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Abstract.

Compensating crowd-drivers (CD) to complete delivery tasks requires careful analysis. Crowd-
drivers are on-demand independent workers that can reject undesirable delivery requests. In com-
panies like Uber, pricing delivery tasks is important to adjust the supply of Uber drivers to match
the demand. Unlike Uber, e-commerce companies (e.g., AmazonFlex) have a set of delivery re-
quests that are more cost efficient when consolidating multiple delivery requests in a single route.
The compensation influences the probability of route acceptance. As a consequence, route opti-
mization and pricing need to be integrated together to minimize the expected cost and maximize
the participation of CDs in a crowd-shipping platform.

In this study, we develop a framework to create an operational plan of routes, and price routes
based on the market. The probability of route acceptance by CDs is modeled with an econometric
model. The model considers different route attributes that influence the probability of acceptance
(e.g., distance, location, compensation, load and number of stops). The operational problem is a
variant of the Heterogeneous Vehicle Routing Problem where a fleet of commercial vehicles and
a pool of stochastic CDs can complete delivery requests. We develop an Adaptive Large Neigh-
borhood Search (ALNS) algorithm to integrate all decision in a single framework. In addition,
we investigate strategic objectives for the long-term success and sustainability of the platform and
provide managerial insights. In particular, our study demonstrates three main results: 1) A fleet
of only crowd-drivers is more robust than a fleet of commercial vehicles for the various demand
scenarios 2) The compensation of CDs remains stable while incrementing participation and 3) A
large increase of participation can be achieved with a small increase of the expected cost of deliv-
eries. Our analysis offers insights for effectively pricing multiple on-demand delivery requests with
independent workers.

Keywords: Crowd-shipping, last-mile, Dynamic Pricing, Stochastic Optimization, Adaptive
Large Neighborhood Search, Discrete Choice Model, revenue management, multi-objective.
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1 Introduction

In the sharing economy, Uber has spearheaded the crowd-sourced transportation service; initially,

by taxi service, followed by UberEats for meal delivery. However, the expansion of the Uber model

to provide different logistical services have not been extensively explored. For example, a large

portion of city logistics consist of parcel delivery for e-commerce. The Uber-like operational business

model consists of multiple pickup and delivery operations for on-demand workers. In contrast, the

delivery of packages for e-commerce requires delivering a large number of packages in a single route

to make deliveries cost-efficient. Online shoppers expect low-cost next-day delivery and consider

the total cost (i.e., including delivery cost) before purchasing products on e-commerce platforms. In

addition, fulfillment centers are distant from residential areas and city centers, making single pickup

and delivery operations expensive. As a consequence, the capacity to fit multiple packages in a

vehicle from the fulfillment center is relevant for long routes with multiple visits to be cost-efficient.

These properties have delayed the translation of Uber models for parcel delivery. Nevertheless, large

companies are expanding their logistic operations to include crowd-shipping. Amazon has shown

the feasibility of the crowd-shipping business model by implementing their own crowd-shipping

platform called AmazonFlex. Like Uber, drivers download the Flex app and click on offers to work

time blocks, during which they are paid to execute deliveries from a particular warehouse, over a

particular time window. Unlike Uber, they allow drivers to schedule work up to a week in advance.

Challenges involve scheduling drivers over time, in the presence of long lead-times, uncertainties

in both demand and supply, while minimizing cost and the risks of late deliveries or excess drivers

(AmazonFlex, 2021a). To participate in AmazonFlex, FlexDrivers are required to have a vehicle

of a certain size (i.e., a 4-door sedan). Routes are then suggested to potential drivers that can

accept or reject routes based on their own preference. In Figure 1a, we exhibit the AmazonFlex

app interface that displays routes to drivers and offers a compensation. At the left of the user

interface, route attributes are shown and at the right side of the interface the compensation (i.e.,

price) of the route is displayed.

For e-commerce platforms (e.g., Amazon) deliveries are known a day or two in advance, thus,

the operational planning of deliveries consist of deciding on what vehicles will be used to complete

the daily deliveries. Hence, the set of delivery requests can be done by a mix of Professional Drivers

(PD) and Crowd-Drivers (CD). In Figure 1b, we show the main decisions to implement a crowd-

shipping model. Routes are planned and then priced based on the probability of acceptance of CDs

with an econometric model.

We consider a stochastic two-stage decision problem, in the first-stage the CS-platform plans

routes for PDs (i.e., with a known cost) and CDs ( i.e., with a price). Naturally, to reduce the

cost of deliveries, the CS-platform would like to price routes as low as possible. However, the

probability of acceptance of CD-routes are monotonically increasing with the price that the CS-

platform is willing to pay, i.e., if the price of a route is too low, the probability of acceptance
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will also be too low. In the second-stage, CDs accept or reject routes. Unfortunately, missing

deliveries can impact customer satisfaction and reduce customer trust in the CS-platform. In the

second-stage, rejected routes require expensive recourse actions to complete deliveries to maintain

a good service quality. Examples of second-stage recourse actions include paying overtime to PDs

to extemporaneously complete routes or pay external couriers. To model the uncertainty of route

acceptance, we choose to use tools from econometrics. Econometric models are typically used to

model complex behaviour in a market. In contrast to machine learning models, econometric models

allow interpretation of the parameters and allow us to derive valuable managerial insights. Hence,

we assume that a binary logit model is available that models the probability that the pool of drivers

will accept or reject a route based on routes attributes (e.g., price, route length, number of stops,

route load and location). Hence, the routes and the price influence the probability of acceptance,

i.e., the attributes of routes are variables in the logit model. Balancing carefully the creation of

routes, pricing and the probability of acceptance (i.e., logit model) need to be done together in the

two-stage framework to ensure the best policy that reduces the cost of deliveries.

The long term feasibility of a CS-platform depends on the participation of CD and their satis-

faction with the system. CDs are stakeholder of the platform and if they are unsatisfied, they can

migrate to other platforms. In this paper, we argue that route pricing has a strategic component to

maintain long-term participation in the platform and to keep CDs’ satisfaction. Pricing routes with

the sole objective of minimizing the expected cost might not be the best strategy for the long-term.

In fact, asymmetric information exist between the CD and the CS-platform. CDs know more about

their preferences than the CS-platform. They will choose the best routes and leave undesirable,

low paid, long routes with multiple stops and migrate to another platform. To reduce the effect of

adverse selection, we propose the second objective to maximize participation and generate a stable

compensation to CDs.

Contributions

Motivated by these challenges, this paper presents a novel framework to address the complexities

inherent in pricing CD-routes. Specifically, we focus on integrating route optimization and pricing

in crowd-shipping environments. Our main contributions are threefold:

• We integrate three important facets together: 1) the operational component of routing ve-

hicles, which consists of grouping delivery requests to minimize the expected cost. 2) The

pricing component to determine the compensation to pay CDs if they complete routes, which

is directly linked to the routing, and 3) the uncertainty of route acceptance modeled with

an econometric model. The integration of combinatorial optimization with advanced econo-

metric models is a growing area of research Haering et al. (2023). Discrete choice models

allow for a better representation of uncertainty in optimization problems and it allows the

interpretation of results.
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Figure 1: Routing and pricing integration

• We introduce an Adaptive Large Neighborhood Search (ALNS) meta-heuristic method to

integrate the pricing with route optimization and with the uncertainty of route acceptance of

crowd-drivers. We create new construction operators in the ALNS that use information about

the probability of route-acceptance to rebuild the destroyed solution. In addition, we embed

in the ALNS a Route Assignment and Pricing (RAP) procedure that takes a subset of routes

and determines their optimal price and probability of acceptance. We show that our ALNS

algorithm outperforms the column generation heuristic for a simpler case study proposed

in Torres et al. (2022b). We present extensive computational experiments and sensitivity

analysis of the parameters of the econometric model that provide insights in the changes of

behaviour of crowd-drivers.

• Finally, we consider a multi-objective problem where the first objective is to minimize the

expected cost of routing and the second objective is to maximize the participation of crowd-

drivers. We investigate three strategic questions: 1) how can the participation of crowd-

drivers be increased? 2) What is the average compensation of crowd-drivers 3) Can the fleet
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be replaced by crowd-drivers? We present valuable insights about each question that can be

used in a CS-platform and show the ability of our framework to offer managerial insights.

The remainder of this paper is organized as follows. Section 2 provides a comprehensive review of

the related literature, contextualizing our research within the broader landscape of crowd-shipping

and operational research. In Section 3, we delineate the adaptation of our model to the specific

problem domain. Section 4 describes the problem of optimally pricing a set of routes using the

golden section search algorithm. Section 5 presents a detailed exposition of our ALNS meta-heuristic

methodology, describing its design, implementation and integration with the pricing. In Section 6,

we present the results of extensive computational experiments, and show the reliability of ALNS

and a sensitivity analysis with the parameters of the econometric model and provide insights of the

changes of behaviour of crowd-drivers. In Section 7, we discuss the strategic long-term objectives

shedding light on optimal pricing strategies. Finally, Section 8 concludes the paper and offers future

research directions.

2 Related work

A large portion of the literature on crowd-shipping focuses on deterministic problems that consider

individuals that have a planned trip and that can carry a package, where the price of requests

are already determined by a rule called a compensation scheme and CDs are considered to be

deterministic. (Mohri et al., 2023; Archetti et al., 2016, 2021; Alnaggar et al., 2021; Macrina

et al., 2017, 2020; Dahle et al., 2019; Macrina and Guerriero, 2018; Vincent et al., 2022, 2023;

Stokkink et al., 2024; Stokkink and Geroliminis, 2023; Zhang and Zhang, 2024; Kızıl and Yıldız,

2023; Tao et al., 2023; Yang et al., 2024; Pugliese et al., 2023; Le et al., 2021). Most of the

deterministic variants consider a matching problem where delivery requests for CDs are assigned

to predetermined planned trips.

Another part of the literature, more closely related to this paper, studies CDs as agents that

can accept or reject routes with a given probability (Gdowska et al., 2018; Mousavi et al., 2021;

Dayarian and Savelsbergh, 2020; Sk̊alnes et al., 2020). Generally, the probability is assumed to be

exogenous and to be a predetermined value. In some stochastic variants (Silva et al., 2023; Torres

et al., 2022b,a; Alnaggar et al., 2024) the probability is described by distribution. Compensation

guarantees of CDs was considered by Alnaggar et al. (2024) in a dynamic setting where CDs and

deliveries arrive dynamically with a given probability. CDs delivery a single package and different

deterministic compensation policies are examined to evaluate CDs’ welfare.

In Barbosa et al. (2023), the compensation is consider to be a variable that can influence the

probability of acceptance of a single delivery request by a CD. The authors use a binary logistic

regression with 3 explanatory variables that determine the probability of acceptance, i.e., distance,

load, and compensation.
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Overall, the compensation of CDs (even in stochastic variants) has largely been consider as

a fixed cost proportional to the deviation of the planned trajectory of CDs (e.g., Archetti et al.

(2016)). However, there are a few studies that consider the compensation as a variable that can

influence the acceptance of a delivery request Barbosa et al. (2023). Clearly, a higher compensation

will persuade a CD to accept a request, thus, to minimize the expected cost, a higher compensation

needs to be considered. Pricing problems are problems where the price of a product has to be

determined to maximize the profit with demand uncertainty (e.g., Haering et al. (2023) ). In

addition, the combination of Discrete Choice Models (DCM) and combinatorial optimization is a

growing area of reasearch (Ricard and Bierlaire (2024)). In our case, we would like to determine

the price of a route to minimize the cost of deliveries and maximize participation using a DCM to

model the probability of route acceptance.

In last-mile deliveries, CS-platfomrs (e.g., AmazonFlex) have a large set of delivery requests

that benefit from consolidation in a single route for cost efficiency. It is imperative to develop a

framework that considers multiple deliveries by CDs, dynamic pricing to set the price for each route,

multiple objectives (e.g., to maximize participation) and a DCM that allows the representation of

the acceptance probability with different route attributes. In table 1, we summarize the contribution

of this paper with respect to the current literature. The first column specifies the studies that

consider dynamic pricing, i.e., where the price is adjusted to optimize an objective. The second

column (i.e., Mult.-Deliv) indicates the studies that consider the possibility of 2 or more delivery

requests performed by CDs. The third column (i.e., CD-VRP) indicates the studies that solve a

VRP for CD delivery tasks. The forth column (i.e., DCM)indicates the use of a Discrete Choice

Model to explain the probability of acceptance, the next column indicates the use of recourse actions

in case of failed deliveries due to a lack of supply of CDs, and the last column (i.e., Muli.-Obj)

indicates the stochastic variants that consider another objective besides minimizing the expected

cost.

Study Pricing Mult.-Deliv. CD-VRP DCM Recourse Mult.-Obj

Dayarian and Savelsbergh (2020) · ✓ · · · ·
Gdowska et al. (2018) · · · · · ·
Barbosa et al. (2023) ✓ · · ✓ · ·
Torres et al. (2022b) · ✓ ✓ · ✓ ·
Dahle et al. (2017) · · · · · ·
Torres et al. (2022a) · ✓ ✓ · ✓ ·
Mousavi et al. (2021) · · · · · ·
Sk̊alnes et al. (2020) · · · · · ·
Le et al. (2021) · · · · · ·
This paper ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Summary of stochastic variants
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3 Problem description

In this Section, we formally define the problem and present a two-stage stochastic programming

model. The problem is a variant of the Heterogeneous Vehicle Routing Problem (HVRP), where

the fleet of vehicles have different capacities and different attributes. The delivery requests have to

be fulfilled from a central depot with the available vehicles. In the case of crowd-shipping the mixed

fleet of vehicles consist of homogeneous company vehicles driven by professional drivers (PD) and

a pool of CDs that can reject routes with a given probability. The compensation of PD is given

deterministically by the distance of each route, in contrast, the compensation of CDs is determined

based on the probability of acceptance of the route by CDs (see Subsection 3.2).

We consider a two-stage stochastic model. In the first stage, the set of delivery requests is

separated into PD-routes and CD-routes. In the second stage, some CD-routes can be rejected. If

CDs refuse to complete a set of routes, there will be a set of customers with unfulfilled deliveries.

In order to fulfill all deliveries, expensive recourse actions need to be taken. In our setting, we

consider the cost of the recourse actions to be the cost to complete rejected CD-routes by a PD

times a penalty, i.e., ℵ > 1, the penalty represents an extra cost for completing rejected CD-routes

extemporaneously (e.g., paying overtime to drivers). To avoid paying the cost of expensive recourse

actions, the price of each CD-route has to be estimated to influence and increase the probability

of acceptance of each CD-route. This property, requires the solution of a pricing problem for each

subset of CD-routes to determine the adequate compensation to reduce the risk of recourse actions

and the optimize the objectives.

Specifically, let dr be the total distance of a route. We consider the cost of a PD-route (i.e.,

compensation to the professional driver) to be equal to the distance of the route, i.e., dr. On the

other hand, the expected cost of a CD-route depends on the price, i.e., cr, the probability of route

acceptance (i.e., pr) and the recourse cost in case the CD-route is rejected. The expected cost of a

CD-route “r” is the following:

prcr + (1− pr)× ℵdr (1)

A solution to the first-stage problem will consist of a set of PD-routes with a cost of dr for each

route given to a PD, and it will consist of a set of CD-routes with an expected cost equal to equation

(1). In equation (1), the price of the route is paid to the CD only if the CD accepts the route,

on the other hand, if the CD rejects the route the cost is the cost of a PD time the penalty (i.e.,

ℵdr). The probability is modeled with a DCM and will be described in more detail in subsection

3.2, while the optimisation model is described in the following subsection.
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3.1 Optimization Model

In this Subsection, we present a variant of the set partitioning formulation for the Heterogeneous

Vehicle Routing Problem with CDs. The model was first introduced by Torres et al. (2022b) for a

routing problem with stochastic supply of CDs.

Let Ω be a large set that contains all feasible routes and let ωr be a binary variable that equals

to one if PD-route r ∈ Ω is selected in the solution and zero otherwise and let ω̄ be a binary variable

that is equal to 1 if CD-route is selected in the solution and zero otherwise. Let ari be a parameter

that is equal to the number of times customer i ∈ N is visited in route r ∈ Ω:

min
∑
r∈Ω

drωr + Q(ω̄) (2)

s.t.
∑
r∈Ω

ariωr +
∑
r∈Ω

ari ω̄r = 1 ∀i ∈ N (3)

ωr, ω̄r ∈ {0, 1} ∀r ∈ Ω

In the first stage, the objective function (2) minimizes the cost of PD-routes (i.e., drωr), in the

second stage, we minimize the expected cost of CD-routes (i.e., Q(ω̄)). Constraints (3) ensures

that all customers are visited exactly once by either a PD or a CD.

Let H ⊂ Ω be the set of CD-routes that are equal to one in a feasible solution to the first

stage problem and let α be a weight that is used as a discount factor to increase participation by

discounting the price paid to CD. In this way, the second objective to maximize participation of

CDs can be achieved by setting the discount factor to a sufficiently small value. The second stage

recourse function Q(ω̄) in the objective (2), is then formulated as follows:

Q(ω̄) = min
cr∈R

∑
r∈H

ω̄r (αprcr + (1− pr)ℵdr) (4)

H = {r : ω̄r = 1, ∀r ∈ Ω}

The second stage recourse function (4) is a minimization problem where the objective is to

minimize the expected cost of CD-routes by estimating the price. Naturally, we would want to set

the price to zero to minimize the payment to CDs and reduce the cost. However, the probability

of route acceptance is a function of the price. If the price is too low, then the CD-route will be

rejected and the CS-platform will have to pay the cost ℵdr. An optimal price has to be set to

minimize the expected cost.

In Figure 2, we can visualise the two-stage model, in the first stage we build routes that pass to

the second stage where the price of the subset of CD-routes is determined and then, the expected

cost is considered in the first stage to find routes that have better expected costs.
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Figure 2: Two-stage model

3.2 Choice Model

The preference of CDs is modeled with a binary logit model. Clearly, a delivery task is a diffi-

cult activity that drivers do not do for pleasure. Hence, paying drivers is necessary to motivate

them to complete routes. Higher compensation will monotonically increase the likelihood of route

acceptance. Conversely, other attributes of a route that increase the difficulty of completing the

route (e.g., distance traveled) will monotonically decrease the probability of route acceptance. Any

attributes can be considered in our methodology but for the sake of example, we have selected a

few attributes of a route that can influence the probability of acceptance:

• Route length (x1): Routes that are long are less desirable for CD. For a given route the

route length can be easily computed as the total distance traveled from the depot to all the

visited customers and back to the depot.

• Load (x2): CD-vehicles are not designed to transport packages. Thus, we assume that a

lighter load is a desirable characteristic of a route. The load is the sum of all the demands of

customers in the CD-route.

• Stops (x3): Parking and stopping the vehicle to deliver packages is not desirable by drivers.

Thus, we assume that routes with less stops will be preferred. The stops are the number of

customers in a route.
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• Location (x4): Some neighborhoods are not as pleasant as others. We consider a penalty

for customers that are located in a bad area. Every customer is give a value based on the

location. The sum of the values of all customers in a CD-route give an estimate of how

desirable a route is.

• Price (c): Crowd-drivers are compensated to deliver packages. Thus, we assume that they

will prefer to select routes that have a higher compensation. The price of a route has to be

estimated in order to minimize the expected cost.

Let Ur be the utility of a route, let A be the set of attributes, and let βi be the set of parameters

of the logit model for each attribute. The opt-out option is described by the utility U0 = 0. The

following is the choice model:

Ur =
∑
i∈A

βix
r
i + βccr + ε ∀r ∈ H (5)

U0 = 0

Equation (5) models the utility of a route based on random utility theory where the error term

(i.e., ε) follows a Gumbel distribution and represents unobserved attributes of the route. The

probability of acceptance of a route is equal to pr = eVr

eVr+1
, where Vr is the deterministic part of

the utility.

3.3 Adverse selection

In this paper, we do not consider the dynamic aspects of CDs arrival, however, we briefly discuss

the possible effects in change of behaviour here. The long-term sustainability of the CS-platform

depends on the participation of CDs and their satisfaction with the CS-system. CD-routes with

utilities or prices that fluctuate excessively are not a desirable outcome for the long term satisfaction

of CDs. Adverse selection can cause the quality of CD-routes to decrease throughout the day as

higher quality routes are removed from the choice set first. When considering the dynamic arrival

of CDs, the first to arrive will choose the best route, eliminating this choice from future CDs. In

Figure 3, we show a set of routes with utilities ranked from highest to lowest where CDs arrive

dynamically. CDs that arrive early, will be able to pick routes that have a higher utility, leaving

routes that have a lower utility for future drivers. Only routes that are not desirable will be left.

If this happens CDs can just give up all together are return the next day hoping to get a better

route if they come early. In contrast, in Figure 4, we show a sample of route choice by a set of M

CDs that arrive in sequence to select routes if all utilities or compensation for routes are similar,

adverse selection will not happen, and thus, the quality of routes will not decrease throughout the

day. To reduce adverse selection, more information about CDs’ preferences is required to create

routes that are of higher quality. In addition, strategies that increase participation or standardize
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the compensation can be used (e.g., considering a discount for CD-routes in the objective). In

Section 7, we focus on strategic objectives that can help reduce adverse selection, e.g., increasing

participation and standardizing compensation for CDs.

1 2 3 4 5 M

U1 ��ZZU1 ��ZZU1 ��ZZU1 ��ZZU1 ��ZZU1

U2 U2 ��ZZU2 ��ZZU2 ��ZZU2 ��ZZU2

U3 U3 U3 U3 U3 U3

U4 U4 U4 U4 U4 U4

U0 U0 U0 U0 U0 U0

Figure 3: Route choices with adverse selection

1 2 3 4 5 M

U1 U1 ��ZZU1 ��ZZU1 ��ZZU1 ��ZZU1

U2 U2 U2 U2 U2 ��ZZU2

U3 ��ZZU3 ��ZZU3 ��ZZU3 ��ZZU3 ��ZZU3

U4 U4 U4 U4 ��ZZU4 ��ZZU4

U0 U0 U0 U0 U0 U0

Figure 4: Route choices without adverse selection
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4 Pricing Routes

In this Section, we consider a solution to the first stage where we are given a set of CD-routes

(i.e., H). The second stage problem (4), is to determine the optimal price of each route with

the probability of route acceptance. Hence, we will now attempt, in this Section, to optimize the

second stage (4) by determining the optimal price with the probabilistic model described in detail

in Section 3.2.

Let xr be the sum of all the attributes and parameters of route r ∈ H without the price (i.e.,

xr =
∑

i∈A βixi). By performing some basic algebraic operations on the utility function (5) to clear

the price on the left hand side, we get the following equality for the price:

cr =
Vr − xr
βc

(6)

The price of a CD-route (i.e., cr) in equation 6 is equal to the deterministic part of the utility

function (i.e., Vr) minus the sum of the attributes (i.e., xr) and divided by the parameter of the

price (i.e., βc).

Now, by replacing the price in the objective function with equation (6) we arrive at the following

second stage problem:

Q(ω̄) = min
∑
r∈H

ω̄r
eVr

eVr + 1
· Vr − xr

βc
+
∑
r∈H

ω̄r

(
1− eVr

eVr + 1

)
· ℵdr (7)

The function (7) is nonlinear with multiple variables for each route. However, the problem is

separable by route. We can solve the optimal price for each route separately without affecting the

global optimal.

Lemma 1. If a price c∗r for a given route is the price that minimizes the expected cost of route r,

then, c∗r is also part of the global optimal solution to problem (7).

Proof. It can be seen that the problem is separated by routes and that the price of one route does

not have an effect on the price of other routes, due to the i.i.d. assumption from the logit model.

In order to find a solution we must prove that the function for each route is unimodal and that

there is a unique global minimum that exists. To proof this, we have to use Lambert W function:

Proposition 1. The unique global minimum of the expected cost of a single route r ∈ H is at

Vr = xr + βcℵdr − 1−W
(
exr+βcℵdr−1

)
.

Proof. See appendix A

With proposition 1 we can compute the optimal value of any CD-route and by replacing the

optimal value in equation (6), we can get the optimal price for each route.

13



Corollary 1. Given a fixed set of CD-routes, i.e., H, the second stage problem (7) has a unique

global minimum at Vr = xr + βcℵdr − 1−W
(
exr+βcℵdr−1

)
for all r ∈ H.

Corollary 1 follows from Proposition 1. Hence, given a set of CD-routes from the first stage

problem we can find the optimal price for each route that minimizes the expected cost. However,

the solution to the pricing problem is not optimal for model (2) that considers the first-stage and the

second-stage costs together. In fact, the subset of CD-routes can change to a better configuration

that reduces the expected cost. The binary variables, ω̄ can change leading to better solutions.

Proposition 2. If the price of a route is larger than the distance of a route, i.e., cr > dr, a cost

reduction can be achieved by using a PD to complete the route in the first stage, i.e., ωr = 1, ω̄r = 0.

Proof. Recall that PD have a capacity that is larger than that of a CD, thus, any route assigned by

a CD can also be assigned to a PD. In addition, the cost of a PD is equal to the distance. Hence,

the cost reduction will be equal to cr − dr.

Corollary 2. Let E{c∗r} be the optimal expected value for the second-stage function for route r ∈ H
including the expected cost of the recourse action, i.e., ℵdr. If the expected cost is larger than the

cost of a PD (i.e., E{c∗r} > dr) then, removing CD-route “r” from the set of routes (i.e., H \ {r})
reduces the global cost of the two-stage problem.

In Figure 5 we plot function 7 for a single route. The optimal value is bellow the threshold of

dr, thus, the optimal solution is the value that minimizes the function.

Price

E cost

Q(ω̄)
ℵdr
dr

Figure 5: Expected cost and Price

14



ALNS iteration

RAP

Degree of 
destruction

Destroy operator

Rebuild operator

Operators Evaluate

Acceptance 
Criteria

Update 
Temperature

Update weights

Price Routes

Assign Routes

Choice Model

Figure 6: Single iteration of ALNS

5 Adaptive Large Neighborhood Search with Pricing under Un-

certainty

In this section, we describe the ALNS algorithm that we use in this paper. In Section 5.1, we outline

the general procedure of ALNS. In Section 5.2, we present the removal operators, while, in Section

5.3, we present the insertion operators. Finally, in Section 5.4, we introduce a new procedure that

prices routes optimally assigns the route to a CD or PD.

5.1 Overview of ALNS

ALNS was first introduced in Shaw (1998). The main idea is to improve a solution by destroying

and repairing the solution iteratively. Heuristics based on ALNS have been successfully used to

solve various vehicle routing and scheduling problems (Akpinar, 2016; Korsvik et al., 2011; Dayarian

et al., 2016). In Algorithm 1, we delineate the general framework of the ALNS mete-heuristic that

is used. An initial solution is created using the well-known Clarke and Wright savings heuristic.

In each iteration, generate the degree of destruction which is the percentage of customers to be

removed from the current solution. Next, we select a removal operator to remove customers. Then,

we select an insertion operator and re-insert the removed customers back into the solution, and

finally, we price the routes and assign them to either PD or CD with the Route Assignment and

Pricing (RAP) procedure described in Section 5.4. The new solution is accepted if it improves the

incumbent solution; otherwise, we use the acceptance criteria which is borrowed from simulated

annealing (see Van Laarhoven and Aarts (1987); Dowsland and Thompson (2012); Kirkpatrick

et al. (1983); Afifi et al. (2013)). The initial selected temperature is gradually reduced with each
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iteration. As the temperature cools down, the probability of accepting a non-improving solution

decreases. When the temperature cools down below a certain threshold, i.e., Temperature < ϵ, we

stop. At each iteration, the weight of the operators are updated based on their performance in

improving the solution. The removal and insertion operators used within the ALNS are adapted

or inspired by operators used in other works (Pisinger and Ropke, 2019; Koç et al., 2014, 2015;

Pisinger and Ropke, 2007; Paraskevopoulos et al., 2008).

5.2 Removal operators

The removal operators help escape local optima by destroying a large portion of the solution in each

iteration. The amount of the solution to be destroyed is called the degree of destruction, in our

case, we set the degree of destruction to be a random number of customers to be removed from 5 to

25% of the solution. Using different removal operators can help diversify the neighbourhoods that

are explored. We consider five removal operators, Near Removal (NR), Random Removal (RR),

Random Route Removal (RRR), First Customers Removal (FCR), and Last Customers Removal

(LCR). In each iteration, a single removal operator is randomly selected to destroy the solution,

based on the roulette wheel probability.

• Near Removal (NR): Randomly selects a customer i and sets it to be the current customer,

then proceeds to remove the nearest neighbor and updates the current customer to nearest

and repeats the procedure until the degree of destruction is achieved.

• Random Removal (RR): Randomly selects a set of customers to remove from the solution

with uniform probability.

• Random Route Removal (RRR): Randomly selects a set of routes to remove from the solution

with uniform probability. When applied, this operator randomly removes between 2 routes

and 25% of all routes in the solution.

• First Customers Removal (FCR): Removes a random number of customers from the beginning

of all routes. We iterate over all routes and select a random number of customers to remove

with equal probability. A random number of customers from 0 to at most 50% are removed

from each route. This is similar to a time-based removal. Customers that are scheduled at

the beginning of a route tend to have earlier time windows and can easily be replaced by

customers from the beginning of other routes.

• Last Customers Removal (LCR): Removes a random number of customers from the end of

each route. Similar to FCR, the last customers in a given route have later time windows;

by removing customers at the end of routes, the removed customers have compatible time

windows and can be switched when inserted back into the solution. Just like FCR, the number

of customers removed for each route is random.
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5.3 Insertion operators

Insertion operators rebuild the destroyed solution and try to find better solutions in different

neighborhoods. We consider five insertion operators: Greedy insertion (GI), Greedy insertion with

noise (GIN), PD first insertion (PDFI), CD first insertion (CDFI), and utility insertion (UI). In

each iteration a single insertion operator is randomly selected to rebuild the destroyed solution.

• Greedy insertion (GI): Selects a customer from the list of removed customers and inserts it

to the best feasible position. Let ℓ be the customer selected for insertion and let γs(i, j) =

(diℓ + dℓj − dij) be the variable cost increase of inserting customer ℓ in between customers

(i, j); Customer ℓ is inserted at the best place that has the minimum cost of insertion, i.e.,

(i, j) = arg min(i,j){γs(i, j)}

• Greedy insertion with noise (GIN): This operator is similar to GI except that a noise function

is considered. A customer is selected from the list of removed customers and inserted at the

best location based on a noise function. The noise function diversifies the solution by allowing

customers to be inserted in a different place than the cheapest insertion. The cost of insertion

is γs(i, j)(1 + 0.1ϕ), where ϕ is a random number from -2 to 2.

• PD first insertion (PDFI): Uses GI to insert a customer from the removed list to the PD-

routes first. If no feasible insertion in a PD route exists, then the customer is inserted in the

cheapest position within a CD-route.

• CD first insertion (CDFI): It is the opposite of PDFI. First it finds the cheapest insertion in

CD-routes, if no feasible insertion exits, then the customer is inserted in the cheapest position

of PD-routes.

• Utility insertion (UI): It consider the total increase of the utility function, and inserts the

customer in the place with least decrease of the utility.

5.4 Route Assignment and Pricing (RAP)

The Route Assignment and Pricing procedure integrates the routing with the pricing decisions.

Given a set of rebuilt routes at each iteration of the ALNS algorithm, the RAP procedure has to

price and assign some routes to either CD or PD. Routes assigned to PD have a cost equal to the

distance route, while the expected cost of a CD-route is equal to the price and the cost of recourse

actions.

The result of Corollary 1 shows that the objective function is unimodal and has a unique global

optima. To find the optimal solution we use the golden section search method, which is guaranteed

to find the optimal point with some small error in a finite number of iterations (Nocedal and Wright,

1999).
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We begin the procedure by separating all routes into two sets of routes, CD-routes and PD-

routes, based on the capacity and load. For instance, if a route has a load that exceeds the capacity

of a CD, then we assign the route to a PD. Otherwise, we set the route to be a CD-route by default.

Given a set of CD-routes, i.e., H, we commence the following procedure for each route:

1. Find the optimal solution that minimizes the expected cost using the golden section search.

2. Check the bound of the expected cost, if E{c∗r} > dr, then assign route to PD.

3. Else assign route to CD.

In Algorithm 1 we summarize the ALNS procedure. The algorithm starts with an initial solution

then it selects a removal operator. Next the algorithm RAPs to rebuild, re-optimize and reassign

routes to CDs. The insertion procedure is selected with the roulette wheel probability and the

ALNS algorithm RAPs again. Afterwards, the ALNS algorithms continues as usual, evaluating

the solution with simulated annealing criteria and updating the corresponding weight based on

performance.
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Algorithm 1: Overview of ALNS

Incumbent sol = Initial solution;

Sol = Incumbent sol;

Set k;

Set Temperature;

Set Cooling rate;

for it = 1 to k do
Sol∗ = Sol;

Select removal operator;

RAP, see Section 5.4;

Select insertion operator;

RAP, see Section 5.4;

if Sol∗ value < Incumbent sol value then
Incumbent sol = Sol∗;

end

if Accept(Sol∗, Sol) then
Sol = Sol∗;

end

Cool Temperature;

if Temperature < ϵ then
Stop;

end

end

return Incumbent sol;

6 Computational Results

In this section, we perform computational experiments to evaluate the solution approach. The

ALNS algorithm was implemented in Java SE 1.8.0 and it was run in a Red-Hat Enterprise Linux

9.0 system with an Intel(R) Xeon(R) Platinum 8360Y CPU at 2.40GHz, and 8GB of RAM.

The instances that are used in this Section are taken from the well-known Solomon instances

for the VRP. Solomon instances are divided in 3 main groups, clustered instances (i.e., C) random-

and-clustered instances (i.e., RC) and random instances (i.e., R). Initially, we consider C1, RC1 and

R1 instances that have at most 100 customers to compare ALNS with existing methods. Later, we

consider larger instances (i.e., C2, RC2 and R2) with 200 customers. The remainder of this section

is organized as follows. In Section 6.1, we evaluate the performance of the ALNS algorithm when

compared to the column generation algorithm presented in Torres et al. (2022b), the problem setting

is for a simpler model with a rule based deterministic price, these problem instances where small
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with at most 100 customers. In all the following sections of this study, computational experiments

are performed on larger 200-customer instances. In Section 6.3, evaluate the changes in routes

when parameters in the choice model change, reflection variation in the preferences of CDs.

6.1 Performance

ALNS is a well-known metaheuristic method that finds good feasible solutions for various combi-

natorial optimization problems. However, metaheuristics do not provide any guarantee on their

performance or the quality of the solutions. Hence, it is necessary to test and compare the solutions

with existing implementations in the literature to have confidence in using ALNS. In the following

two subsections, we show a comparison with a similar problem in the literature, and then, we show

the stability of ALNS when applied several times.

6.1.1 Simple case

To evaluate the quality of the solutions obtained by the ALNS algorithm, we start by comparing

a much simpler version of our setting, introduced by Torres et al. (2022b). Unlike this paper, in

that setting, the price of routes follows deterministic rules and can be calculated easily with the

length of the routes. In addition, the supply of CDs is modeled with a binomial distribution instead

of a choice model like in our setting. However, to compare we replace the choice model with the

binomial distribution and use the same deterministic rule for the price of each route. The solution

method proposed by Torres et al. (2022b) was an exact branch-and-price algorithm with a column

generation heuristic. Exact algorithms (e.g., branch-and-price) work well for small instances (e.g.,

with 25 customers) but fail to scale up for larger instances (e.g., with more than 100 customers).

Hence, the comparison is only for small instances with 25, 50 and 100 customers.

Table 2 compares the branch-and-price algorithm, i.e., B&P, and the column generation algo-

rithm, i.e., C-Gen, proposed by Torres et al. (2022b) with the ALNS algorithm presented in this

paper.

The first column identifies the group of instances and the second reports the number of cus-

tomers. Next, we present the exact B&P results, first, the lower bound, i.e., LB, then, the solution

time in seconds, i.e., T(s). Afterwards, we show the performance of C-Gen reported, the first

column is the solution value, i.e., Sol, followed by the time and the average gap from the lower

bound as a percentage, i.e., Gap(%). The final columns present the results of the ALNS heuristic

that we implemented. Since ALNS is a randomized algorithm, we executed the procedure 5 times

and we report the results of the best solution out of 5 runs. The first column shows the average of

the best solutions found in 5 runs for all instances, the next column shows the average total time

of 5 runs, then, the best solution is compared with the lower bound of B&P, and the last column

shows the deviation as a percentage, i.e., Dev(%), of the solution values of ALNS with respect to

the solution values of C-Gen.
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Table 2: ALNS performance

B&P C-Gen ALNS

Ins N LB T(s) Sol T(s) Gap(%) Sol T(s) Gap(%) Dev(%)

C1

25 434.85 355 435.92 8 0.27 440.0 40 1.17 0.94

50 817.77 6604 828.1 135 1.28 845.07 90 3.23 2.05

100 1776.5 10394 1797.3 450 1.18 1803.21 225 1.48 0.33

R1

25 652.0 102 652.76 8 0.14 663.02 45 1.69 1.57

50 1228.76 6511 1254.0 141 2.26 1250.74 120 1.79 -0.26

100 2096.51 9145 2198.2 2501 5.61 2188.77 330 4.40 -0.43

RC1

25 618.12 32 618.8 3 0.01 636.23 45 2.93 2.4

50 1161.3 6573 1193.6 44 2.53 1195.0 100 2.91 0.14

100 2212.0 10800 2376.6 977 7.38 2318.92 335 4.83 -2.42

We show that ALNS is much faster than C-Gen and it provides better average solution values

for the larger 100-customer instances. On average, ALNS terminates within 5 minutes for 5 runs,

while C-Gen can take up to 41 minutes on average for the R1 instances. However, the smaller

25-customer instances are solved faster with C-Gen and the gaps are better. In practice, since

platforms can have hundreds or thousands of delivery requests that need to be fulfilled, a method

that can solve large instances quickly is desired. The results presented in Table 2 clearly show that

ALNS performs better when applied to solve larger instances, whereas the solutions provided by

C-Gen tend to decrease in quality on these instances. Recall that the bounds produced by B&P

are not exact solutions and could be arbitrarily weak for 100-customer instances. Yet, ALNS still

provides solutions that are less than 5% from these weak bounds.

6.2 Base case and stability of ALNS

In this subsection, we use ALNS to solve the full problem described in this paper, including the

complex relationships of routing and pricing decisions with the choice model. We consider a base

case with 200-customer instances (i.e., C2, RC2 and R2). Table 3 shows the parameters that are

used for the base case. The capacity parameters (i.e., Q and Q′) are the capacity to fit packages

in each vehicle type. Each customer has a predetermined value for the demand which is specified

in the Solomon instances. The penalty ℵ is the increase cost of using a PD in the second stage to

fulfill rejected routes. Next, the choice model parameters that influence the choice of CDs.
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Parameters Description Value

Q PD-capacity 200

Q′ CD-capacity 100

ℵ Penalty for recourse 2.0

β1 Route length parameter −0.5

β2 Load Parameter −0.1

β3 Stops parameter −1.0

β4 Location parameter −0.001

βc Price parameter 1.0

Table 3: Parameters for the base case

ALNS is a stochastic algorithm, and thus, can produce different solutions every time it is

executed. Hence, to evaluate the stability of the solution values, we test ALNS by running the

algorithm multiple times on each 200-customer instance and observing the variation of each result.
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Ins i Mean Max Min σ

C2

1 2667.47 2670.09 2666.31 1.50

2 2649.39 2665.57 2639.71 11.20

3 2646.08 2656.74 2625.97 13.70

4 2606.38 2611.60 2599.69 5.19

5 2663.17 2666.50 2658.98 3.14

6 2664.46 2671.85 2657.01 6.07

7 2672.73 2708.58 2657.23 24.06

8 2637.26 2641.56 2633.36 3.63

9 2633.14 2646.18 2618.81 14.72

10 2615.23 2643.34 2598.92 19.42

RC2

1 2851.48 2868.25 2827.16 17.56

2 2772.97 2783.02 2762.11 10.93

3 2703.49 2719.47 2688.94 12.95

4 2688.18 2724.18 2663.15 25.71

5 2803.05 2830.76 2787.79 19.04

6 2842.92 2870.09 2831.01 18.24

7 2785.19 2819.07 2747.85 32.00

8 2758.10 2780.17 2746.18 15.10

9 2753.43 2765.36 2735.90 12.65

10 2727.12 2735.18 2718.39 6.88

R2

1 3148.72 3166.17 3134.05 14.84

2 2986.80 3018.11 2955.31 26.51

3 2851.41 2865.78 2827.31 16.98

4 2777.28 2784.30 2771.91 5.48

5 3011.53 3040.46 3000.70 19.35

6 2895.31 2922.96 2881.96 19.25

7 2798.12 2809.91 2787.27 10.56

8 2755.95 2771.68 2730.34 17.87

9 2939.02 2949.16 2929.22 8.45

10 2862.47 2885.78 2844.21 17.36

Table 4: Twenty runs of ALNS for each instance

In Table 4, we show the results for 20 runs

of the ALNS algorithm for each instance group,

i.e., C2, RC2 and R2, with 200 customers. The

first column shows the instance group. The

second column shows the specific instance (i.e.,

there are 10 instances for each group). The ex-

pected cost is shown in the following 4 columns.

First, we report the mean value, max value, min

value, and the standard deviation (i.e., σ) re-

spectively. The mean value shows the average

value of the objective function for all 20 runs of

ALNS. The max value shows the worst solution

that was generated and the min value shows the

best solution generated.

For all the instance groups (i.e., C2, RC2,

and R2) we can observe the stability of the

ALNS algorithm for the application of this pa-

per. The solution values do not vary in any sig-

nificant way as it is shown by the small values

of the standard deviation with respect to the

values of the solution. Additionally, the worst

solutions found are not far away from the best

solution found, thus, further showing the ro-

bustness of ALNS to find consistent solutions.

The largest standard deviation is for instance

RC2-7 with σ = 32.00 and the smallest is of

σ = 1.50 for the cluster instance C2-1.

For all the instance groups (i.e., C2, RC2,

and R2) we can observe the stability of the

ALNS algorithm for the application of this pa-

per. The solution values do not vary in any significant way as it is shown by the small values of

the standard deviation with respect to the values of the solution. Additionally, the worst solutions

found are not far away from the best solution found, thus, further showing the robustness of ALNS

to find consistent solutions. The largest standard deviation is for instance RC2-7 with σ = 32.00

and the smallest is of σ = 1.50 for the cluster instance C2-1.
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6.3 How do routes change if CD-preferences are different ?

In this subsection, we look at the influence of the parameters of the choice model on the solutions

of C2, R2 and CR2 instances. We start with the distance, load, stops, and location.

6.3.1 Distance

The distance parameter (i.e., β1) shows the willingness to pay (i.e., be compensated) of CDs for an

extra unit of distance (e.g., km). We change the value of the parameter to -0.25, -0.50 and -0.75.

In Figure 7, we show the changes in the average expected cost, average CDs, average PDs, average

load, average distance, average price, and average stops for the main instance groups. The axis

values in Figure 7 start from 0, to the maximum value for all instances. The results for C2, RC2,

and R2 are presented in subfigures, 7a, 7b and 7c respectively.
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Figure 7: Results on C2, RC2 and R2 instances for β1 = -0.25, -0.5, and -0.75

We observe in Figure 7 that the average load, stops and distance per route do not change

significantly while changing the distance parameter (i.e., β1). Conversely, major changes are visible

on the number of CDs and PDs used in a solution for all instances. As the parameter decreases

(i.e., β1 = −0.75) the fleet composition shifts to be more dependent on PDs. Larger values of the

parameter cause a increase of the participation of CDs. This result shows that the properties of

CD-routes do not change much but rather the participation of CDs changes.

6.3.2 Load and stops

The load is the total amount of space occupied in the CD-vehicle, and the stops are the total number

of deliveries made in a CD-route. In Figure 8, we show the results by changing each parameter and

comparing it with the average number of CD-routes, the average load and the average stops per

route for each instance group, i.e., C2, RC2 and R2.

The load parameter (i.e., β2) indicates the sensitivity to changes in the load of a route on

route acceptance. In Figure 8a, we show the results for different values of the load parameter (i.e.,
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β2 = −0.10, β2 = −0.25, β2 − 0.5) for each instance class. On the left axis, we report the average

number of CD-routes represented by the vertical bars, while on the right axis, we report the average

load per CD-route. Surprisingly, the average load of CD-routes does not change significantly, even

for large values of the load parameter. However, the average number of CD-routes in each solution

decreases from a maximum of 29.5 for instances R2(β2 = −0.10) to a minimum of 0 CDs for

instances C2(β2 = −0.50).
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Figure 8: Average CD-routes vs Average load for different values of the load parameter

The stops parameter (i.e., β3) represents the weight of the total number of stops in a route in

the decision of CDs. Similarly, to load and distance, the number of stops does not decrease as the

corresponding parameter increases in significance. Rather, the number of CD-routes decreases. In

Figure 8b, we show the changes in the “stops parameter” and how the number of CD-routes are

decreased while the average number of stops per route stays relatively stable.

6.3.3 Location

The choice model includes the location parameter (i.e., β4) that considers the negative measure

of the location of customers in the utility function of CDs. For simplicity, we have considered

that the location penalty of each customer is directly linked to the x-coordinate of the customers

location. In practice, any value can be assigned to a customer based on their location and it does

not affect the implementation of ALNS. Hence, the location parameter multiplies the x-coordinate

of all customers in a route. As a consequence, the further the customers location is to the right

(i.e., east of the city), the less desirable the location is to visit for a CD. Figure 9 displays the

solutions of chosen instances with only CD-routes. The top row are random instances, the middle

row are random-clustered instances and the last row are the clustered instances. We show that

as the location parameter decreases, the solution of the problem avoids creating CD-routes in the

“bad” area of the city due to the high probability of route rejection. In Figure 9c, almost no routes
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are available at the right side of the depot, Figure 9a shows a that CD-routes are indifferent of the

location, while Figure 9b shows a mix between the two.

β4 = −0.01 β4 = −0.05 β4 = −0.10

(a) Low (b) Medium (c) High

Figure 9: CD-routes for random, random-clustered and clustered instances with different location
parameters

6.3.4 Price

The price parameter, i.e., βc, of the logit model shows the sensitivity of CDs to the compensation of

routes. Higher values of the price parameter increase the probability of route acceptance. In Figure

10, we present the average number of CD-routes in solutions for C2, RC2 and R2 instances. We

can see a significant change in the number of CD-routes in the solution as the parameter changes

values. The R and RC2 instances reach a peak (i.e., maximum number of routes) soon after the

parameter is equal to 1, while C2 instances reach a peak slower after the price parameter is equal

to 1.55.
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Figure 10 indicates that the sensitivity of the fleet of CD to the price of the routes can have

different peaks based on the structure of the instance (e.g., clustered).
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Figure 10: Sensitivity of βc with Avg. CD-Routes

7 Strategic objectives

In previous sections, it is assumed that the CS-platform wants to minimize the total expected

costs. However, minimizing the expected cost is a myopic objective that seeks to minimize the

immediate cost at the current day and it does not consider the long-term strategic objectives of

the CS-platform. For instance, the long-term goals can be to achieve key levels of participation or

establish a fair and consistent compensation to drivers. In fact, CDs are independent agents that

can decide to work or not, considering their satisfaction with the CS-platform is just as important

as the cost reduction.

7.1 How can participation be increased?

The objective to increase the participation of CDs has to be balanced with minimizing the cost.

Increasing the compensation of CDs will increase the probability of route acceptance, as a con-

sequence, the participation will increase. However, a high compensation will result in a higher

delivery cost. Hence, in order to increase participation by increasing the compensation, we should

be willing to tolerate an increase of the expected cost. A trade-off between the price and the cost

is adequate. We consider percentage of the price of a route that we are willing to subsidize in

order to increase the participation. For example, a 10% discount factor will reduce the price of all

CD-routes by 10% in the objective function.

Q(·) = min
cr∈R

∑
r∈H

P (cr)α× cr + (1− P (cr))ℵdr (8)
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Equation (8) shows the discount parameter α deducing the compensation value in the objective

function but not the cost of the recourse actions that will need to be done in case the route is

rejected.
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Figure 11: Discounted CD-routes increase participation

Figure 11, shows the participation of CDs is maximized at a discount of 40% to 50%. The

average number of CDs goes from 23 to 35, an increase of the participation by 12.

In Figure 12, we can see the trade-off of the two objectives. Increasing participation also leads

to an increase of the expected cost. However, a small discount factor of 5% to 10%, increases

participation by 7 CDs while only marginally increasing the expected cost.
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Figure 12: Trade-off between expected cost and participation
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Participation can be increased by considering it as part of the objectives and accept increases

in the expected cost of the delivery processes. The long-term goal to have a viable CS-platform

depends on having a good level of participation, and thus, a small increase in the cost is a fair

trade-off to consider.

7.2 What is the average compensation of CDs?

In Figure 13, we show the average compensation of CDs and the participation as the discount factor

is increased. The average compensation does not change significantly from $74.37 per route. The

reason for this stability of the compensation is that the objective is still to minimize the expected

cost, as a consequence, the price is also minimized. The models has little incentive to increase the

price for routes that are highly likely to get accepted, rather there is an incentive for the model

to increase the price of routes with a low probability of acceptance to increase the probability of

acceptance.
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Figure 13: Trade-off between expected cost and participation

The stability of the compensation shows that the participation can be increased with the dis-

count factor but the compensation is standardized.

7.3 Can the fleet of commercial vehicles be replaced by CDs?

The CS-platform has a fleet of commercial vehicles that it can use to deliver requests. In Figure 14,

we plot the expected cost by increasing participation of CDs from 0 until all deliveries are entirely

fulfilled by CDs. For C2 instances, the use of CDs decreases the cost at around a participation of 5

CDs, as the participation increases, the expected cost is higher with only a fleet of CDs. Conversely,

for instances R2 and RC2, the cost is lower when we replace the entire fleet with CDs.

This result shows that, for some instances where delivery requests are clustered together, large

commercial vehicles are more cost effective. Using a fleet of CDs can increase the cost instead of

decreasing the cost. However, for instances where delivery requests are scattered, the flexibility

of the crowd-shipping fleet causes the biggest cost reduction. In fact, Figure 14, shows that the
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Figure 14: Replacing the fleet with CDs

solution with only CDs is more robust and the expected cost has less variation than a fleet of

commercial vehicles. With commercial vehicles the expected cost ranges from a minimum of 2668

for C2 instances, to a maximum of 3691 for R2 instances. On the other hand, with only a fleet of

CDs, the expected cost ranges from a minimum of 2831 for RC2 instances to a maximum of 2969

for C2 instances.

8 Conclusions and future research

Crowd-shipping for the “last-mile” requires the solution of routing problems while balancing the

supply of crowd-drivers through pricing. In this paper, we introduced a framework that routes and

prices together in a single model. The probability of route acceptance by the CDs was modeled with

an econometric model that considers several route attributes (i.e., stops, load, distance, location and

price) to determine the probability of acceptance. The solution complexity of the problem consist

in solving a heterogeneous vehicle routing problem (which is a known NP-hard problem) with a

pricing problem for each route. We developed a solution method based on a two-stage stochastic

formulation and solved the pricing in the ALNS algorithm while simultaneously creating routes.

We integrated an econometric model with an optimization model which represents the uncertainty

of route acceptance more accurately, instead of an abstract scalar with no interpretation. The
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econometric model allowed us to interpret the predictions by changing the parameters for each

route attribute.

The sensitivity analysis of the econometric model showed that the behaviour of drivers changes

based on the attributes of routes. When crowd-drivers are more sensitive to the attributes of a

route, the number of CDs in a solution decreases due to the drop in probability of acceptance.

However, CD-route properties remain similar (e.g., the number of stops, load, price and distance).

However, when CDs are more sensitive to the location attribute, we can see that less routes are

present at those locations where there is a penalty for visiting customers in undesirable locations.

This result shows the consistency of the framework that accurately models the preference of CDs to

avoid a certain area. CD-routes that visit these undesirable areas will be less likely to be accepted

and thus, they will have an expensive expected cost.

We offered managerial insights about managing a fleet of vehicles. In particular, we show

that when we increase participation until there are no more PD in a solution, the variation in the

expected cost in all scenarios is minimal in comparison with a fleet of only PD. Indeed, the expected

cost is minimized when a mixed fleet is allowed, but the CD only solution is more stable.

We demonstrates that the participation of CDs can be increased by introducing a discount of

the price of CDs in the objective function. A large increase of 7 CD from the optimal solution can

be achieved with less than % 1 of an increase in cost. Finally, we show that the compensation of

CDs remains stable even when the participation increases.

Future research needs to be done by considering different variants of the VRP and pricing routes

for those variants, e.g., pick-up and delivery, multi-depot VRP, open VRPs etc. Another interesting

research avenue is to continue to integrate econometric models in vehicle routing problems to model

the uncertainty. The benefit of using econometric models for prediction, rather than machine

learning, is that it allows us to understand and interpret the predictions as we showed in this

paper.
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32

https://flex.amazon.ca
https://flex.amazon.co.uk/earnings


S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. science, 220

(4598):671–680, 1983.

K. U. Kızıl and B. Yıldız. Public transport-based crowd-shipping with backup transfers. Trans-

portation Science, 57(1):174–196, 2023.
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A Proof of Proposition 1

The second stage expected cost is given by the following formula:

eV

eV + 1
·
∑
r∈H

(
V − xr
βc

)
+

(
1− eV

eV + 1

)
·
∑
r∈H

ℵdr

By simplifying we obtain the equivalent formula:

eV ·
(
|H|
βc
V −

∑
r∈H

xr
βc

−
∑

r∈H ℵdr
)

eV + 1
+
∑
r∈H

ℵdr

The derivative of the cost function is the following:

eV ·
(
|H|
βc

eV + |H|
βc
V −

∑
r∈H ℵdr −

∑
r∈H

xr
βc

+ |H|
βc

)
(eV + 1)2

(9)

By observation, we can see that the derivative will equal zero if the following equation is true:(
|H|
βc

eV +
|H|
βc
V −

∑
r∈H

ℵdr −
∑
r∈H

xr
βc

+
|H|
βc

)
= 0

We simplify the equation to obtain the following:

eV + V =

∑
r∈H

xr
βc

+
∑

r∈H ℵdr − |H|
βc

|H|
βc

For visualization let ψ be a constant defined as following:

ψ =

∑
r∈H

xr
βc

+
∑

r∈H ℵdr − |H|
βc

|H|
βc

Therefore ∴

eV + V = ψ

Now, by simplifying further and using the Lambert W function on both sides we get the desired

result:

V = ψ −W
(
eψ
)
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It is easy to show that the limit of function (9), when the utility approaches minus infinity will

be zero. While the limit when the utility approaches plus infinity is equal to the following fraction:

lim
V→∞

(9) =
|H|
βc

On the other hand, the value of the objective function when the utility approaches minus infinity

is equal to the following:

lim
V→−∞

(2) =
∑
r∈H

ℵdr

Thus, the derivative of the cost function has a unique point at which the solution is zero, and

it asymptotically approaches zero only when the utility approaches minus infinity. We now have to

proof that the unique point is the minimum of the function and not a maxima nor a saddle point.

To achieve this, we look at the change of sign of the derivative right before the critical point and

after the critical point.

|H|
βc

(
eV + V + 1

)
−

(∑
r∈H

ℵdr +
∑
r∈H

xr
βc

)
= 0 (10)

We can see in equation (10) if we increase the value of the utility at the critical point, the

derivative will be positive. Conversely, if we decrease the value of the utility at the critical point

the derivative will be negative. Thus, the slope of the function is decreasing before the critical point

and is increasing after the critical point, which proves that the critical point is indeed a minimum.
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