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Abstract
Choice models have been applied to explain and predict the transportation choices of in-
dividuals for half a century. The advent of big data brings about new opportunities and
poses new challenges for forecasting. This chapter discusses the major methodological
contributions and the most recent developments in the field of choice modelling in trans-
portation. Advanced choice models have been proposed to accommodate unrestricted
substitution patterns between alternatives, unobserved taste variations, serial correlation
between repeated observations, and latent constructs as attitudes and perceptions. In re-
cent years, data-driven methods have gained traction to improve the prediction accuracy
and to assist the analyst in the model specification. Choice models have also been incor-
porated into optimization problems to account for the interactions between the choices
of individuals and the planning decisions under evaluation. To estimate these advanced
models, fast and computationally efficient methods are required.

Keywords: transportation, advanced choice models, data-driven methods, choice-based
optimization, estimation methods.

1



1 Introduction
Disaggregate behavioural models have been applied to travel demand analysis since 1970
(McFadden, 2001a,b). At that time, major changes in the transportation system that could
not be reliably predicted using the aggregate models available were under evaluation at
the US Department of Transportation. To address this challenge, Domencich and Mc-
Fadden (1975) estimated a travel demand model using disaggregated utilities based on
the conditional logit model developed by McFadden (1968, 1973). The data were based
on the real choices of individuals who were surveyed on their travel behaviour via inter-
views. The forecasting abilities of these models were tested in practice to predict travel
behaviour following the introduction of the new public transport system BART in San
Francisco (McFadden et al., 1977). The forecasts resulted to be quite accurate compared
to the predictions of the aggregate models previously used. Based on this evidence, the
methods developed started to be adopted for transportation analysis worldwide.
In the last decades, the advent of new technologies for data collection in real time has
brought about new opportunities and posed new challenges for forecasting. The location
of individuals can be tracked in details using GPS data and be used as inputs for route
choice models (Axhausen et al., 2004). The behaviour of road users can be observed in
on-road studies with instrumented vehicles (Varotto et al., 2018, 2021), driving simulator
experiments (Paschalidis et al., 2019) and virtual reality experiments (Bogacz et al., 2021;
Nuñez Velasco et al., 2019). These data collection methods allow to investigate user
responses to new technologies as automated vehicles, incorporate behavioural constructs
and human factors, and analyse different choice situations over time for each individual.
A major challenge is to develop mathematical models that can accommodate these data
and forecast user behaviour in real time in Intelligent Transportation Systems.
This chapter discusses the major methodological contributions and the most recent devel-
opments in the field of choice modelling in transportation. Despite being widely used,
the logit model has some major limitations because it assumes proportional substitution
patterns, no unobserved taste heterogeneity, independence across repeated observations
over time, and homoscedastic errors across alternatives. To address these limitations, ad-
vanced choice models have been developed. Some of these advanced models lack a closed
form expression of the choice probabilities and thus need to be estimated using simula-
tion methods. Choice models can be used to obtain aggregated forecasts at the population
level and support decision-makers (e.g. the expected market shares of competing transport
services).
In recent years, several studies have proposed data-driven models, estimation methods
and validation techniques in transportation demand analysis (Hillel et al., 2021). To
date, theory-based choice models are still preferred to data-driven approaches because
the model parameters are directly interpretable, forecasting indicators can be derived from
the model parameters, and forecasting in new settings is underpinned by the causality link
provided by the theory (van Cranenburgh et al., 2021). However, data-driven methods of-
fer certain advantages in terms of model specification, model selection and prediction
accuracy. A promising research direction is to integrate these methods into choice models
to improve current practices in transportation demand analysis.
Individual-level demand specified by discrete choice models can be aggregated over in-
dividuals to calculate demand functions at the market level and directly link the prices

2



to the market shares (Koppelman, 1976; McFadden and Reid, 1975). The interaction of
these demand functions with the supply determines the market equilibrium prices. To
explicitly account for these interactions, discrete choice models describing the demand
can be directly integrated into choice-based optimization problems. Currently, a promis-
ing research direction to improve the behavioural realism of these models is to integrate
advanced discrete choice models into optimization problems.
The chapter is structured as follows. Section 2 describes the origins of RUM theory, the
logit model, and the earliest methods for collecting data regarding the travel behaviour of
individuals. Section 3 discusses advanced models explicitly capturing unrestricted sub-
stitution patterns between alternatives, unobserved taste heterogeneity, serial correlation
between repeated observations over time, heteroscedastic errors across alternatives, and
latent constructs as attitudes and perceptions. Section 4 presents maximum likelihood
methods and Bayesian methods that can be used to estimate choice models. Section 5
describes how choice models can be aggregated to obtain forecasts at the population level
as market shares and how indicators useful for policy analysis can be derived from choice
models. Section 6 presents studies proposing data-driven methods as tools to search
for the most suitable model specification and studies integrating data-driven models to
achieve higher goodness-of-fit and prediction accuracy. Section 7 describes how choice
models can be incorporated into optimization problems to account for the interactions be-
tween the choices of individuals and the planning decisions under evaluation. Section 8
discusses open challenges and directions for future research.

2 Foundations

2.1 Origins of RUM theory and logit model
The logit model has a mathematical formulation suitable for econometric applications and
is based on the theories proposed in the field of mathematical psychology by Thurstone
(1927) and on the choice axiom proposed by Luce (1959). Thurstone (1927) developed
the law of comparative judgement to represent imperfect discrimination of individuals in
choice tasks. He assumed that an individual n perceives an alternative j as

Ujn = f(θjn) + εjn, (1)

where f(θjn) is a function of unknown parameters θjn and characteristics of the alter-
native j, and εjn is an independent normally distributed error term which is individual-
and alternative-specific. Given two alternatives j and j ′ in the choice set, an individual
will prefer alternative j over alternative j ′ if (Ujn − Uj ′n) > 0. The probability that an
individual n chooses alternative j is equal to

P(j|θjn, σj,j ′) = Φ

(
f(θjn) − f(θj ′n)

σj,j ′

)
, (2)

where f(θjn) − f(θj ′n) is the mean and σj,j ′ is the standard deviation. This form is now
called binomial probit. Notably, the law of comparative judgement was generalized to
stochastic utility maximization over multiple alternatives and defined as random utility
maximization (RUM) model by Marschak (1960).
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Luce (1959) postulated that, given P(j|Cn) the probability that an individual n chooses
alternative j in a set of mutually exclusive and exhaustive alternatives Cn, the ratio of
choice probabilities for alternatives j and j ′ is constant for every choice set Cn which
comprises the alternatives j and j ′ such that

P(j|Cn)

P(j ′|Cn)
=
Pj,j ′(j)

Pj,j ′(j ′)
. (3)

The axiom was defined as Independence from Irrelevant Alternatives (IIA). Luce showed
that, if this axiom holds, a positive "strict utility" Vjn can be associated with each alterna-
tive as follows

P(j|Cn) =
Vjn∑

j ′∈Cn Vj ′n
. (4)

McFadden (1968, 1973) proposed a parametric exponential function for this strict utility

Vjn = exp(X>
jnβ), (5)

where Xjn are the attributes of alternative j for individual n and β are parameters to
be estimated. This formulation established, for the first time, a link between the RUM-
concept and the specification of empirical travel demand models. The formulation was
called conditional logit model because its ratio form was similar to the form of conditional
probabilities and, in case of two alternatives, it corresponded to a logistic. This form is
now called the logit model. The logit model was used by Domencich and McFadden
(1975) to predict the mode of work commuting trips and the generation, destination and
mode of shopping trips. The different choices were linked using inclusive values which
were function of the choice probabilities at the lower level of the decision tree.

2.2 Data collection methods
The earliest applications in travel demand analysis in the 1970’s were based on data of
individuals which were surveyed on their travel behaviour via home or phone interviews
(McFadden, 2001a). Respondents usually reported the trips executed, the transport mode,
the travel time, the travel costs and other relevant trip characteristics. The attributes of all
alternatives available to each individual in the choice task were usually calculated by the
analysts based on the transportation network. This method provided revealed preference
(RP) data from real choices of individuals.
During the last decades, transportation analysts have developed more cost-effective meth-
ods to select the sample in surveys based on the choices under evaluation and the observed
behaviour of a specific group of individuals. These methods are called choice-based sam-
pling methods. When analysing changes in the transportation system caused by the intro-
duction of a new facility, the analyst can survey the individuals who are most likely to use
that facility and compare them to a control-group of individuals surveyed at home.
A second important innovation is represented by the collection of stated preference (SP)
data, a research direction which has been extensively investigated (Ben-Akiva et al.,
2019). SP data can be collected using conjoint analysis, which involves the presentation
of hypothetical choice tasks in an experimental design (Green and Srinivasan, 1978). The
main advantages of this method are that it allows to specify the choice setting precisely,
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to study the introduction of new services, and to collect a large number of observations
with moderate costs. The main limitation is that the level of realism might be limited. To
forecast the impact of changes in the transportation system, SP data can be combined with
RP data in a unified modelling framework (McFadden, 1986; Ben-Akiva and Morikawa,
1990; Morikawa et al., 1991; Hensher et al., 1998; Louviere et al., 1999).

3 Advanced models

3.1 Nested logit and MEV
The nested logit model accommodates flexible substitution patterns by grouping alter-
natives that share unobserved characteristics into nests. The red bus/blue bus paradox
illustrates the unrealistic substitution patterns implied by the IIA property. Suppose there
are two transportation mode choice alternatives with the same travel time, namely car
and blue bus. A logit model that only considers travel time as explanatory variable pre-
dicts that the probability of choosing car is the same as the probability of choosing bus,
i.e. P(car) = P(blue bus) = 0.5 such that P(car)/P(blue bus) = 1. Now suppose
that the public transport authority decides to procure red busses to complement the exist-
ing fleet of blue busses. One would expect that car still accounts for 50% of the mode
share, while red bus and blue bus each account for 25% of the mode share with a com-
bined share of 50%, i.e. P(car) = 0.5 and P(blue bus) = P(red bus) = 0.25 such that
P(bus) = P(blue bus) + P(red bus) = 0.5. However, logit predicts that the three modes
have an identical market share of 1/3, i.e. P(car) = P(blue bus) = P(red bus) = 1/3

with P(bus) = P(blue bus) + P(red bus) = 2/3. This is because the IIA property implies
proportional substitution, i.e. P(car)/P(blue bus) = 1 must hold.
The nested logit groups alternatives into M nests indexed by m = 1, . . . ,M. The alter-
natives within a nest are assumed to share unobserved characteristics such that the utility
errors of the alternatives are additively separable into nest- and alternative-specific terms.
The random utility of alternative j ∈ C is then given by

Ujn = Vjn(Xjn, β) + εm(j),n + εjn, (6)

where Vjn is the systematic utility of alternative j for individual n, which depends on ex-
planatory variables Xjn and parameters β. εm(j),n and εjn are the nest- and the alternative-
specific error components, respectively. m(j) is a mapping from alternatives to nests
such that m(j) = m if alternative j is in nest m. The total utility error of alterna-
tive j is ε̃jn = εm(j),n + εjn. It is assumed to be extreme value type I distributed with
location zero and scale µ, i.e. ε̃jn ∼ EV1(0, µ). The alternative-specific error compo-
nents are also extreme value type I distributed but with location zero and scale µm(j), i.e.
εm(j),n ∼ EV1(0, µm(j)). As a consequence, the variance-covariance matrix of the random
utilities is block-diagonal. We have

Cov(Ujn, Uj ′n) =


π2

6µ2
if j = j ′,

π2

6µ2
− π2

6µ2m
if j 6= j ′, j and j ′ are in the same nest m,

0 otherwise.

(7)
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The nested logit belongs to the multivariate extreme value (MEV) family of discrete
choice models (McFadden, 1978). Under the MEV assumption, the probability of choos-
ing alternative j ∈ C conditional on explanatory variables Xjn and parameters θ = {β, µ}

is given by

P(j|Xn; θ) =
Λjn(Xn, θ)∑
j ′∈CΛj ′n(Xn, θ)

, (8)

where
Λjn (Xn, θ) = e

Vjn(Xjn,β)+lnGjn(ψ1n,...,ψJn;µ) (9)

with
ψjn = eVjn(Xjn,β) (10)

and
Gjn(ψ1n, . . . , ψJn;µ) =

∂G

∂ψjn
(ψ1n, . . . , ψJn;µ). (11)

Here, Vjn is the systematic utility component that depends on explanatory variables Xjn
and parameter β. G(ψ1n, . . . , ψJn;µ) is called a MEV generating function with parameter
µ. For nested logit, we have

G(ψ1n, . . . , ψJn;µ) =

M∑
m=1

(
Jm∑
j=1

ψjn

) µ
µm

(12)

with µ = {µ, µ1, . . . , µM}. For nested logit to be consistent with RUM, we need to have
µ, µ1, . . . , µM ≥ 0 and µ

µm
≤ 1.

Another member of the MEV family is the cross-nested logit (CNL) model (Bierlaire,
2006) which allows for fuzziness in the nest membership of an alternative. CNL has the
following generating function:

G(ψ1n, . . . , ψJn;µ, α) =

M∑
m=1

(
Jm∑
j=1

(
α
1/µ
jm ψjn

)µm) µ
µm

(13)

with µ = {µ, µ1, . . . , µM}, whereby µ, µ1, . . . , µM ≥ 0, µ
µm
≤ 1 and αjm ∈ [0, 1]. Here,

αjm captures the degree of membership of alternative j in nestm.
MEV models have been adopted in the analysis of various travel-related behaviours. For
example, Forinash and Koppelman (1993) employed a nested logit model to capture sim-
ilarities between transport modes in an analysis of business travellers’ intercity mode
choice behaviour. Furthermore, Cervero and Duncan (2008) used a nested logit model to
jointly estimate the probabilities that someone lives near a rail stop and also commutes
by rail. In a joint analysis of work and home location and commute mode choice, Abra-
ham and Hunt (1997) used a nested logit model to capture similarities between transport
modes. In an analysis of parking choice behaviour, Hunt and Teply (1993) devised a
nested logit model representing similarities among on-street and off-street parking alter-
natives. Vovsha (1997) used a cross-nested logit model to capture similarities between
pure and combined modes in an analysis of urban mode choice behaviour. Finally, in an
analysis of pedestrian walking behaviour, Antonini et al. (2006) devised a cross-nested
logit model to jointly explain speed and direction choices.
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3.2 Mixtures of logit
Mixtures of logit models accommodate unobserved taste heterogeneity, unrestricted sub-
stitution patterns and correlation in unobserved factors over time. Due to this flexibility,
mixtures of logit models (also called “mixed logit”) have become workhorse methods
in travel demand analysis. The ability to accommodate unobserved taste heterogeneity
significantly enhances the flexibility of choice models. In many empirical applications,
it is reasonable to assume that individuals exhibit varying sensitivities to attributes. For
example, it is often unrealistic to assume that everyone is equally sensitive to travel time.
Sensitivities to attributes may vary as a function of observable characteristics of the in-
dividual or of the choice situation. However, an analyst is unlikely to have access to all
observable factors that influence taste heterogeneity. Therefore, taste heterogeneity is of-
ten unobservable from the analyst’s point-of-view. Likewise, the ability to accommodate
unrestricted substitution patterns significantly enhances the flexibility of choice models
to accurately characterise demand. Finally, in many empirical applications, analysts are
able to observe repeated choices from individuals. For example, modern data collection
methods allow researchers to track individuals’ transportation choices over time and the
same unobserved factors may influence the individual’s decisions in each of the repeated
choice situations.
Mixtures of logit extend standard logit models hierarchically by allowing utility parame-
ters to vary randomly across observational units. In mixtures of logit, the probability of
choosing alternative j ∈ C is given by

P(j|Xn, θ) =

∫
β

(
eVjn(Xjn,β)∑

j ′∈C e
Vj ′n(Xj ′n,β)

)
f(β|θ)dβ. (14)

Here, e
Vjn(Xjn,β)∑

j ′∈C e
V
j ′n(X

j ′n,β)
is the standard logit choice probability evaluated at β. f(β|θ) is

the density of β with parameter θ. f is referred to as the mixing distribution. It may
be parametric, semi-parametric or non-parametric (Krueger et al., 2020; Vij and Krueger,
2017). The normal distribution is the most common mixing distribution. It has two pa-
rameters, a mean vector and a variance-covariance matrix. If the mixing distribution is
discrete such that the support of β is finite, the choice probability (14) becomes

P(j|Xn, β, π) =

S∑
s=1

πs
eVjn(Xjn,βs)∑

j ′∈C e
Vj ′n(Xj ′n,βs)

with
S∑
s=1

πs = 1, (15)

where βs is the parameter that is associated with components s = 1, . . . , S, and πs rep-
resents the share of component s. It is possible to include a component membership
model in which the probability that an individual n belongs to component s depends on
individual-specific attributes Zn. The component membership model can be formulated
using logit such that

πsn = P(s|Zn, γ) =
eZ

>
nγs

1+
∑S

s ′=2 e
Z>
nγs ′

. (16)

Here, γ = {γ2, . . . , γS} are unknown parameters. For identification, the first component
is set as a reference component.
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Mixtures of logit also allow for a flexible specification of error components to induce cor-
relation across random utilities. Often, the error components are assumed to be normally
distributed with mean zero and an unknown standard deviation (e.g. Walker et al., 2007).
When there are B error components indexed by b = 1, . . . , B, the random utility writes
as

Ujn = Ṽ(Xjn, β) +

B∑
b=1

djbσbξbn + εjn, (17)

where djb is one if error component b is associated with alternative j and zero otherwise.
Error component b induces correlation across all alternative j ∈ C for which djb = 1.
σb is the scale of error component b, and ξbn is a standard normal random variable.
Ṽ(Xjn, β) is a scalar function that depends on explanatory variables Xjn and parameters
β. However, the model identification in error components specifications of mixture of
logit is not simple and must be carefully considered in empirical applications (Walker
et al., 2007).
Furthermore, mixtures of logit accommodate correlation in unobserved factors over time.
Suppose that individual n is observed to make a sequence of T choices indexed by t =
1, . . . , T . If the utility parameters are assumed to vary across individuals but not across
the choice situations faced by one individual, the probability of observing individual n’s
sequence of choices {y1n, . . . , yTn} is

P(y1n, . . . , yTn|Xn, θ) =

∫
β

(
T∏
t=1

eVtjn(Xtjn,β)∑
j ′∈C e

Vtj ′n(Xtj ′n,β)

)
f(β|θ)dβ (18)

with ytn ∈ C ∀ t ∈ {1, . . . , T }.
Mixtures of logit are now workhorse models in travel behaviour analysis. A non-exhaustive
list of mixtures of logit applications includes the analysis of preferences for travel time
savings (Hess et al., 2006), travel time and reliability (Small et al., 2005), congestion pric-
ing (Bhat and Castelar, 2002), Mobility-as-a-Service (Caiati et al., 2020) and autonomous
on-demand mobility (Krueger et al., 2016) as well as the study of mode choice behaviour
(Bhat, 1997, 2000), trip timing decisions (Börjesson, 2008), household location decisions
(Walker and Li, 2007) and driver choices to deactivate automation (Varotto et al., 2017a).

3.3 Integrated choice and latent variable models
In many empirical applications, including modelling the demand of modern mobility sys-
tems, socio-psychological elements such as attitudes, beliefs and perceptions can largely
influence the decision-making process of individuals. For instance, sensitivity to travel
time in sustainable transport modes may vary across individuals based on their attitude
towards the environment. These constructs are not directly observable but can be indi-
rectly measured using psychometric indicators. To capture the impact of these constructs
and enhance the explanatory power of choice models, the RUM framework introduced in
Section 2 should be extended.
The integrated choice and latent variable (ICLV) model (Ben-Akiva et al., 2002; Walker,
2001) allows for the inclusion of latent constructs as explanatory variables in choice mod-
els. ICLV models consist of two components, a choice model and a latent variable model.
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Figure 1: Integrated choice and latent variable model

Figure 1 visualises the structure of an ICLV model. In the choice model, the utility of
alternative j is given by

Ujn = Vjn(Xjn, φn;β), (19)

where the systematic utility Vjn depends on observed attributes Xjn, latent variables φn
and parameters β. The latent variable model consists of a structural component and a
measurement component. We suppose that the model contains K latent variables indexed
by k = 1, . . . , K and L measurement indicators indexed by l = 1, . . . , L. The structural
component of the latent variable model is given by

φkn =Wkn(Zkn, γk) + ηkn. (20)

Here, Wkn is a function which depends on individual-specific characteristics Zkn and
parameters γk. ηkn is a random disturbance. The measurement component of the latent
variable model is given by

mln = δl + φ
>
nλl + ξln, (21)

where δl is a constant, λl is vector of factor loadings, and ξln is an error term. mln denotes
the measurement indicator. Depending on the nature of the indicator, the distribution of
mln can be discrete or continuous. Then, the joint probability of the observed choice and
the indicators is

P(y,m|X,β, γ, δ, λ) =

∫
φ

P(y|X,φ, β)P(m|δ,φ, λ)f(φ|Z, γ)dφ. (22)

Identification in ICLV models is non-trivial (e.g. Daly et al., 2012) and should be carefully
considered in empirical applications.
ICLV models have been applied in various ways to analyse the relationship between dif-
ferent latent variables and travel behaviour. For example, Atasoy et al. (2013) used an
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ICLV model to examine the influence of attitudes towards public transportation and envi-
ronmental problems on transport mode choice. Paulssen et al. (2014) developed a hierar-
chical ICLV model to investigate the relationship between values, attitudes and transport
mode choice. Motoaki and Daziano (2015) employed an ICLV model to analyse the
influence of cycling skills and experience on cycling route choice preferences. Li and
Kamargianni (2020) adopted an ICLV model to investigate the influence of attitudes and
perceptions on shared mobility usage. Furthermore, Varotto et al. (2017b) used an ICLV
model to account for error in travel time reporting in the analysis of revealed preference
mode choice data.

4 Estimation

4.1 Maximum likelihood estimation
Point estimates of the parameters of choice models with closed form choice probabilities
such as logit and other MEV-based models can be obtained using maximum likelihood
estimation.
Suppose that we analyse a sample of N individuals indexed by n = 1, . . . ,N. Every in-
dividual in the sample is observed to choose an alternative yn out of the set C = 1, . . . , J.
We further assume a parametric form for a discrete choice model generating the probabil-
ity that individual n chooses alternative j ∈ C:

P(j|Xn; θ). (23)

Then, the log-likelihood of the sample is

L(θ) =
N∑
n=1

lnP(j|Xn; θ), (24)

and a point estimate θ̂ of θ is given by

θ̂ = arg max
θ

L(θ). (25)

This optimization problem can be solved using standard optimization routines such as
quasi-Newton methods.
However, the choice probabilities of continuous mixtures of logit and ICLV models are
not analytically tractable and thus need to be approximated. For example, in continuous
mixtures of logit, the intractable choice probability (14) can be approximated using R
simulation draws denoted by βrn with r = 1, . . . , R from the density f(βn|θ):

P(j|Xn, θ) ≈
1

R

R∑
r=1

(
eVjn(Xn,βrn)∑
j ′∈C e

Vj ′n(Xn,βrn)

)
. (26)

Then, the simulated log-likelihood function of mixtures of logit is

L(θ) =
N∑
n=1

ln

(
1

R

R∑
r=1

(
eVjn(Xn,βrn)∑
j ′∈C e

Vj ′n(Xn,βrn)

))
. (27)
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The variance of the approximation defined in (26) decreases when R increases. Since
the computational budget is usually finite, it is desirable to decrease the simulation vari-
ance for fixed R. Given an identical number of draws, strategically generated simulation
draws such as quasi-random sequences incur a lower simulation error than pseudo-random
draws. The field of travel demand modelling has contributed significantly to the develop-
ment and understanding of quasi-random simulation techniques (Bhat, 2003; Hess et al.,
2006; Sivakumar et al., 2005). Popular methods include Halton draws (Bhat, 2003) and
Modified Latin Hypercube Sampling (Hess et al., 2006).

4.2 Bayesian methods
Maximum simulated likelihood estimation presents a powerful framework for the esti-
mation of continuous mixtures of logit. However, the computational cost of maximum
simulated likelihood estimation becomes exceedingly large when models contain com-
plex hierarchies of latent variables and parameters. Bayesian estimation is an alternative
approach for the estimation of choice models which alleviates the issues of maximum
simulated likelihood estimation.
A key difference between maximum (simulated) likelihood estimation and Bayesian es-
timation is that Bayesian estimation aims to infer the posterior distribution of unknown
parameters, whereas maximum (simulated) likelihood estimation aims to find point es-
timates of unknown parameters. Bayesian estimation entails the specification of a full
probability model defining the joint distribution of the observed data y and the unknown
quantities (including parameters and latent variables) θ. This joint distribution has the
form P(y, θ) = P(y|θ)P(θ). Here, P(y|θ) is the likelihood of y given θ. P(θ) is the
prior distribution of θ, which captures the state of knowledge about the distribution of the
unknown model quantities before observing the data y. The posterior distribution P(θ|y)
which we wish to estimate captures the state of knowledge about the distribution of the
unknown model quantities θ after observing the data y. By Bayes’ rule, the posterior
distribution of interest is given by

P(θ|y) =
P(y|θ)P(θ)∫
P(y|θ)P(θ)dθ

∝ P(y, θ). (28)

The posterior distributions of MEV- and probit-based discrete choice models are not avail-
able in closed form. Hence, posterior inferences in these types of models are performed
using approximate approaches such as Markov chain Monte Carlo (MCMC) and Varia-
tional Bayes (VB).
MCMC methods approximate an intractable posterior distribution through samples from
a Markov chain such that the stationary distribution of these samples is the posterior dis-
tribution of interest. The Metropolis-Hastings algorithm is the most widely used method
to construct a Markov chain. The algorithm consists of two steps. First, a new state is
drawn from a proposal distribution conditionally on the current state of the Markov chain.
Then, with some probability, the new state is either accepted and used in the next iter-
ation, or the new state rejected and the old state is re-used in the next iteration. Gibbs
sampling is a special case of the Metropolis-Hastings algorithm. In Gibbs sampling, the
unknown quantities of interest are divided into blocks, and one block of parameters is up-
dated conditionally on all other parameter blocks. Gibbs sampling is appealing when the
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conditional posterior distributions correspond to known distributions from which direct
sampling is easy.
In particular in applications to large datasets, MCMC methods succumb to several limi-
tations, namely the need to create sufficient storage for the posterior draws, the lack of a
well-defined convergence criterion and autocorrelation of the generated posterior draws
(Bansal et al., 2020). Variational inference seeks to overcome the limitations of MCMC by
formulating approximate Bayesian inference as an optimization problem which consists
of minimising the probability distance between the target posterior distribution P(θ|y)
and a parametric variational distribution q(θ|ν) over the parameter ν of the variational
distribution.
Compared to maximum simulated likelihood methods, Bayesian estimation methods have
found far fewer applications in travel behaviour analysis, likely due to a steeper learning
curve. Applications of MCMC methods in the context of discrete choice and travel be-
haviour analysis include the estimation of mixtures of logit models with flexible mixing
distributions for analysing preferences for mobility on-demand (Krueger et al., 2020), in-
tegrated choice and latent variable models for analysing preferences for environmentally-
friendly vehicle technologies (Daziano and Bolduc, 2013) and mixtures of logit mod-
els with unobserved inter- and intra-individual heterogeneity for analysing mode choice
(Krueger et al., 2021). Also variational inference methods have been employed in the
context of discrete choice and travel behaviour analysis. Bansal et al. (2020) compared
different implementations of variational inference for mixtures of logit and apply the esti-
mators to analyse preferences for alternative fuel vehicles. In an analysis of stated prefer-
ences for different transport modes, Rodrigues et al. (2020) relied on variational inference
methods to estimate a logit model which automatically determines the most relevant pre-
dictors out of a large set of explanatory variables. Furthermore, Wong and Farooq (2020)
employed variational inference methods to estimate discrete-continuous models of travel
behaviour using large datasets.

5 Model application and forecasting

5.1 Travel demand prediction
In trip-based models, individual trips are used as unit of analysis and travel demand is
usually modelled in four consecutive steps. The first step is trip generation which involves
the calculation of the number of trips generated and attracted by each zone. The second
step is the trip distribution that defines the number of trips from each zone of origin to
each zone of destination (OD pair). The third step is the mode choice that splits the
trips between OD pairs to the different modes of transport (e.g., passenger vehicles and
public transport). The fourth step is the assignment that assigns the trips for each mode
to the corresponding network (e.g., road network or public transport network). Each trip
is assumed to be independent from the other trips. The forecasting abilities of RUM-
models were tested in practice to predict travel behaviour following the introduction of
the new public transport system BART in San Francisco (McFadden et al., 1977). The
forecasts resulted to be quite accurate compared to the predictions of the aggregate models
previously used. Based on this evidence, the methods developed started to be adopted for
transportation analysis worldwide. Notably, these disaggregated models were aggregated
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at the zonal level before the assignment and they did not explicitly capture the departure
time choice.
A major limitation of trip-based models is to consider individual trips as the unit of analy-
sis. In practice, the location, the travel mode, and the departure time of the different trips
executed by the same individual are influenced by some common characteristics and the
different trips cannot be analysed separately (Bhat and Koppelman, 1999). In addition,
individual travelers in the same household might influence each other. These limitations
have been addressed by adopting activity-based models (Axhausen and Gärling, 1992).
In these models, travel demand is considered derived from the desire or the need to pursue
certain activities. These models allow to examine how individuals change their partici-
pation in activities in response to changes in the travel conditions during a certain period
of time which is used as unit for analysis (e.g., one working day). These models can in-
corporate high levels of spatial and temporal resolution, and can explicitly accommodate
both individual activity behaviour and links between different individuals in a household.
The models are usually implemented into a micro-simulation framework, in which the
choices of individuals and households are assessed. These models can be easily extended
to evaluate the impact of new policies that cannot be represented in trip-based models
(e.g., a novel pricing alternative when entering a specific area for the first time and no
additional pricing when returning).

5.2 Indicators for cost-benefit analysis
To measure the benefits associated with potential improvements in the transportation sys-
tem and assess whether these benefits compensate the costs, researchers can calculate the
change in consumer surplus. In travel demand analysis, the consumer surplus is defined
as the difference between what travellers are willing to pay for an improvement in the sys-
tem and what they pay in practice. The foundations for the calculation of the consumer
surplus based on RUM models were provided by Williams (1977) and Small and Rosen
(1981). The consumer surplus can be calculated as the area under the demand function
(i.e., the choice probability) and above the market price (i.e., the utility, as multiple vari-
ables explain the behaviour). Researchers can be interested in calculating the change in
consumer surplus determined by a change in the utilities from V1 to V2 and/or a change in
the choice set from C1 to C2. For a logit model, the change in consumer surplus is given
by

1
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eµV
2

−
1

µ
ln
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1
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For MEV models in general, the consumer surplus is given by
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2
)
− lnG
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1
)
, (30)

whereG is the MEV generating function. The generating function for nested logit models
is given in (12). In these equations, the utility can be transformed into monetary values
dividing by the cost parameter.
Another useful indicator used in cost-benefit analysis is the willingness-to-pay (WTP)
for improvements in the transportation system. The WTP is defined as the net income
decrease that, when a certain variable is modified, allows to maintain the same expected

13



utility. In travel demand analysis, a typical WTP measure is the value of time (VOT)
which is defined as the cost that travellers are willing to pay to save travel time. Using this
measure, it is possible to compare the actual costs of an improvement in the transportation
system to the expected benefits for the travellers, expressed in monetary terms. Williams
(1977) and Daly and Zachary (1979) provided the foundations for the calculation of the
WTP when the demand behaviour is represented by a RUM model. In this case, the
VOTjn for alternative j and individual n can be calculated using conventional measures
of consumer surplus as follows

VOTjn =
∂Vjn/∂ttjn

∂Vjn/∂cjn
, (31)

where Vjn is the systematic utility, ttjn is the travel time, cjn is the cost. When the
variables travel time and cost are linearly included into the utility function, the VOT is
constant and is given by

VOT =
βtt

βc
, (32)

where βtt and βc are the parameters associated with the travel time and the cost respec-
tively.

6 Integration with data-driven methods

6.1 Automated selection of model structure and specification
In discrete choice models, the model structure and the explanatory variables are chosen
by the analyst based on existing theories and knowledge on the data generation process.
The final model structure and specification are the outcome of an extensive selection pro-
cess based on formal testing between alternative structures and specifications. In contrast,
data-driven methods allow to explore several model structures and specifications without
relying on any a priori assumptions on the problem under investigation. These approaches
are useful to assist the analyst, saving time during the model selection phase and explor-
ing specifications that would not have been considered. In the literature, two relevant
approaches are available: i) using data-driven methods to inform choice models and ii)
translating the model specification task into an optimization problem.
The first approach consists in identifying key variables based on data-driven methods and
then using the outputs of the exploration to inform the development of choice models.
This approach was originally proposed in the field of marketing (Bentz and Merunka,
2000; Hruschka et al., 2002), where a neural network was used as a diagnostic and speci-
fication tool for the development of a choice model. In the field of transportation, relevant
variables were identified using a gradient-boosting decision-tree (Hillel et al., 2019) and
using the concept of automatic relevance determination in a Bayesian framework (Ro-
drigues et al., 2020).
The second approach consists in translating the model specification task into an optimiza-
tion problem which can be solved based on search algorithms. Several studies have pro-
posed different variable selection methods, designed to operate with the original variables
and based on metaheuristics (for a review, we refer to Ortelli et al. (2021)). However,
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only a few studies have proposed flexible methods that can accommodate more com-
plex model specifications. In the field of transportation, Paz et al. (2019) showed that
metaheuristics as simulated annealing can be adapted to select both the variables and the
parameter distributions in mixtures of logit model. A similar approach was proposed by
Ortelli et al. (2021) who defined the model specification task as a multi-objective combi-
natorial optimization problem based on a set of information defined by the analyst. They
implemented a variant of the variable neighbourhood search algorithm which explores
several candidate models simultaneously. This method can accommodate any form of
variable transformation and different model structures.

6.2 Goodness of fit and prediction accuracy
Several studies have shown that data-driven methods offer higher prediction accuracy than
choice models (for an extensive comparison, we refer to Wang et al. (2021)). However,
limited efforts have been dedicated to link these models with economic theories and ex-
tract interpretable results, which are fundamental requirements for making planning and
policy decisions in transportation. Brathwaite et al. (2017) developed a microeconomic
framework for the interpretation of bayesian model trees and integrated these models into
choice models to capture semi-compensatory decision protocols. Inspired by methods in
computer vision, Alwosheel et al. (2019) proposed synthesising prototypical examples to
investigate the realism of the relationships learned by a neural network. Zhao et al. (2020)
calculated marginal effects and arc elasticities using a modified approach to address the
limitations of a random forest model and obtain more realistic outputs. In these studies,
the machine learning models showed higher predictive power and a higher or lower level
of behavioral realism than the choice models.
To achieve interpretable results and improve the prediction accuracy, some studies have
proposed to combine choice models and data-driven methods in a unified framework.
Sifringer et al. (2020) developed a logit model in which the utility function is manually
specified by the analyst and the alternative-specific constants are modelled as functions
of the variables not included in the utility function using a neural network. This approach
was extended by Han et al. (2020), who allowed all parameters to be specified as a func-
tion of the characteristics of the individual using neural networks. Inspired by natural
language processing approaches, Pereira (2021) proposed a method for encoding categor-
ical variables using neural networks which learn embeddings of these variables. Finally,
Wong and Farooq (2021) integrated a deep neural network into a choice model and ex-
tracted behavioural indicators from the matrix parameters. In these studies, the models
integrating neural networks showed higher predictive power than the original choice mod-
els and allowed to directly interpret part of the utility function.

7 Choice-based optimization
In choice-based optimization problems, supply decisions are jointly optimized with de-
mand decisions. Supply and demand decision influence each other until a global optimum
solution satisfying both has been found. Demand decisions are represented by choice
models that contain the supplier decision variables. Logit models do have a closed form
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expression of the choice probabilities that facilitates the integration into large-scale op-
timization problems and guarantees the equilibrium existence and uniqueness. Liu et al.
(2019) developed a unified framework to optimize and analyze the operation of Mobility-
On-Demand systems, where passenger mode choice is predicted using a logit model and
the level of service of a travel mode influences its demand. A Bayesian optimization ap-
proach was used to calculate the optimal demand parameters. The framework allows to
evaluate the impact of Mobility-On-Demand on the transportation system and vice versa.
Advanced choice models, which have a higher level of behaviour realism, do not have a
closed form expression and result in non-convex optimization problems. With these mod-
els, there is not guarantee of equilibrium existence and analytical approaches cannot be
used to search for it. Recently, Pacheco Paneque et al. (2021) developed a new approach
to integrate advanced choice models into a mixed integer linear optimization problem by
using simulation. The simulation approach provides a realistic representation of the inter-
actions between the individual choices and the variables under evaluation across a large
number of simulation-based replications. To date, however, such approach can only be
applied to solve small-scale problems because the simulations have a high computational
cost. Based on this simulation approach, Bortolomiol et al. (2021b) developed an algo-
rithm to find an approximate equilibrium solution in a market in which the demand is
modelled at the individual level. The method can explicitly capture observed and unob-
served heterogeneity between individuals in the demand function, multiple offers by the
suppliers and different pricing strategies. Building on these previous studies, Bortolomiol
et al. (2021a) developed a framework to identify optimal transport policies to regularize
oligopolistic transport markets in which the demand is modelled at the individual level
using choice models. In these markets, the regulations can influence the decisions of all
agents involved. Similar numerical approaches are needed when the optimization prob-
lem is noncovex. Chakraborty et al. (2021) developed a framework for optimal design of
exclusive lanes for automated vehicles on freeways which incorporates the demand split
among automated vehicles and manually driven vehicles using a logit model. Due to the
binary variables representing the lane design, the problem was formulated as a noncovex
mixed-integer nonlinear program. The results show that, when accounting for the demand
of each mode, the optimal lane design is not trivial.

8 Conclusion
Models for explaining and predicting the transportation choices of individuals have be-
come indispensable in travel behaviour analysis. In this chapter, we reviewed major
methodological advances and recent developments in the field of choice modelling in
transportation.
Modern mobility systems, emerging data sources and machine learning create new needs
and opportunities for the development of innovative methods for the choice-based analysis
of travel behaviour. In particular, choice-based travel demand models need to be adapted
to explain and predict increasingly complex travel patterns. Furthermore, optimization-
based decision support tools need to be developed to enhance the efficiency of modern
mobility systems using insights into user preferences and decision making.
To achieve these strategic research objectives, methods at the intersection of estimation
methods, data-driven approaches and choice-based optimization need to be advanced.
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First, growing amounts of data create a need for fast and computationally-efficient esti-
mation methods for advanced choice models. Second, methods for the assisted specifi-
cation of discrete choice models should be extended to accommodate advanced models
with latent variables and latent classes and to improve the efficiency of existing algorithms
by defining restrictions to the search space using knowledge from literature. Third, more
studies on the interpretability of machine learning models and their integration into choice
models are needed in order to obtain realistic forecasting indicators for travel demand
analysis. Finally, efficient mathematical decomposition techniques need to be developed
to speed-up choice based optimization problems using advanced choice models and apply
these models to large-scale problems.
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