
as comfort, reliability, or convenience, and is considered exogenous.
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• An exogenous joint reward r
joint
ℓℓ ′mnn ′ , received if the agent shares the trip with another

agent n ′. This reward term captures the social benefits of shared travel, as agents may
gain additional utility from traveling together, as highlighted by Vovsha et al. (2003).

• A disutility θttmdℓℓ ′m proportional to the the travel time dℓℓ ′m, with a negative exogenous
weight θttm depending on the mode m used for the trip.

• A disutility θtcρℓℓ ′m proportional to the travel cost ρℓℓ ′m, with a negative exogenous
weight θtc.

Note that the rewards for joint activities and trips can be zero or even negative if the agent
n doesn’t want to share moment with other individuals.

These utility functions can be calibrated from behavioral data, where observed travel choices
and preferences are used to estimate the parameters. For example, methods such as discrete
choice modeling have been applied to calibrate travel behavior in the context of ride-sharing
(see, e.g., Bhat and Sardesai, 2006; Olaru et al., 2012).

For each agent n and activity a in An, the random term ξan has a known distribution and
captures the errors in modeling the preferences of agent n regarding activity a. Identically, for
each agent n and trip (ℓ, ℓ ′) performed with a mode m, the random term ξℓℓ ′mn has a known
distribution and captures the errors in modeling the preferences of agent n regarding trip (ℓ, ℓ ′)

with mode m.

We assume that the group of individuals selects the schedule that maximizes its overall util-
ity, defined as an aggregation of the individuals’ utilities. To make this assumption, individuals
must act in the interests of the group, so there is no competition between them. This may be the
case for a household, a group of friends, or co-workers. Although there is no consensus in the
literature on how to define such an aggregation function (see, e.g., De Palma et al., 2014), sev-
eral approaches have been discussed: an additive rule based on the (possibly weighted) sum of
the utilities of each member, an autocratic rule privileging the utility of the “strongest” member,
or an egalitarian rule privileging the “weakest” member (Shilov et al., 2025, Vo et al., 2020,
Kurata and Nakamura, 2025). In our framework, we adopt the additive formulation, but the
other formulations can be considered as well. We associate with each agent n ∈ N a weight
ωn ⩾ 0, which represents the relative importance of agent n in the aggregated utility. The total
utility U is then defined as the weighted sum of the agents’ utilities:

U =
∑
n∈N

ωnU
n. (3)

This formulation also allows us to assign a weight of zero to non-human resources, such as
private vehicles, ensuring that they are represented in the model without directly contributing
to the objective.
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Notation Description
N Set of agents

An Set of possible activities of agent n

A Set of all activities

La Set of locations where activity a ∈ A can be performed

caℓ Cost for an agent to perform activity a at location ℓ ∈ La

γ−
aℓ Opening time for activity a at location ℓ

γ+
aℓ Closing time for activity a at location ℓ

τmin
a Minimum duration for activity a

τmax
a Maximum duration for activity a

x⋆an Time at which agent n would prefer to start activity a

τ⋆an Duration agent n would like to perform activity a

Gk ⊆ A Subset of activities of A that need to be performed at least pk times

Ca Maximum number of agents that can perform activity a

Na ⊆ 2N Collection of subsets of agents required to jointly perform activity a

Mkℓ
n Set of available transport modes for agent n to travel between locations k and ℓ

ρkℓm Cost of traveling from k to ℓ using transport mode m

dkℓm Duration of traveling from k to ℓ using transport mode m

T Time period

Bn Daily budget of an agent n

ωn Weight of an agent n in the total utility

raℓn Reward for agent n performing activity a

r
joint
ann ′ Additional reward if agent n performs activity a with another agent n ′

θc Penalty for the activity cost

θx early, θx late Penalties for the deviation from the preferred starting time

θτ short, θτ long Penalties for the deviation from the preferred duration

θttm Penalty for travel time with mode m

θtc Penalty for travel cost

rℓℓ ′mn Reward for agent n traveling with mode m from ℓ to ℓ ′

r
joint
ℓℓ ′mnn ′ Additional reward when agent n travels with agent n ′ on trip (ℓ, ℓ ′,m)

ξan Random term with known distribution

ξℓℓ ′mn Random term with known distribution

Table 2: Notation.
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3.2 Modeling of special and auxiliary activities

While many activities are directly interpretable as actions performed by individuals (e.g., work-
ing, shopping, or eating), certain situations require the introduction of auxiliary activities.
These are activities that do not correspond to a literal action but that influence the schedule
of the group members. An auxiliary activity is any activity that is either (i) performed by a
non-human resource (for example, an activity “parking" can be defined for a private vehicle),
or (ii) indirectly affects the feasible schedules of human agents without representing a real
action (such as an activity “escorting" that requires an adult to bring a child to school).

It is assumed that the modeler has sufficient contextual knowledge to define these activities
and their main attributes, including location, duration, and required agents. For auxiliary ac-
tivities related to private vehicles, the Vehicle-based Auxiliary Activity Generation Algorithm,
described in Appendix 6, automatically generates a complete set of auxiliary activities based
on the real activities of the group members who use the vehicle. This guarantees that private
vehicles can be modeled, and we can assume their sets of activities to be well defined. Never-
theless, the algorithm is intentionally general and may produce more auxiliary activities than
needed in practice. Consequently, the final specification relies on the modeler’s understanding
of household behavior to define a realistic and parsimonious activity set.

3.3 Concrete example

We provide a detailed example of carpooling between two colleagues, illustrating how to define
sets of activities, locations, and transport modes to model the schedule of a private vehicle. The
data and parameters are presented here in a straightforward manner, but in Section 4.3, we
explore how these choices can be interpreted, demonstrating that they enable the model to
closely align with reality.

Consider a simple instance involving three agents: Alice, Bob, and Alice’s car (represented
by an agent Car). Alice and Bob are colleagues who are scheduling their day together to
maximize their total utility. Alice and Bob can work at the office, together or separately, and
Bob also has the option of playing tennis in the city area. Transportation options include public
transport (PT), which is available to both Alice and Bob, and Alice’s car, which only Alice is
allowed to drive. However, Bob can travel by car when he shares his trip with Alice. Each
agent is assigned a time budget T of 24 hours.

3.3.1 Agents

In this example, the agents are Alice, Bob, and Car. Alice and Bob are individuals with a
financial budget Bn = 10 and home locations homeAlice and homeBob, respectively. Car
is a non-human resource with home location homeAlice and an infinite financial budget.
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Activities of Car are supposed to be generated in the preprocessing by the modeler. Hence,
their respective sets of activities are:

AAlice = {dawn, dusk, work,

departure from homeAlice,

arrival to office,

departure from office,

stop to drop, arrival to homeAlice}

ABob = {dawn, dusk, work, tennis,

departure from office, stop to drop}

ACar = {dawn, dusk, departure from homeAlice,

arrival to office, parking,

departure from office, stop to drop,

arrival to homeAlice}

3.3.2 Activities

The activities are grouped by location as follows:

• At homeAlice, the activities are dawn, dusk, departure from homeAlice,
and arrival to homeAlice.

• At homeBob, the activities are dawn and dusk.

• At the office, the activities are work, arrival to office, parking, and
departure from office.

• At the city, the activities are tennis and stop to drop.

To simplify the example, we assume non-restrictive time-windows on the activities. For all
activities and locations, the opening hours span the entire day from time 0 to 24, and both the
minimum and maximum durations are set to 0 and 24, respectively.

We assume that the cost of activity tennis is ctennis city = 3, and caℓ = 0 for every other
activity a and location ℓ. For each activity a, the set Na of required agents is empty by default,
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except for activities related to driving, like departure from homeAlice, arrival

to office, departure from office, stop to drop, arrival to home-

Alice, for which Na = {{Alice,Car}}. This enforces that both Alice and Car are required to
perform these activities. To represent the limited capacity of the car, the participation limit for
these activities, is set to 5, i.e., Ca = 5. All other activities have an unbounded participation
limit, i.e., Ca =∞ for all a ∈ A where the set Na is empty.

3.3.3 Trips

The available transport modes are the car, the public transport (PT), and the mode noTrip,
which is available to each agent n to go from a location ℓ to the same location, i.e., Mℓℓ

n =

{noTrip} for all ℓ. The set of available transport modes for each agent between different
locations are described in Table 3.

Origin homeAlice office office city city
Destination office city homeBob homeBob homeAlice
Alice {PT, car} {PT, car} ∅ ∅ {PT, car}
Bob ∅ {PT, car} {PT} {PT} ∅
Car {car} {car} ∅ ∅ {car}

Table 3: Available transport modes for each agent.

The travel times dℓℓ ′PT and dℓℓ ′car between two locations ℓ and ℓ ′ are defined in Figure 1. By
definition, the distance between a location and itself is zero, and travel times are symmetrical.
For any couple (ℓ, ℓ ′) of locations, we also define the costs ρℓℓ ′PT = dℓℓ ′PT and ρℓℓ ′car = 2 dℓℓ ′PT.

homeAlice office

city

1

0.51

homeAlice office

homeBob city

1

1

21 1

Figure 1: Travel time map for transport mode car (left) and PT (right).

3.3.4 Utility

The preferred starting time and duration of each activity are defined in Table 4, providing an
overall preferred schedule for Alice and Bob. Alice prefers to leave home at 8:00 and starts
working at 9:30, while Bob has a slightly different schedule, with his preferred start time for
work at 8:00. Bob also prefers to play tennis between 17:00 and 19:00 in the city. Other
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activities, such as stopping to drop off, arriving at work, and returning home, are similarly
defined to ensure a cohesive daily routine for both agents.

Name Pref. starting time Pref. duration
Alice Bob Alice Bob

dawn 0:00 0:00 7h 7h
dusk 20:00 21:00 3h 3h
work 9:30 8:00 8h 8h
tennis - 17:00 - 2h
departure from homeAlice 8:00 - 0h -
arrival to office 9:30 - 0h -
departure from office 17:00 16:00 0h 0h
stop to drop 17:00 17:00 0h 0h
arrival to homeAlice 19:00 - 0h -
parking - - - -

Table 4: Preferred starting time and duration for each activity and agent.

If the example was to be fully specified, we would need to define the parameters in the utility
function, including the weights for activity duration deviations (θτ short, θτ long), starting time
deviations (θx early, θx late), and travel time (θttm). Additionally, the rewards for each activity
and trip would need to be specified. These parameters, typically estimated from data, reflect
the relative importance of each factor in the agents’ utility functions.

The weight ωcar is 0, indicating that Alice’s car does not derive any utility. The weights
ωAlice and ωBob, however, are equal and non-zero.

4 Graph-based model

In this section, we model the multi-agent scheduling problem as a path problem in a directed
graph, and then show how to write this flow problem as an MILP.

A path in this graph captures the choice of activities that an agent performs, their locations,
and the order in which the activities are performed. The scheduling of the activities for each
agent will be modeled by additional decision variables on each vertex of the graph. This ap-
proach has been inspired by the event-based modeling of the DARP introduced by Gaul et al.
(2022). It has the advantage of encoding some complicating constraints in the graph structure.

4.1 Constrained minimum-cost flow formulation

The graph, denoted by G = (V, E), has labeled arcs, and is defined as follows. For each activity
a and location ℓ ∈ La, we introduce a vertex v as a triple v = (a, ℓ, S), for all subsets S ⊆ N

satisfying the following conditions:

• S is a subset of agents that can perform a, i.e., S ⊆ {n ∈ N : a ∈ An},
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• the participation limit of activity a is not exceeded, i.e., |S| ⩽ Ca, and

• there is a subset X ⊆ S of required agents in S, i.e., X ∈ Na.

A vertex v = (a, ℓ, S) has an obvious meaning: a subset S of agents performing together
activity a at location ℓ. It is also associated with a utility uv. This vertex utility corresponds
to the part of the activity utility defined in Equation (1) that is independent of the scheduling
variables (start time and duration), and this, for all the agents in S. Formally, it is defined as

uv :=
∑
n∈S

ωn

(
raℓn +

∑
n ′∈S

r
joint
ann ′ + θc caℓ

)
.

We introduce a specific notation for the vertices related to the activities dawn and dusk.
For each agent n, the activity dawn represents the first activity of the considered time period,
performed alone at the agent’s home location home(n). It is therefore defined as

dawn(n) := (dawn, home(n), {n}).

Symmetrically, the activity dusk is defined as

dusk(n) := (dusk, home(n), {n}).

Let v = (a, ℓ, S) and v ′ = (a ′, ℓ ′, S ′) be two vertices such that S ∩ S ′ ̸= ∅, i.e., there is at
least one agent that can perform activity a at location ℓ and activity a ′ at location ℓ ′. For every
mode m ∈

⋂
n∈S∩S ′ Mℓℓ ′

n , i.e., a mode that can be used by the agents common to S and S ′ to go
from ℓ to ℓ ′, we introduce an arc e = (v, v ′) with a label me := m. This arc e is associated with
a cost equal to ρe := ρℓℓ ′m and a travel time (or duration) de := dℓℓ ′m, which correspond to the
cost and time of traveling from ℓ to ℓ ′ using mode m for one agent. It is also associated with a
utility ue, containing the term of the trip utility defined in Equation (2) that does not dependent
on the other agents (the joint reward is counted separately). It is written

ue := θttmdℓℓ ′m + θtcρℓℓ ′m.

Note that parallel arcs are allowed, i.e., there can be several arcs between two vertices, each
one associated with a different mode.

The problem becomes the following: for each agent n, compute a directed dawn(n)-
dusk(n) path in G, and a starting time xv and a duration τv for each visited vertex v, under
“combinatorial” constraints, “time-consistency” constraints, and a “budget” constraint, so as to
maximize the total utility.

The combinatorial constraints are the following:

• the path of an agent n only visits vertices (a, ℓ, S) with n ∈ S.

18



• if the path of an agent n visits a vertex (a, ℓ, S), then the paths of all agents in S must
visit that vertex.

• for each activity a and subset S of agents, if a vertex (a, ℓ, S) is visited by a path, no
vertex (a, ℓ ′, S) with ℓ ̸= ℓ ′ can be visited. This ensures that the agents in S choose a
single location ℓ to perform activity a.

• for each group Gk of activities, at least pk vertices (a, ℓ, S) such that a ∈ Gk must be
visited by some agent.

The time-consistency constraints are of three types:

• if a vertex v = (a, ℓ, S) is visited by a path, then xv ∈ [γ−
a,ℓ, γ

+
a,ℓ] and τmin

a ⩽ τv ⩽ τmax
a .

• if an arc e = (v, v ′) labeled with m is visited by a path, then xv + τv + dℓ,ℓ ′,m ⩽ xv ′ ,
where ℓ and ℓ ′ are respectively the locations of v and v ′.

• for each agent, the duration of activities and the trips performed should cover the time
horizon T .

• for each agent n, the starting time of the first vertex dawn(n) must be equal to 0, and
the ending time of the last vertex dusk(n) must be equal to T .

Finally, for each agent n, the cost of activities and trips performed during the day must stay
below the budget Bn.

4.2 MILP

To ease the writing of the MILP modeling the problem of Section 4.1, for every vertex v, we
denote the triple it represents by (av, ℓv, Sv). We also define the duration and the cost along an
arc e = (u, v) labeled with me by de = dℓu,ℓv,me and ρe = ρℓu,ℓv,me .

4.2.1 Variables

We introduce two types of decision variables: binary variables, which define the agents’ paths
through the graph, and continuous variables, which determine the temporal allocation of activ-
ities. The binary variables zne indicate whether agent n takes arc e. The binary variables wv

denote whether vertex v is activated, meaning that the path of each agent in Sv goes through v.
The continuous variables xv and τv represent, respectively, the starting time and the duration of
activity av for the agents in Sv at location ℓv.
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4.2.2 Combinatorial constraints

The following constraints are combinatorial constraints on vertices and arcs.

wv =
∑

e∈δ+(v)

zne ∀v ∈ V ∀n ∈ Sv (4a)

zne = 0 ∀e = (u, v) ∈ E ∀n /∈ Nu ∩Nv (4b)∑
v∈V : av∈Gk

wv ⩾ pk ∀k ∈ K (4c)

wv +wv ′ ⩽ 1 ∀v, v ′ ∈ V s.t. av = av ′ , Sv = Sv ′ , and ℓv ̸= ℓv ′ (4d)

Constraints (4a) ensure that an activity vertex v is marked as visited (i.e., wv = 1) if and
only if each agent in the group Sv selects an outgoing arc from v. This links the binary activity
decision variable wv with the individual arc variables zne . Constraints (4b) prohibit agents from
using arcs that are not eligible to use. Constraints (4c) ensure that certain mandatory groups
of activities are collectively satisfied. For each group Gk, a minimum number pk of vertices
from the group must be activated. Constraints (4d) ensure exclusivity in location choice: if two
vertices v and v ′ correspond to the same activity and group but are located at different places,
at most one of them can be selected.

4.2.3 Time-related constraints

The next constraints are time-related constraints.

xv ⩾ xu + τu + de −Me(1− zne ) ∀e = (u, v) ∈ E ∀n ∈ N (5a)

γ−
av,ℓv

wv ⩽ xv ⩽ γ+
av,ℓv

wv − τv ∀v ∈ V (5b)

τmin
av

wv ⩽ τv ⩽ τmax
av

wv ∀v ∈ V (5c)∑
v∈V : n∈Sv

τv +
∑
e∈E

dez
n
e = T ∀n ∈ N (5d)

xdawn(n) = 0, xdusk(n) + τdusk(n) = T ∀n ∈ N (5e)

Constraints (5a) enforce temporal consistency along arcs. If an agent n uses arc e = (u, v),
the start of the activity at vertex v cannot occur before the completion of the activity at vertex u

and the corresponding travel between them. Me is the largest constant ensuring the constraint
becomes non-binding when the arc is not used. For an arc e = (u, v), its value is Me =

γ+
au

+ de. Constraints (5b) ensure that if an activity is selected at vertex v, its start time xv falls
within the time window [γ−

av,ℓv
, γ+

av,ℓv
]. If the activity is not selected, the constraint becomes

inactive. Constraints (5c) enforce that the duration τv of an activity respects its minimum
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duration τmin
av

when the vertex is visited, and becomes inactive otherwise. Constraint (5d) ensure
that that the total time spent by any agent performing activities and trips equals the total time
period T . Constraint (5e) enforce that each agent starts and ends their schedule with activities
dawn and dusk respectively.

4.2.4 MILP

Now that the combinatorial and temporal constraints have been established, the MILP can be
written as follows.

max
(z,w,x,τ)

U(z,w, x, τ) (6a)

s.t.
∑

e∈δ+(v)

zne =
∑

e∈δ−(v)

zne ∀v ∈ V, ∀n ∈ N (6b)

∑
e∈δ+(dawn(n))

zne = 1 ∀n ∈ N (6c)

∑
e∈δ+(dusk(n))

zne = 1 ∀n ∈ N (6d)

∑
v∈V : n∈Sv

cavℓvwv +
∑
e∈E

ρez
n
e ⩽ Bn ∀n ∈ N (6e)

Combinatorial constraints (4a)–(4d)

Time-related constraints (5a)–(5e)

zne ∈ {0, 1}, wv ∈ {0, 1} ∀e ∈ E, ∀n ∈ N, ∀v ∈ V

where (6a) is the objective function defined later in Section 4.2.5. Constraints (6b) are flow
conservation constraints. Constraints (6c) and (6d) ensure that each agent’s path starts at their
corresponding dawn vertex and ends at their dusk vertex. Constraints (6e) impose a financial
budget Bn on each agent n. It accounts for the cumulative costs of performing activities and
traveling along selected arcs.

4.2.5 Objective

The objective function (6a) is a translation of the utility described in Section 3.1. It includes
rewards for selected activities, penalties for deviations from preferred start times and durations,
penalties for travel cost and travel time, and additional rewards for joint travel between agents.
For e = (v, v ′), v = (a, ℓ, S), and v ′ = (a ′, ℓ ′, S ′), we define

ren := rℓℓ ′mn +
∑
n ′∈N

r
joint
ℓℓ ′mnn ′z

n ′

e .

Hence, the objective function is written as follows:
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U(z,w, x, τ) =
∑
v∈V

uvwv

+
∑

v=(a,ℓ,S)∈V

∑
n∈S

ωn(θx early(x
∗
an − xv)

+ + θx late(xv − x∗an)
+)

+
∑

v=(a,ℓ,S)∈V

∑
n∈S

ωn(θτ short(τ
∗
an − τv)

+ + θτ long(τv − τ∗an)
+)

+
∑
e∈E

∑
n∈N

ωn(ue + ren)z
n
e

In this form, the utility function exactly corresponds to the one defined in Equation (3) of
Section 3, and it is straightforward to linearize.

4.3 Back to the example

We now return to the example described in Section 3.3. Assume that a graph G has been
constructed following the steps of Section 4.1. First, we show that the vertices and the arcs dis-
played in Figure 2 form a subgraph H of G. We then provide an interpretation of the feasible
paths that pass through this subgraph.

Let H be the graph of Figure 2. For each vertex v = (a, ℓ, S), the location ℓ corresponds to
a possible location for activity a and the agents of S satisfy the conditions listed in Section 4.1.
Moreover, the arcs (v1, v3), (v1, v4), and (v3, v4) are labeled with car because it is the only
mode available for the agent Car between any couple of different locations. The arc (v3, v2) is
labeled with noTrip because vertices v2 and v3 have the same location city. Finally, the arc
(v1, v3) exists and is labeled with PT, because Bob can use the public transport to travel from
the office to city. Hence, Figure 2 illustrates a small but relevant subgraph H of the full
graph G built as in Section 4.1.

A feasible solution to the multi-agent scheduling problem corresponds to a set of paths in
the graph G - one path per agent - and these paths may or may not pass through this specific
subgraph H. However, if the paths of Alice, Bob, and Car pass through the subgraph H, there
are two possibilities:

• The paths of Alice and her car contain vertices v1, v3, and v4 and the path of Bob contains
v1, v3, and v2. It means that Alice escorts Bob to his tennis activity in the city using her
car, and then returns home alone.

• The paths of Alice and her car contain vertices v1 and v4 and the path of Bob contains
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v1 = (departure from office,
office, {Alice, Bob, Car})

v2 = (tennis, city,
{Bob})

v3 = (stop to drop,
city,

{Alice, Bob, Car})

v4 = (arrival to homeAlice,
homeAlice,
{Alice, Car})

car
noTrip

car

car

PT

Figure 2: Subgraph illustrating a ride-sharing situation.

v1 and v3. The interpretation is that Alice goes home alone and Bob uses the public
transport to go to his tennis activity.

Hence, depending on the rewards associated with the activities and the trips, as well as the
weights for the deviations from the schedule, and the weights for the travel time in the utility
function, Alice and Bob may decide to carpool or not. This example demonstrates that our
model effectively captures the trade-offs involved in collective decision-making, specifically
in the context of carpooling. This model can easily accommodate other situations as well.
For example, escorting someone to an activity, arriving late to a shared activity, or coordinat-
ing shared travels on public transport are all scenarios which could enhance the modeling of
behavior, while being integrated in an ABM.

5 Numerical experiments

This section presents the results of our numerical experiments, which aim to achieve two ob-
jectives. First, we validate our model by comparing its computational performance with the
formulation of Rezvany et al. (2023) on real instances. Second, we demonstrate the flexibil-
ity of our model by showing that it incorporates new features that are useful to model real
situations, that were previously beyond reach.

5.1 Instances and experimental setting

To evaluate both computational performance and flexibility, we constructed two sets of in-
stances. The first set of restricted instances ensures full equivalence with the problem solved
by Rezvany’s formulation. The second set of extended instances, built on the very same data,
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exploits the additional flexibility offered by our formulation to better reflect real-world scenar-
ios (e.g., variable transport modes, and social activities by any subset of agents).

Both MILPs are solved using GUROBI OPTIMIZER v12.0.3. All experiments are conducted
on a machine equipped with 72 Intel(R) Xeon(R) Platinum 8360Y CPU 2.40GHz processors,
running Red Hat Enterprise Linux 9.4 (Plow). The machine has a total of 503GB of available
RAM. The time limit for each experiment is set to 600 seconds.

The test instances are derived from the UK National Travel Survey (NTS) (Department for
Transport, 2024), from which we selected twelve households. The NTS provides information
on individuals’ activities, locations, preferred schedules, and available transport modes over
several days. For our experiments, we aggregate this data to construct a representative set of
possible activities within a single day, and we define the time horizon accordingly as one day.
For each activity type, consistent opening and closing hours are specified, together with mini-
mum and maximum duration bounds to reflect realistic daily behavior. A detailed description
of the data is provided in Table 8 (Appendix).

The parameters used in the utility functions are taken from the literature and their values
are summarized in Table 5.

Parameter Value Reference
θc −1 per CHF Assumed
θx early, θx late −2.4 per hour Pougala et al., 2022
θτ short, θτ long −2.4 per hour Pougala et al., 2022
θttm for m private −1 per hour Pougala et al., 2022
θttm for m public −0.4 per hour Pougala et al., 2022
θtc −1 per CHF Pougala et al., 2022
r

joint
ℓℓ ′mnn ′ 0.5 Assumed
r

joint
ann ′ 1 Rezvany et al., 2025
raℓn From 5 to 15 depending on the activity Rezvany et al., 2025

Table 5: Parameters used in the experiments.
“CHF” refers to the Swiss Franc.

5.2 Results

5.2.1 Model validation: comparison with the previous formulation

The left-hand side of table 6 compares the performance of the proposed model with the ref-
erence implementation by Rezvany et al. (2023) across the twelve instances, called restricted
instances, described in the previous subsection. For each instance, the computational time,
optimality gap, and problem size in terms of number of agents (|N|) and activities (|A|) are
reported. Our approach reaches optimality on all instances, while the reference model fails to
do so on the larger ones (instances 9–10). In addition to guaranteeing optimality, the proposed
formulation is substantially faster: on average, the model of Rezvany et al. (2023) is about 9.7
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times slower than ours on this set of instances. Overall, the graph-based approach substantially
improves computational efficiency.

Restricted inst. Rezvany et al. Extended inst.

|N| |A| Time Gap Time Gap Ratio Time Gap

H 1 2 20 4.76 0% 2.14 0% 0.45 6.54 0%
H 2 4 42 10.54 0% 276.03 0% 26.2 600.00 12.53%
H 3 2 32 4.21 0% 11.20 0% 2.66 18.26 0%
H 4 1 10 0.32 0% 1.14 0% 3.56 0.34 0%
H 5 1 16 0.62 0% 4.97 0% 8.02 0.62 0%
H 6 2 16 0.64 0% 1.14 0% 1.78 0.89 0%
H 7 3 26 9.01 0% 70.20 0% 7.79 534.32 0%
H 8 2 34 6.07 0% 43.21 0% 7.12 41.55 0%
H 9 4 45 364.91 0% 600.00 133.7% 1.65 600.00 2.16%
H 10 2 42 496.81 0% 600.00 66.2% 1.21 600.00 0.58%
H 11 2 32 4.57 0% 246.64 0% 54.0 42.45 0%
H 12 2 11 0.64 0% 0.93 0% 1.45 0.78 0%

Table 6: Comparison of solving time and optimality gap between our model and Rezvany et al.
(2023) on the restricted instances, including the extended instances.

Table 6 also compares the performance of our model on both restricted and extended in-
stances. For the same households, we observe that the inclusion of more features results in a
significant increase in computational time. Mathematically, solving the extended instance is
akin to solving a relaxation of the corresponding restricted instance. However, this increased
complexity allows our model to capture more detailed behaviors, as explained in the next sub-
section.

5.2.2 Model flexibility: capturing new behaviors

To demonstrate the flexibility of our model, we use the set of extended instances built from
the same households, but allowing for variable transport modes and social activities performed
by any subset of agents. Table 7 compares the optimal solutions obtained on the restricted
instances, corresponding to Rezvany’s formulation, and on the extended instances. Differences
in the results are observed in 5 out of 12 cases, confirming that the two formulations can lead
to distinct optimal schedules. The additional behaviors captured by our model are listed in the
column “Differences.” They include: (different modes) agents using different transport modes
after a shared activity, (staggered social activity) agents participating in shared activities with
staggered timing—some arriving later to accommodate individual activities, and (not all agents
for social activities) agents not performing shared activities without preventing others from
performing them. These patterns illustrate that our formulation can capture a broader and more
realistic range of coordination behaviors within households.
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|N| |A| Differences

Household 1 2 20 (different modes)
Household 2 4 42 (staggered social activity)
Household 3 2 32 (staggered social activity), (not all

agents for social activities)
Household 4 1 10 -
Household 5 1 16 -
Household 6 2 16 -
Household 7 3 26 (staggered social activity)
Household 8 2 34 -
Household 9 4 45 -
Household 10 2 42 -
Household 11 2 32 -
Household 12 2 11 (not all agents for social activities)

Table 7: Comparison of the restricted and extended instances.

To further illustrate the behavioral implications of the additional flexibility, we conduct a
simulation experiment on a representative instance (Household 7). This household includes
three agents: Agent 1 performs an activity Home, Agent 2 engages in activities work and
shopping, and Agent 3 attends an activity education. We can assume that Agents 1 and 2 are
parents and that Agent 3 is a schoolchild. The social activities consist of Escort education

(which, on the extended instances, can be performed by any subset of two agents including
the schoolchild), Other social (a social activity outside home that can involve any subset of
agents), and Visit friends/relatives at home (a social activity at home, also feasible for any
subset of agents). In contrast, in the restricted model, all these social activities must either be
performed jointly by all household members or not at all.

We draw 100 different sets of error terms (ξan)n∈N, a∈An and (ξℓℓ ′mn)n∈N,(ℓ,ℓ ′)∈L2,m∈Mℓ,ℓ ′
n

,
each sampled independently from a standard normal distribution. For each draw, we solve both
the restricted and extended instance to obtain the optimal schedules.

Figure 3 reports the distribution of activities over the course of the day across these sim-
ulated optimal schedules, using the same error terms for both models. The results highlight
substantial behavioral differences between the two formulations. At any given time of day, the
extended instances produce a wider variety of feasible activity configurations across agents,
indicating greater variability in the simulated optimal schedules. Moreover, on the extended
instances, activities such as Escort education can be performed by different subsets of agents
including the schoolchild, while social activities like Other social and Visit friends/relatives

at home may involve only part of the household or asynchronous participation—where one
agent joins or leaves the shared activity at a different time. These patterns are impossible in
the restricted formulation, where all shared activities must start and end simultaneously for all
participants.
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(a) Agent 1 – Extended (b) Agent 1 – Restricted

(c) Agent 2 – Extended (d) Agent 2 – Restricted

(e) Agent 3 – Extended (f) Agent 3 – Restricted

Figure 3: Distribution of activities during the day for Household 7’s members, comparing the
restricted (left) and extended (right) instances.

Figure 4 presents the optimal schedules for one draw from the simulation. These sched-
ules illustrate the differences in agent activity timings between the two formulations. In the
restricted instances (panels a, b, and c), social activities are strictly synchronized, with all par-
ticipants starting and ending at the same time. In contrast, the extended instances (panels d,
e, and f) allow for more flexibility, where agents can perform activities asynchronously, with
some activities being performed by a subset of agents.
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(a) Agent 1 – Restricted

(b) Agent 2 – Restricted

(c) Agent 3 – Restricted

(d) Agent 1 – Extended

(e) Agent 2 – Extended

(f) Agent 3 – Extended

Figure 4: Optimal schedule of one draw from the simulation for the restricted (above) and
extended (below) instances.

5.3 Discussion

The results demonstrate that our model not only outperforms the formulation of Rezvany et al.
(2023) in terms of computational efficiency but also offers greater flexibility to capture real-
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world behaviors. The improved performance can be explained by several structural differences.
First, shared activities are represented directly within the event–activity graph through vertices
that specify the subset of participating agents. Second, the flow constraints are expressed com-
pactly, and only a single big-M constraint is required. Third, transport modes are modeled as
attributes of arcs—rather than by duplicating each activity once per possible departure mode.
Together, these choices lead to faster convergence on most instances.

Despite this improvement, Table 7 shows that the computational time increases when the
full flexibility of our model is exploited. This is expected, since our model constitutes a re-
laxation of the formulation of Rezvany et al. (2023). The complexity mainly arises from joint
activities: in their absence, the problem can be decomposed into independent single-agent
scheduling problems that can be solved in parallel. These observations suggest that the next
step should focus on algorithmic strategies that exploit the graph structure—such as dynamic
programming, or Lagrangian relaxation—to handle the coupling introduced by joint activities
more efficiently.

Beyond computational aspects, the results also highlight the behavioral richness enabled
by the proposed formulation. The fact that optimal schedules differ in several real instances
confirms that this flexibility is not merely theoretical but also valuable in practice. In the exper-
iments, we already introduced flexibility by allowing different transport modes after a shared
activity and by enabling different subsets of agents to participate in shared activities. Yet, the
same formulation could easily accommodate additional features—such as groups of mandatory
activities or participation limits—further enhancing the realism of the resulting schedules.

Finally, the same framework can be extended beyond households to other coordinated
groups. The concept of non-human resources can be generalized to represent shared elements
such as electric vehicle chargers, meeting rooms, or workplaces, enabling the model to capture
synchronization among co-workers or other small collectives. The main limitation for applying
these multi-agent models to broader contexts remains data availability, rather than modeling
capability.

6 Concluding remarks

This paper addresses the challenge of representing coordination and synchronization among
multiple agents within ABMs. We proposed a new graph-based mixed-integer linear formula-
tion that generalizes previous approaches and enables the modeling of a wider range of realistic
behaviors. Built upon a labeled graph, the formulation produces interpretable solutions—one
path per agent in the graph—while reducing redundancy and preserving tractability.

The numerical experiments on UK National Travel Survey households demonstrated that
the model consistently improves computational efficiency and realism compared to existing
formulations. More importantly, the results confirmed that flexibility in agent participation and
transport modes meaningfully affects the resulting optimal schedules, highlighting the impor-
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tance of capturing such interactions in multi-agent settings.
Beyond its direct results, this work establishes a foundation for a new generation of optimi-

zation-driven ABMs. The formulation can naturally incorporate additional behavioral features—
for example, modeling the shared use of new resources or limiting the number of times certain
activities may be performed by the group, and it opens the door to new algorithmic develop-
ments that exploit its structure. Future research will focus on decomposition and relaxation
techniques to improve scalability, and on extending the framework to broader coordination
contexts, such as co-working or shared mobility systems.
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Appendix A

Requirement Acquired solution
Set of agents N Members of a household of the dataset
Set of activities An Generated from the activities of the actual schedule of

agent n over several days. The social activities are ex-
tended to all the household

Set of locations La Actual location of activity a in the dataset
ca,ℓ Set to 0 for the experiments
Gk Activities of the same type can only be done once per agent
Ca Set to |N| to be non restrictive
Na For a social activity a in the restricted instance, Na = {N},

and Na = ∅ otherwise
Set of transport modes Mkl

n For k ̸= ℓ, aggregation of the modes used by n in the
dataset, for k = ℓ, equals to {walk}

Travel cost ρ(k, ℓ,m) Proportional to the travel distance (geographic distance
computed from the actual locations), with coefficient taken
from (Bundesamt für Statistik (BFS), 2025)

Travel time d(k, ℓ,m) Proportional to the travel distance, with a coefficient taken
from (Bundesamt für Statistik (BFS), 2025)

Preferred start time x⋆an and du-
ration τ⋆an

Based on recorded values in the dataset

Feasible time window [γ−
aℓ, γ

+
aℓ] Set depending on the type of activity (e.g., shopping from

9:00 to 20:00)
Minimum and maximum activ-
ity duration [τmin

a , τmax
a ]

Minimum 30 minutes, and maximum 24 hours (non con-
straining)

Time budget T Set to 24 hours
Financial budget Bn Set to a high value to be non restrictive
Agent priority ωn Set to 1 for all agents

Table 8: Model data requirements used in the experiments.
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Appendix B

Algorithm 1 Vehicle-based Auxiliary Activity Generation Algorithm

Input: Set N of agents, drivers D ⊆ N, vehicle v ∈ N, activity sets {An : n ∈ N \ {v}},
empty set Av, location sets {La : a ∈ An}

Output: Updated activity sets {An : n ∈ N}, location sets {La : a ∈ Av}, and required-
agent sets {Na : a ∈ Av} for the activities of vehicle v

1: for each agent n ∈ N \ {v} do
2: for each activity a ∈ An do
3: Create activities arrival_to(a) and departure_from(a)
4: Set Larrival_to(a) ← La and Ldeparture_from(a) ← La

5: Add arrival_to(a) and departure_from(a) to:

An, Av, and Ad for each d ∈ D.

6: Set required-agent sets:

Narrival_to(a) ← { {v, d} : d ∈ D
}
, Ndeparture_from(a) ← { {v, d} : d ∈ D

}
.

7: if n ∈ D then
8: Create activity parking(a) with Lparking(a) ← La

9: Add parking(a) to Av

10: end if
11: end for
12: end for
13: return {An} for all n ∈ N, and {La, Na} for all a ∈ Av

For all activities created by the algorithm (arrival_to_a, departure_from_a, and
parking_a), the following parameters must also be initialized to ensure full model con-
sistency:

ca,ℓ = 0, Ca = 4, x⋆an, τ⋆an, [γ−
aℓ, γ

+
aℓ], [τmin

a , τmax
a ].

The parameters x⋆an, τ⋆an, [γ−
aℓ, γ

+
aℓ], and [τmin

a , τmax
a ] are defined consistently with the corre-

sponding activity a from which the auxiliary activities are derived. Their specific initialization
is not constrained by the algorithm itself.
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