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Abstract

We propose a dynamic facial expression recognition framework based on
discrete choice models (DCM). We model the choice of a person who has
to label a video sequence representing a facial expression. The originality
is based on the explicit modeling of causal effects between the facial fea-
tures and the recognition of the expression. Three models are proposed.
The first assumes that only the last frame of the video triggers the choice
of the expression. The second model is composed of two parts. The first
part captures the evaluation of the facial expression within each frame in
the sequence. The second part determines which frame triggers the choice.
The third model is an extension of the second model. It assumes that
the choice of the expression results from the average of expression percep-
tions within a group of frames. The models are estimated using videos
from the Facial Expressions and Emotions Database (FEED). Labeling
data on the videos has been obtained using an internet survey available
at http://transp-or2.epfl.ch/videosurvey/. The prediction capability of
the models is studied in order to check their validity. Finally the models
are cross-validated using the estimation data.

1 Introduction

Facial expressions are essential to convey emotions and represent a power-
ful way used by human beings to relate to each other. When developing
human machine interfaces, where computers have to take into account hu-
man emotions, automatic recognition of facial expressions plays a central
role. In this analysis, we propose a model predicting the evolution of a
person who has to identify the expression of a human face on a video.

Some coding systems have been proposed to describe facial expressions.
Ekman and Friesen (1978) have introduced the facial action coding sys-
tem (FACS). They identify a list of fundamental expressions and associate
groups of muscles tenseness or relaxations, called action units (AU) to each
basic expression. A FACS expert can recognize AU activated on a face,
and then deduct precisely the facial expression mixture. This is now the
coding system of reference to characterize facial expressions.

The dynamic facial expression recognition (DFER) refers to the recog-



nition of facial expressions in videos, whereas the static facial expression
recognition (SFER) concerns the recognition of facial expressions in im-
ages. The DFER is an extension of the SFER. The DFER is a well known
topic in computer vision. A great deal of research has been conducted
in the field. Cohen et al. (2003) have developed an expression classifier
based on a Bayesian network. They also propose a new architecture of
hidden Markov model (HMM) for automatic segmentation and recognition
of human facial expression from video sequences. Pantic and Patras (2006)
present a dynamic system capable of recognizing facial AU and expressions,
based on a particle filtering method. In this context, Bartlett et al. (2003)
use a Support Vector Machine (SVM) classifier. Finally, Fasel and Luettin
(2003) study and compare methods and systems presented in the literature
to deal with the DFER. They focus particularly on the robustness in case
of environmental changes.

There is a recent interest for quantifying facial expressions in different
fields such as robotic, marketing or transportation. In the robotic field,
Tojo et al. (2000) have implemented facial and body expressions on a con-
versational robot. With some experiments, they showed the added value
of such a system in the communication between humans and the robot.
Miwa et al. (2004) have also developed a humanoid robot able to reproduce
human expressions and their associated human hand movements. In the
marketing field, Weinberg and Gottwald (1982) have investigated human
behavior characterizing impulse purchases. Emotions play a key role and
facial expressions appeared to be one of their main indicators. Small and
Verrochi (2009) studied how the victim faces displayed on advertisements
for charities affect both sympathy and giving.

The measuring of user emotions has become an important research topic
in transportation behavior analysis. For instance, it may be used to analyse
travelers satisfaction in public transportation. In the car context, it may
allow to adapt the vehicle functionalities to the driver’s mood for both
well-being and safety reasons. Reimer et al. (2009) develop the concept of
“awareness” of the vehicle in order to improve the mobility, performance
and safety of older drivers. Information about driver general states, such
as respiration, facial expression or concentration, are crucial to correctly
apprehend the immediate driver capabilities and adapt the vehicle behavior
to it. Moreover, some car manufacturers are currently working on the
driver’s mood recognition in order to warn the driver about possible dangers



generated by other users. This aims at preventing road rages. Currently,
the mood recognition is based only on the driver’s voice. Facial expression
recognition can also be used as a complementary source of information to
determine the driver’s mood. For routine trips, Abou-Zeid (2009) conducts
experiments to measure the travel well-being for both public transportation
and car modes. Collected data were employed to estimate mode choice
models. Well-being measures are used as utility indicators, in addition
to standard choice indicators. A system of facial expression recognition
could be coupled to such models, in order to better capture the commuter
emotional states. Another obvious application is security, for example in
airports or train stations. More generally, the DFER models could be used
in any human-machine interface.

In this paper, we propose the use of discrete choice models (DCM) as
they are designed to describe the behavior of people in choice situations.
We can consider a decision-maker who has to label a video sequence by
choosing among a list of facial expressions. The list is composed of the
seven basic expressions described by Keltner (2000): happiness, surprise,
fear, disgust, sadness, anger, neutral. We have also added “Other” and “I
don’t know” , to avoid ambiguities. In the following, the expressions are
respectively denoted by H, SU, F, D, SA, A, N, DK and O.

Contrarily to computer vision algorithms which are calibrated using a
ground truth, our models are estimated using behavioral data. Computer
vision algorithms can be often considered as a “black box”, as their pa-
rameters are difficult to interpret. In our case, a specification is proposed
where causal links between facial characteristics and expressions are explic-
itly modeled. The output of the model is a probability distribution among
expressions. We have successfully applied the approach for SFER (Sorci,
Antonini, Cruz, Robin, Bierlaire and Thiran, 2010, and Sorci, Robin, Cruz,
Bierlaire, Thiran and Antonini, 2010). We propose a logit model, with nine
alternatives corresponding to the nine items cited above. Each utility is
a function of measures related to the AU associated to the expression, as
defined by the FACS. Sorci, Antonini, Cruz, Robin, Bierlaire and Thi-
ran (2010) have also introduced the concept of expression descriptive units
(EDU), that capture interactions between AU. Moreover, some outputs of
the computer vision algorithm used to extract measures on facial images,
are also included in the utility, in order to account for the global facial
perception.



The DFER does not fit into the usual discrete choice applications, so
adjustments have to be done. We took inspiration from the work of Choud-
hury (2007) who uses a dynamic behavioral framework to model car lane
changing. Three models are presented in this analysis. Different mod-
eling assumptions have been tested and compared. We first present the
behavioral data used to estimate the models. Then the specification of
the proposed models and the estimation results are presented. We finally
describe the validation and the applications of the models.

2 Data

The data is derived from a set of video sequences from the facial expressions
and emotions database (FEED) collected by Wallhoff (2004). They have
recorded students watching television. Different types of TV programs are
presented to the subjects in order to generate a large spectrum of expres-
sions. The database contains 95 sequences from 18 subjects. The collected
videos last between 3 and 6 seconds. In each video, the subject starts with
a neutral face (see example in Figure 1). Then, at some point the TV
program triggers an expression.

"

Figure 1: Snapshot of a FEED database video: neutral face (subject N°2)



Figure 2: Snapshot of a FEED database video: expression produced by the
TV program (subject N°2)

We have selected 65 videos from 17 subjects. The videos of subject N°17
were removed because of the lack of variability in facial characteristics, or
due to some discontinuities in the recording of the videos. The number of
considered videos per subject is shown in Figure 3. We have no access to the
type of expression that was meant to be triggered during the experiment.

A video is a sequence of images. For each image, numerical data are
extracted using an active appearance model (AAM, Cootes et al., 2002).
It permits to extract facial distances and angles as well as facial texture
information (such as levels of gray) from each image. This technique is
based on several principal component analysis (PCA) performed on the
image treated as an array of pixel values. The algorithm tracks a facial
mask composed of 55 points (see Figure 4) used to measure various facial
distances and angles. Another vector C of values capturing both the facial
texture and shape is also generated by the AAM. A total of 88 variables
capturing distances (number of pixels) and angles (radians), as well as 100
elements of the vector C, have been generated for each image in each video.

The video is discretized in groups of 25 images, each corresponding to
one second of the video, 7.e. the number of groups of images is equal to the
duration in seconds of the video. The features associated with each group
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Figure 3: Numbers of considered videos per subject
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Figure 4: Mask tracked by AAM along a video sequence

of images are the features of the first image of the group. In the following,
we use “frame” to refer to what is actually the first image of a group. The
features of the 24 remaining images are used to compute variances (see
Equation (2)).



For a given frame t and video o, three sets of variables are introduced:
{Xk,t,0fk=1,..,188) {Uk;t,0/k=1,..,188) 1Zkt,0lk=1,..,188 1Xktolk1,.,188 are the fea-
tures extracted using the AAM. A complete description of these facial
measurements is presented by Sorci, Antonini, Cruz, Robin, Bierlaire and
Thiran (2010). In order to characterize the frame dynamics, some other
variables are calculated. For each variable xxo, k = 1,...,188, we intro-
duce the variable yy ., defined as

Yx,t,o = Xk,t,o — Xkt—1,0 for t = 2) oo aTO) (1)

where T, is the number of frames in the video 0. As each frame corresponds
to one second, Yk, can be interpreted as the first derivative of xy ¢, with
respect to time, approximated by finite differences. It quantifies the level
of variation of the facial characteristics between two consecutive frames.
Moreover, another variable zy ; ., is introduced for each x, 1o, k =1,...,188,
and is defined as

Zx to = Var(xk,t‘o) . (2)

It is the variance of the features calculated over the 25 images preced-
ing the frame t. It characterizes the short time variations of the facial
characteristic xy . For logical reasons, we have fixed

Yx,1,0 = Zx,1,0 = 0 Vkv o, (3)

meaning that the derivative and the variance of a variable in the first frame
of all videos, is fixed to 0. We have a database of 564 (= 188 x 3) variables
for each frame t in each video o. The variables have been normalized in the
interval [—1,1], in order to harmonize their scale: each variable has been
divided by the maximum in absolute value between its observed maximum
and minimum over all frames and videos.

An internet survey has been conducted in order to obtain labels of
FEED videos. It is available at http://transp-or2.epfi.ch/videosurvey/
since august 2008. During the first session, respondents are asked to create
an account and fill a socio-economic form. Once the account is created,
they have to decide how many facial videos they want to label (5, 10 or 20).
Videos are extracted randomly from the database. Then, the expression
labelling process can start. A screen snapshot is shown at Figure 5.
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Figure 5: Snapshot of internet survey screen (subject N°15)

For this analysis, we have collected 369 labels from 40 respondents. The
repartition of the observations among the expressions is displayed in Figure
6.
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Figure 6: Distribution of the collected labels among the expressions



3 Models specification

The model proposed by Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran
(2010) is called static model. In this analysis, three models based on dif-
ferent assumptions have been developed. We suppose that the perception of
the respondent starts at the first frame of the video. Then, we assume that
the respondent updates her perception every second, which corresponds to
every frame (see Section 2). In the first model we hypothesize that only
the last frame of the video influences the observed choice of label. This is
the simplest model presented in this analysis because it does not include
dynamic aspects and it will be considered as a reference for comparison.
This model is called reduced model. In the second model, only the most
impressive frame is supposed to be influential on the choice of label. It is
called latent model. Finally in the third model, we hypothesize that it
is the average perception of a group of consecutive frames which generates
the choice of label. This is called smoothed model. The theoretical de-
tails and specification of each model are described in Sections 3.1, 3.2 and
3.3. Due to the small number of respondents, their characteristics have not
been included in the models.

3.1 The reduced model

In this model, only the perception of the last frame of a video is considered
to be important for generating the observed choice of label. This assump-
tion comes from the structure of a video. The filmed subject starts with a
neutral face and evolves toward a certain expression which is triggered by
the TV program that she is watching. Logically the subject’s face on the
last frame should be expressive. The model is a direct adaptation of static
model.

The model associated to the perception of expressions is denoted by
Pm, (ilo, On, ). It is the probability for an individual to label the video o
with the expression i, given the vector of unknown parameters Oy,,. The
last frame is supposed to be the only information used by the respondent
to label the video o. The utility function associated with each expression
is defined in Equation (4).
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Km, 188
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Km, 188
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Km, 188

VM, (0IT6,0,00m,) = ASCo+ Y Int,0i0m5 D IMyjskiTo »
j=1 k=1

Vm, (O[To,0,0M,) = ASCpx, (4)

where T, denotes the length of the video o in seconds, which is also the index
of the last frame of the video o. Ky, is the total number of parameters
related to facial measurements {xy o} in reduced model. Ip4 i is an
indicator equal to 1 if the parameter j is present in the utility of expression
i, 0 otherwise. Inm, jk s an indicator equal to 1 if the parameter j is related
to the facial measurement x, 1, , collected in the last frame of the video o,
0 otherwise. We have

188

Z Imjx=1VYj, (5)
K1

meaning that a parameter Oy, ; is related to only one facial measure-
ment Xy 1, 0. {XKkT, o are introduced in Section 2. Each utility contains
an alternative specific constant ASC; except the neutral, which is taken as
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the reference, and its utility is fixed to 0. Note that there is no expression
specific attributes, as the facial characteristics do not vary across the ex-
pressions. The details of the utility specifications are presented in Tables
4 and 5. For each parameter Oy, j, if In, 15 15 equal to 1, there is a “x” in
the column of the corresponding expression i. If Iz, jx 1s equal to 1, the
relative facial characteristic xy 1, o, is indicated. The model is a logit, so the
probability is

e M, (UTo,0,6m, )

PMl (i”O) eM] ) = Z‘? : eVM] (].‘To »0»6M1 ) * (6)
j=
Then the log-likelihood is
o 9
L(Om) =) > wiolog(Py, (ilo,0m,)), (7)
o=1 i=1

where w; , is a weight, corresponding to the number of times the expression
1 has been chosen for the video o in the collected database of annotations
(see Section 2).

Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010) employed the
database proposed by T.Kanade (2000) when collecting behavioral data.
The estimated parameters of the static model cannot be used directly in our
analysis due to problems of facial position and scale between this database
and the FEED (see Section 2). The filmed subjects are further from the
camera in the FEED, compared to the Cohn-Kanade. Consequently, the
model has to be re-estimated. In addition, the specifications of the utilities
have been adapted to this analysis because of the lower number of data
available. We use 369 observations of labels against 38110 for the work of
Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010). This implies
the estimation of a lower number of parameters: the utility specifications
have been simplified and parameters have been grouped together regarding
their sign and interpretability. The proposed model contains 32 parameters
against 135 for the static model.

3.2 The latent model

The assumption supporting this model is that one frame in the video has
influenced the observed choice of label, but the analyst does not know
which one. The DFER model consists of a combination of two models.
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The first model quantifies the perception of expressions in a given frame.
It is similar to reduced model presented in Section 3.1. The second model
predicts which frame has influenced the chosen label. It is a latent choice
model where the choice set is composed of all frames in the video. The
instantaneous perception of expressions and the most influential frame are
not observed. Only the final choice of label for the video is observed.

The first model provides the probability for a respondent to choose the
expression i when exposed to the frame t of the video sequence o, and
is written P, (ilt,0,0m, .1, ®). The second model provides the probabil-
ity for the frame t of video o to trigger the choice, and is denoted by
Pwm, (tlo, Om, 2). The probability for a respondent to label the video o with
expression i, is denoted by P, (ilo, Onm,, &), Which is observable. O,
and Opq, » are the vectors of unknown parameters to be estimated, merged
into the vector Opm,. « is a vector of parameters capturing the memory
effects, which will be introduced in Equation (11), and has to be estimated

(¢ = {ai}i—H,su,FD,sA,A,0)- We obtain

To
Pam, (110, Oamy, o) = > P, (ilt, 0, 0m,.1, X)Pi, (tlo, O, ). (8)
t=1

For specifying the model P, (ilt, 0,0m, 1, ), we need to define a utility
function associated to each expression. We hypothesize that the percep-
tion of an expression i in frame t depends on the instantaneous percep-
tions of this expression 1 in the frames t and t — 1. Vi, (ilt, 0,0, 1, i)
is a utility reflecting the perception of the expression i in frame t for the
video o. We decompose it into two parts. First V34, (ilt,0,0m,,1) con-
cerns the instantaneous perception of the frame t in the video o. Second,
Vi, (it —1,0,0m, 1) concerns the instantaneous perception of the frame
t — 1 in the video o. This is designed to capture the dynamic nature of
the decision making process, as illustrated in Figure 7. In this figure, the
facial measurements {xy 1 o} and {zy ¢} (introduced in Equation (2)) are ob-
served, they are enclosed in rectangles and their influences are represented
by plain arrows; whereas the utilities are latent, they are enclosed in el-
lipses and their influences are marked by dashed arrows. {xy 0} and {zx o}
influence V34, (ilt, 0,0m, 1), while Vi, (ilt,0,0m,,1, «i) is only function of

V,Sv[z (’L’t, o, GMZJ) and V]s\/lz (l|t —1 , 0, GMZJ).

The specification of {V},, (ilt, 0,0m,,1)} is presented in Equation (9)
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where Ky, is the total number of parameters related to {xy(o}. K54, is the
total number of parameters related to {zy o). The indicators are similar to
those introduced in Section 3.1. Iz, 15 1s an indicator equal to 1 if the pa-
rameter j is included in the utility of expression i, 0 otherwise. Iy, jx is an
indicator equal to 1 if the parameter j is related to the facial measurement
Xk t,0 collected in the frame t of the video o, O otherwise. We have

188
D Iwj=1%, (10)
k=1

meaning that a parameter O, ; is related to only one xy 0. 34, sy; and
I34, jx have exactly the same role as Iz, 1; and Inm, jx, but they concern the
parameter 0%, ; which is related to zy .. Each utility contains a constant,
except for the neutral expression, whose utility is the reference and is fixed
to 0. The presence of {zy .} (short time variations of facial characteristics)
in the surprise utility accounts for the perception of suddenness. {zy:,} are
better than {yyx .} in this case, because they capture faster variations of
facial characteristics. This does not lead necessarily to the surprise facial
expression, but according to the collected data (see Section 2), fast varia-
tions of facial characteristics could be perceived as surprise by respondents.
The detailed specification of {V},, (ilt, 0,0m, 1)} is described in Tables 6 and
7. The reading of the tables is exactly the same as for Table 4 described in
Section 3.1.
The utility function Vi, (ilt, 0,0m, .1, i) is supposed to be the sum of
m, (Ut,0,0m, 1) and {V3,, (it — 1,0, 0m,,1) weighted by o, the parameter
of memory effect. The specification of Vi, (ilt, 0,0m, 1, xi) is defined in
Equation (11).
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VMZ (H|t) o, 9M2,1) O('H)

Vi, (HIt, 0,0m;,1)
oV, (HIt —1,0,0m,,1),
Vm, (SUt, 0, 0m, 1, atsu) Vi, (SUJt, 0,0, 1),
Vm, (FIt, 0,0Mm, 1, 066) = Vi, (FIt, 0,0Mm;,,1)

gV, (FIt = T1,0,0m,,1),

Vm, (DI, 0,0m,1,xp) = Vi, (DIt, 0,0m, 1),
Vm, (SAJt, 0, O, .1, tsa) Vi, (SAt, 0,0Mm; 1)
oxsa Vi, (SAlt, 0,0m,,1),
Vm, (Alt, 0,0m,,1, xA) Vi, (Alt, 0,0m,,1),
VM, (N[t 0,0m,,1,an) = Viy, (N[t 0,00m,,1) =0,
Vm, (Oft,0,0Mm,1,x0) = Vi, (Oft,0,0Mm,,1)
xo Vi, (Oft, 0,0m,,1),
Vm, (DK[t,0,0m,,1, xpK) = Vi, (DK|t, 0,0Mm,1). (11)

_|_

+

+

+

Note that this is not anymore a linear-in-parameter specification for
happiness, fear, sadness and anger, since {«;} are estimated. Five memory
effects parameters {«i}i—sup.a npk have been fixed to zero : for neutral
because it is the referent alternative, so its utility is fixed to zero; and for
“I don’t know” because its utility contains only ASCpy, which is invariant
across the frames. For surprise, disgust and anger, they do not appeared
to be significant in previous specifications of the model (see Section 4 and
Table 8). {&i}i_tirsa,0 are supposed to be in the interval [—1, 1] because
we hypothesize that the instantaneous perception of expression i in the
previous frame t — 1 has less influence than the instantaneous perception
of expression i in the frame t, on the perception of expression i at time t.
The model for P, (ilt, 0,0m, 1, &) is a logit model, that is

e VM, (11t,0,0m,,1,04)

Pra (i1t 0, O, 1, o) = S eVMa OltoOmy 1,e)” (12)
)

The model Py, (tlo, On, 2) is also specified as a logit model. Note that
we decide to ignore here the potential correlation between error terms of
successive frames. A utility Vi, (tlo, O, 2) is associated to each frame t
in the video o. The utility depends on variables {yy o} which capture
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the levels of variation of the facial measurements between two consecutive
frames (see Equation (1)), and {zy + o} which capture the short time changes
of the facial measurements (see Equation (2)). We define Vi, (1|0, 0m, 2) =
Oand, fort=2,...,T,,

188
VMz(t’O>eMz,2) = § eMz, 2 § Isz 2jxYkt,0
Mz 2 188

+ Z e 12,3 Z Ii/lz ,Z,j,ka,t,o ) (13)
k=1

and
e M, (tlo,0m; 2)

(14)

K\, 2 and K%, , are the numbers of parameters associated to {yio},
and {zy 1.} respectively, in the utility related to each frame. I,“i,lz 24k 18
an indicator equal to 1 if the parameter 03, ,; is associated t0 Y t,0, O
otherwise. As for the other indicators, it is related to only one yi o, We
have

P, (030, 2) = T e o8, )’

188

ZIMZz]k—w), (15)

154, 25 is similar to I, 54, but is associated to zy .. The vector of param-
eters Opy, 2 is described in Table 9 (same reading as for Table 4 described
in Section 3.1). Finally, the log-likelihood function is

o 9
eMz) ZzwlologPMz 1’0 eMz) )
o=1 i=1
o 9 T
=Y ) wiolog() P, (ilt,0,0m,1, )P, (to, On, ). (16)
o1 i =

3.3 The smoothed model

In this model, we hypothesize that the behavior of the respondent is com-
posed of two consecutive phases, when watching a video. First the respon-
dent is waiting for information, no perception of expressions is influencing
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the observed choice of label. This is the first phase. At a certain point in
time, the respondent starts to use the information of the frames to make
her choice of label. This consideration of information is continued until the
end of the video. It constitutes the second phase. The model combines a
model related to the perception of expressions and a model which detects
the changing of phase. The observed choice of label is supposed to be the
average across the frames of the perception of expressions in the second
phase. Both models are latent as only the choice of label is observed.

The first model provides the probability for a respondent to choose
the expression i when exposed to frame { of the video sequence o, and
is written Pz, (ill,0,0m,,1). The second model Py, (tlo,Om, 2) provides
the probability for a respondent to enter in her second phase when being
exposed to the frame t. The probability for a respondent to label the video
o with expression 1i, is denoted by P, (ilo, Om, ), which is observable. Opy, ;
and Onm, 2 are the vectors of unknown parameters to be estimated within
each of the two models, merged into the vector Oa1,. P, (ilo, Oa,) is the
average of {Pam, (ill, 0,0m; 1) h=t..7,, Weighted by Pm, n(tlo, Oa, 2), sum up
over all the possibilities for t, which are in {1...T,}. We obtain

To
Pas (U0, 0ms) = D Pt (410, Oty 2) =7 D Pums (il1,0,0m5.1)- - (17)
t=1 °

For P, (ilt,0,0Mm;.1), @ utility Vi, (ilt, 0,0nm,.1) is associated to each
expression i. The specification of {V, (ilt, 0,0m; 1)} is defined in Equation
(18).
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VM3 (H’tv o, eM},,])

VM3 (Su’tv o, eM},,])

VM3 (F’tv o, 6M3,1)

VM3 (D’tv o, eM},,])

VM3 (SA’tv o, eM},,])

VM3 (A’tv o, eM},,])
VM3 (N’tv o, 6M3,1)
VM3 (O’tv o, 6M3,1)

VM3 (O’tv o, 6M3,1)

The general description of the utilities is exactly the same as for the
utilities in Equation (9). The detailed specifications of {Vj, (ilt, 0, Om; 1)}
are presented in Tables 10 and 11 (same reading as for Table 4 described

Km 5 188
ASCH + : IM37]7H7jeM37]7j : IM},,]‘,k‘X‘k,t,O )

j=1 k=1
Km, 188

A5C5u+§ IMs,l,su,ieMsJ,iE Ims i Xk o
j=1 k=1

K, 188
z z z
D TRusui®iiy D T jahto s
=1 k=1
Km, 188

A.SCF + Z IM3 ,F,]‘eMngJ- Z IM3 ,j,kxk,t,o )

=1 k=1
Km, 188
ASCp + E Im; D,iOM; 15 § Ims 5%kt
=1 k=1
Km, 188
ASCsa + 2 Im;,54,10M;5 .15 2 Ims 5%k to0
j=1 k=1
Km 188
ASCa + 2 IIVAVNCIVIRE: 2 Ims j X to
j=1 k=1
0,
Km 188

ASCo + 2 Im;,00M; .15 § IM; j kXK to
j=1 k=1

ASCpk . (18)

in Section 3.1). A logit form is postulated for Py, (ilt, 0, Om; 1)

PM3 (‘L’tv o, eM},,])

The second model Py, (tlo, O, 2) is capturing the changing of phases.

e YM; (Ut,0,0m5,1)

- Zj e YM; (1t0.6m;5 1) (19)

A utility Vi, (tlo,Om, 2) is associated to each frame t in the video o
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188

VM3 (tlo, GMS Z 9 ZkZ IM3 2, kY%k t0) (20)
k=1

where Ky, , is the number of parameters associated to this model. The
specification of Vi, (tlo, O, 2) is generic. I, ,;, is an indicator equal to
1 if 83y, , is associated to Y 1,0, O otherwise. 03, ,, is linked to only one
Yk.t,0, We have

188

ZIMsz]k—1V), (21)

the model contains only {yxto). {zxt,0) have been tested but do not appear
to be significant . The detailed specifications of the utilities are presented
in Table 12 (same reading as for Table 4 described in Section 3.1). Finally,
Pwm, (tlo, Om, 2) is a logit model

e VM; (to,0m; 2)

PM3 (t|0)eM3,2) - To VM (E‘O eM 2]) (22)
(=€ 73T
and the log-likelihood function is
o 9
L(Om,) =) D wiologP,l(ilo,0m,)
o=1 i=1
o 9 1 T
=3 ) wiolog( ZPM3 (tlo,8va ) 57 ZPM3(i|k,o,eM3,1)).
o=1 i=1 =t
(23)

4 Estimations of the models

The models are estimated by maximum likelihood (see Equations (7), (16),
and (23)) with codes based on the BIOGEME software developed by Bier-
laire (2003) to do simultaneous estimation. Estimation results are presented
in Table 1.

Reduced model is the simplest model because it only accounts for the
influence of the last frame on the observed choice of label. The values of
the 32 estimated parameters and associated t-tests are presented in Tables
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4 and 5. Fourteen parameters are related to facial measurements charac-
terizing AU (see Section 3.1). The signs are consistent with the work of
Sorci, Antonini, Cruz, Robin, Bierlaire and Thiran (2010), and with the
FACS (Ekman and Friesen, 1978). The asymmetry of the face is taken
into account by associating different parameters to the left and right mea-
surements of a same type. All parameters related to AU are significantly
different from O (t-test > 1.96). This is also the case for the five parame-
ters related to EDU and for the five parameters associated to elements of
the vector C. Their signs are coherent with the work of Sorci, Antonini,
Cruz, Robin, Bierlaire and Thiran (2010). Some of the eight {ASC;} do not
appear to be significant, which is a good feature because they are designed
to absorb the unobserved perception of respondents.

For latent model, the values and associated t-tests of the 34 parame-
ters related to the model handling with the perception of the expressions
are presented in Tables 6 and 7. Signs and significance of parameters re-
lated to AU, EDU and elements of the vector C are correct and consistent
with the estimated parameters obtained for reduced model. In addition,
the model contains two more parameters. The parameter Onq, 122 associ-
ated to the height of the mouth (“mouth_h” ), appears to be significant,
while it was not the case for reduced model. This is due to the fact that
reduced model accounts only for the perception of the last frame in a
video, compared to all the frames here. So the reduced model could not
be as precisely specified as this model. 0%, ;; is related to the variance
of the height of the mouth (“mouth_h”). It is positive meaning that the
more variations in the height of the mouth there are within the previous
second, the more the surprise will be favored, which is logical. Four param-
eters of memory effect (o, &, xsa, o) appear to be significantly different
from zero (see Table 8). They have the same magnitude. Without any
constraint, their estimated values are in [—1, 1] meaning that the present
perception is predominant, as expected. Seven parameters related to the
model characterizing the influence of the frames are estimated significantly
different from zero (see Table 9). Six are associated to {yx+.} and one to
Z7+1,0 Which is the variance of the distance between eyebrows (“brow_dist”).
Their magnitude is larger than for the parameters associated to the model
of perception of the expressions. This means that the model is sensitive
to small variations of features and tends to produce a sharp probability
distribution among the frames. The signs of the parameters are logical, for
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example O, 25 is attached to the height of the eyes (“eye_h”) and is neg-
ative. This means that the more a subject has the eye closed on a frame,
the more the frame has influence on the observed choice of label.

For smoothed model, the model dealing with the perception of the
expressions contains 36 parameters (see Tables 10 and 11). Signs and sig-
nificance of parameters related to AU, EDU and C parameters are the same
than for reduced model. The model contains 4 more parameters. On, 14
and Op4, 1,12 are respectively attached to the EDU corresponding to the frac-
tion between the height of the eyebrows and their width (“RAP_brow”),
and to the fifth element of the vector C (“C_5"). Both are in the utility of
disgust. Compared to reduced model, they appear to be significant due
to the fact that we now account for the total number of frames. 05, ; ; and
0%, 12 are respectively related to the variance of the height of the mouth
(“mouth_h”) and the variance of the height of the left eye (“leye_h”) and
are included in the utility of surprise in order to capture the perception of
suddenness. They are positive as expected, meaning that the higher z;,
and z3:,, the more the surprise is favored, which is logical. The model
designed to detect the first frame of the relevant group of frames contains
8 parameters (see Table 12). They are all linked with {yy,}. None of the
parameters attached to {z\ .} appeared to be significant. The perception
of the short time variations of facial characteristics is not relevant for ac-
tivating the second phase of behavior, which seems logical. The changing
in the facial characteristics should be more drastic, that’s why {yx.} are
better adapted. As for reduced model , the magnitude of the parame-
ters is larger compared to the model handling with the perception of the
expressions. The interpretation remains the same as for latent model.

The final log-likelihood is improved between reduced and latent mod-
els, and reduced and smoothed models. The three models can not be
compared using likelihood ratio-tests. We use p? as a goodness of fit to
identify the best model. Looking at Table 1, latent model appears to be
the best model, closely followed by smoothed model. The improvement
brought by the dynamic modeling is substantial.

The magnitude of the parameter values and signs are the same for
the three models. For example, On, 4, Om, 14 and Opy, 15 are related to
the opening of the mouth (“RAP_mouth”), defined as the fraction be-
tween the height of the mouth (“mouth_h”) and the width of the mouth
(“mouth_w”). They are present in the utilities of surprise and fear. The
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Reduced model | Latent model | Smoothed model
Nb of observations 369 369 369
Nb of parameters 32 45 44
Null log-likelihood —810.78 —810.78 —810.78
Final log-likelihood —475.79 —441.28 —447 .67
p? 0.374 0.400 0.394

Table 1: General estimation results

associated parameters are all positive, showing the stability of the models.
Their positive sign is logical because when a person has the mouth opened,
the perceived facial expression is more likely to be fear or surprise.

The specifications of the model related to the detection of the most
impressive frame in latent model, and to the detection of the first frame
of the relevant group of frames in smoothed model, are very similar.
For latent model, it contains parameters associated with both {yy o} and
{zx o) and for smoothed model, only associated with {yyxio). For ex-
ample, Yo, is present in both models and is related to the height of the
mouth (“mouth_h”). Figure 9 displays the variation of this feature among
frames of a video. The frames of the considered video are shown in Figure
8. The sign of the parameters associated to ysto (Om, 26 and O, 28) is
positive for both latent and smoothed models, which is logical. The
higher the difference of mouth height between two consecutive frames, the
more important the second frame is. In that special case and regarding
only Y+, frame 3 seems to be the most important.

Bl ™ T

Figure 8: Frames of the considered video which is used for studying varia-
tions of Y, 1,0, in Figure 9

In conclusion, the parameters of the models are significant and inter-
pretable. Moreover, the addition of a dynamic part in the model signifi-
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Figure 9: Variations of y,,, related to the height of the mouth
(“mouth_h") for the video presented in Figure 8

cantly improves the fit.

5 Prediction capability

The prediction capability is tested in order to ensure the quality of the
models. The dataset used in this section is the same as the one used in
Section 4. We proceed in three steps: the first one consists of comparing the
percentages of badly predicted observations for the proposed models. In a
second step, the models are validated using the method of cross-validation.
In the third step, we study the predictions of the proposed models at a more
disaggregated level. This consists of picking a certain video and analysing
the predictions of the models in detail.
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5.1 Aggregate prediction

An observation is considered as badly predicted, if its forecasted choice
probability is less than %, which corresponds to the probability predicted
by a uniform probability on the number of alternatives. Table 2 summarizes
the percentages of badly predicted observations per model. The percentages
are consistent with the fitting results presented in Section 4, which is a
good sign. The percentage of badly predicted observations is already low
for reduced model. The improvement brought by latent and smoothed
models compared to reduced model is minor in terms of prediction.
This can be explained by the structure of the considered facial videos.
As the “peak” emotion is often observed at the end of the video, there
are few observations where the dynamic models could do better. However
smoothed model is the best.

Reduced model | Latent model | Smoothed model
17.89 17.34 15.45

Table 2: Percentages of badly predicted observations on the estimation
data

The cumulative distributions of the choice probabilities predicted by
the models are displayed in Figure 10. If the models were perfect, the
curves should be flat with a pick for choice probabilities equal to one.
This would mean that the models replicate exactly the observed choices
of labels. Of course this is not the case. The three curves are close in
the “badly predicted” interval (choice probabilities less than § = 0.112).
This is consistent with the results shown in Table 2. Then, in the interval
[0.112,0.680] the latent and smoothed models are better than reduced
model. In the last interval, reduced model appears to be better than
smoothed model, but latent model is largely better than reduced and
smoothed models, and predict the highest probabilities (its curve is the
last to reach the level of one). These results show that latent model is
always better than reduced model, and consequently demonstrate the
added value of the dynamic modeling.
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Figure 10: Cumulative distributions of the choice probabilities predicted
by the three proposed models, on the estimation data

5.2 Cross-validation

The study of the badly predicted observations, described in Section 5.1 is
done on the estimation data presented in Section 2. The finality of the
models is to be used on some data not involved in the estimation process,
for prediction. Consequently the quality of the model should be tested on
some new data, but we do not have such data. In this situation, the cross-
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validation allows to validate the models. The methodology is inspired from
the work of Robin et al. (2009) who successfully cross-validate a model of
pedestrian behavior. The dataset is split into an estimation subset and
a validation subset. The models are estimated on the estimation data,
and are applied on the validation data. The dataset is randomly split
across the videos, in five subsets. Each subset contains twenty percent of
the videos. In the data, there are 65 videos, so each subset contains the
collected labels related to 13 videos. Four subsets are combined into the
estimation dataset. After estimation, the model is applied on the remaining
subset. The operation is repeated five times. The percentages of badly
predicted observations, calculated over the validation subsets are presented
in Table 3.

Validation subsets 1 2 3 4 5

Reduced model |28.74|26.15|21.31 | 21.87 | 28.26
Latent model 24.14 1 13.85 (1148 | 17.19 | 21.74
Smoothed model | 20.69 | 16.92 | 18.03 | 15.63 | 10.87

Table 3: Percentages of badly predicted observations calculated over the
validation subsets, obtained when cross-validating the models

Looking at Table 3, the two dynamic models (latent and smoothed
models) are always better than reduced model. In addition, the per-
centages of badly predicted observations are close from those obtained on
the entire estimation data (see Table 2) for latent and smoothed models,
not reduced model. The dynamic models appear to be much more robust
than reduced model. This justifies the goodness of the approach and the
validity of the dynamic models.

5.3 Disaggregate prediction

We looked at the power of prediction over the estimation dataset, at the
aggregate level. The study of a particular video allows to go in details
of the predictions of the three models. The video is the same than the
one considered in Figure 8. The detailed predictions of the models are
shown in Figure 11 for reduced model, Figure 12 for latent model,
and Figure 13 for smoothed model. On those figures, each column is
related to a frame, except the extreme right. The first line displays the
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considered frames. As mentioned in Section 2, each frame is the first of
a group of images corresponding to one second in a video. The second
line concerns the predictions of the model associated to the perception of
the expressions. For each frame, the probability distribution among the
expressions is presented. The third line shows the influence of the frames.
The contributions of the frames sum up to one. For reduced model,
only the last frame is considered relevant, so the peak is logically on this
last frame. For latent model, it shows the influence of each frame on
the final expression choice. For smoothed model, the peak measures the
contribution of the average perception of the following group of frames
(until the end of the video), including the frame of the peak. Finally in
the extreme right column, you find on the second row the final probability
distribution among the expressions, which is predicted by the model, and
on the third row, the distribution of the collected labels for the video.

On the first frame of the considered video (see Figures 11, 12 and 13),
the face tends to be neutral, and then evolves toward a different expression.
Seven respondents have labelled this video: three gave the label happiness,
three gave the label surprise, and one the label anger. Anger does not
seem to be appropriate for this video, but it has been kept because there
was no proof of mistakes made by the respondent. In addition the subject
on the two first frames of the video could be considered angry. The ob-
served distribution of the collected labels is displayed at the bottom right
of the figures. Reduced model predicts 65% of happiness, 35% of surprise,
and 0% for anger. The prediction seems logical regarding only the facial
characteristics in the last frame.

Latent model predicts 24% of happiness, 58% of surprise, 18% of dis-
gust and 0% for anger. This is further away from the distribution of the
collected labels, compared to reduced model. The model has selected
frame 3 as being the most impressive frame, with a probability almost
equal to one, so the predictions of the model results only from the percep-
tion of this frame. This is logical because the utilities of the frames contain
both {yx+.o0) and {zx .} (see Section 3.2), and they appear to be very high
for frame 3 (see Figure 9 for the height of the mouth). For this frame, the
predicted probability of surprise is very high. This is logical, because the
utility of surprise contains {zy : .} (see Equation (9)), which account for the
perception of suddeness. For this frame, the high probability for happiness
is also intuitive due to the facial characteristics. The prediction of disgust
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does not seem to be appriopriate.

Smoothed model predicts 58% of happiness, 38% of surprise, 4% of
disgust and 0% of anger. The prediction is well adapted to the observed
distribution of labels. The model detects frame 3 as being the first frame
of the relevant group of frames. As for latent model, this is due to the
presence of {yy + o} in the utilities of the frames (see Section 3.3), and {yx 0}
are higher for this frame (see Figure 9). The model handling with the per-
ception of the expressions predicts more surprise than happiness for frame
3, and the contrary for frame 4. This is logical due to the perception of
suddenness in frame 3 (see the utility of surprise in Equation (18)). The
facial characteristics are stabilized in frame 4 and lead to the expression
happiness, which is coherent. The final prediction of the model is the aver-
age of the perception of expressions among the frames of the relevant group
(frames 3 and 4), which explains the balanced share between happiness and
surprise.

The predictions of the three models are explainable. Smoothed model
seems to be the most interpretable and predicts the closest distribution of
probability across the expressions, from the collected labels.

6 Conclusions and Perspectives

We propose a new approach for the recognition of dynamic facial expres-
sions. The estimation of the models is based on labels collected through
respondents to an internet survey. The developed models capture up causal
effects between facial characteristics and expressions. Statistical tests and
model predictions have proved the quality of the models, and the added
value of the dynamic formulation (latent and smoothed models com-
pared to reduced model). The models have been cross-validated on the
estimation data, latent and smoothed models appear to be more ro-
bust than reduced model. Finally, some qualitative analysis of the model
predictions allow to confirm the modeler’s intuition about the facial video.

As such, the model can be used directly for applications. The major
difficulty concerns the computation of the variables. The quality of the
considered videos should be very high, in terms of definition and size of
the face. The applications in the field of transportation cited in the intro-
duction could be considered. The videos of the FEED database are not
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dedicated to transportation (the stimuli used to generate the facial expres-
sions of the subjects were not necessarily related to the field). In a first time,
this is not an insurmountable problem, in the sense that FEED videos are
quite general, and labels about all expressions have been collected. Some
case studies can be conducted in order to completely prove the model ap-
plicability to transportation (Denis, 2009). For immediate applications,
we can install cameras in front of users (drivers, or public transportation
users), couple cameras with facial tracking systems, for extracting facial
features, and then determine users facial expressions by using the proposed
models. In a second time, we can dedicate the model to transportation, by
estimating it on data related to the field. Instead of FEED videos, some fa-
cial videos of transportation users in special situations could be employed.
The video collection could consist in acquiring some facial videos of drivers,
when placed in simulators. Typical driving situations could be displayed as
stimuli, to generate drivers expressions. Note that the experimental design
of the video collection has to be closely linked to the application. Finally
in the context of “Aware” vehicles, the proposed model could be incorpo-
rated in global emotion recognition systems, including other elements of
recognition, such as the intonation of the voice or the concentration.

Even if this new modeling framework is meaningful, some improvements
could be done. The model has been estimated on a small dataset. More
observations would be useful. The number and type of videos is also a
critical aspect, feature variabilities are quite low and should be increased.
This could allow to have more complete specifications. In addition, more
complex structures could be tested for the choice models, such as MEV
or mixtures of logit. This allows to account for correlation between alter-
natives. Moreover, the specificities of respondents could be taken into ac-
count in the model by specifying an error component capturing unobserved
heterogeneity. A validation should be done on another dataset. Finally a
comparison with a state of the art machine learning method, such as neural
networks (NN) would be interesting.

Acknowledgments

We are very grateful to Matteo Sorci who provided the necessary programs
used to extract facial features using AAM.

29



swossoudxg

Yoo 45 0P s

|

SI9qE] PoAIISG0

suorssaidxy

Yo o4 o R

sonnqeqoxd pajorparg

0

70

90

80

80

sorouonbor

SonIMIqRqoIg

ourery

Qo101 Sures]

suorssaidxy

Yo o4 o R

¥ swel]

0

=== $0

90

—! 80

0

0

90

80

sonTIrqoIg

SonIMIqRqoIg

ourery

o010y Swel]

suorssaidxy

Yo o4 o R

€ owel]

70

70

90

80

0

0

90

80

sonmIqrqoIg

SoIMIqRqoIg

ourery

Qo107 Sures]

suorssaidxy

Yo o4 o R

7 o1y

120

0

90

80

0

0

90

80

sonmIqeqoIq

SonIMIqRqoIg

ourery

o010y Swel]

suorssaidxy

Yo o4 o R

17swel]

70

70

90

80

0

0

90

80

sonTIrqoIg

SonIMIqRqoIg

Figure 11: Example of a detailed prediction of reduced model
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Figure 12: Example of detailed prediction of latent model
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Figure 13: Example of detailed prediction of smoothed model
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parameter | H | SU | F | D | SA | A DK | xx1,0 | value | t-test O
ASCa X 1 0.95 0.28
ASCp X 1 25.38 7.88
ASCpk x |1 -0.69 -1.79
ASCr X 1 0.49 0.19
ASCy X 1 -3.14 -0.79
ASCo 1 6.95 3.20
ASCsa X 1 10.80 2.54
ASCsy X 1 -11.27 -5.63
Table 4: Estimation results of the constants for re-
duced model
parameter | H | SU | F | D | SA | A DK | X1, 0 value | t-test O
Om, 1 X EDU_6 -6.52 -3.63
Om, 2 X EDU_8 -4.'75 -6.18
Onm, 3 X X RAP _brow 6.70 4.53
Onm, 4 X | X RAP_mouth 2.94 2.85
Om, 5 X RAP_mouth 9.36 5.35
Om, 6 X C.1 -16.30 -3.51
Om, 7 X C2 23.98 3.49
Om, 8 X C.2 26.22 5.16
Om, 9 X C.3 15.34 3.13
Om, 10 X C.3 15.73 3.27
Onm, 11 X broweye_12 153.91 3.17
Om, 12 X broweye_13 85.58 5.75
Onm, 13 X | X | x| X | X broweye_r2 -49.81 -4.30
Onm, 14 X X eye_angle_1 58.55 3.43
Onm, 15 X eye_brow_angle1 | -140.87 -5.10
Om, 16 X eye_mouth dist 12 | -69.83 -3.42
Onm, 17 X X eye_mouth _dist_1 -36.03 -2.89
Onm, 18 X eye_nose_dist_l 245.03 5.05
Onm, 19 X | X | X eye_nose_dist_1 147.67 4.89
Om, 20 X | X | x| x eye_nose_dist_r -213.93 -6.04
Onm, 21 X | X leye_h 20.97 2.09
Om, 22 x | % mouth_nose_dist2 | -90.97 -2.15
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parameter SU SA | A DK | X1, .0 value | t-test O
Onm, 23 mouth nose_dist | -236.37 -5.65
Om, 24 mouth_w 188.42 4.90
Table 5: Estimation results and description of the spec-
ification of reduced model
parameter SU SA | A DK | xkto0 | value | t-test O
ASCa X 1 -5.86 -1.31
ASCp 1 22.73 4.48
ASCpk x |1 -0.71 -1.83
ASCe 1 -4.55 -1.13
ASCy 1 3.02 0.22
ASCo 1 14.44 4.22
ASCsa X 1 8.54 1.57
ASCsy X 1 -25.69 -7.08
Table 6: Estimation results of the constants for latent
model, associated the expression perception model
parameter SU SA | A DK | Xk t,0 value | t-test O
Om, .11 EDU_6 -6.92 -3.37
Om, .12 EDU .8 -3.92 -5.42
Onm, 13 X X RAP _brow 7.84 4.45
Onm, 14 X RAP_mouth 4.93 3.42
Om, 15 RAP_mouth 12.74 2.54
Om, .16 C.1 -38.18 -5.27
Om, 17 X C2 40.99 4.81
Om,.1.8 C2 45.77 7.12
Om,.1.9 C.3 23.96 3.71
O, 1,10 X C3 24.46 4.11
O, 111 X broweye_12 240.75 4.11
Onm, 112 X broweye_13 104.09 4.61
Onm, 1,13 X X | X broweye_r2 -41.76 -2.93
Onm, 114 X eye_angle_1 44 .95 2.58
Onm, 115 X eye_brow_angle 1 |-199.01 -6.04
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parameter | H | SU | F | D | SA | A| N | O | DK | x¢to value | t-test O
Onm, 116 X eye_mouth dist 12 | -73.15 -2.72
Onm, 117 X X X eye_mouth _dist_1 -84.03 -3.83
Onm, 118 X eye_nose_dist_l 217.99 3.69
Onm, 119 X | X | X X eye_nose_dist_1 80.02 2.09
Onm, 120 X | X | x | X X eye_nose_dist_r -211.73 -4.45
Om, 1,21 X | X leye_h 51.35 4.12
Onm, 122 X | X | X | x| x |X mouth_h 98.27 3.27
Onm, 1,23 X | X mouth_nose_dist2 | -92.34 -2.04
Om, 1,24 X mouth_nose_dist -412.5 -5
OM, 1,25 % mouth_w 158.29 2.13
O™, 1.1 mouth_h, z; ¢, 50.21 3.04

Table 7: Estimation results and description of the spec-
ification of latent model, associated to the expression

perception model

parameter | value | t-test 0
X -0.62 -8.18
XF -0.33 -2.73
AsA -0.46 | -2.04
X0 -0.70 -2.68

Table 8: Estimation results of latent model, associated

to the memory effects parameters

parameter | Yy, value | t-test O
01 2 C2 -426.75 | -1.83
Or, 22 eye_brow_angle | 350.53 1.7
OM, 2.3 mouth_w 407.34 1.76
00,4 |C4 463.35 | 175
0),.; |eyenh -566.62 | -1.79
0% 26 mouth_h 104.51 1.84

i1 | brow.dist, zs., | 261.65| 1.84
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parameter

yk,t,o

value

t-test O

Table 9: Estimation results and description of the speci-
fication of latent model, associated to the model which

detects the most meaningful frame

parameter | H | SU | F | D | SA | A DK | xkt0 | value | t-test O
ASCa X 1 -7.53 -1.63
ASCp X 1 20.28 4.03
ASCpk x |1 -0.69 -1.79
ASCk X 1 -0.35 -0.09
ASCy X 1 -7.66 -1.43
ASCo 1 12.95 4.38
ASCsa X 1 4.17 1.04
ASCsy X 1 -29.15 -7.07

Table 10: Estimation results of the constants for

smoothed model, associated to the expression percep-

tion model
parameter | H | SU | F | D | SA | A DK | Xk t,0 value | t-test O
IV X EDU 6 -9.19 | -3.82
O, .12 X EDU_8 -4.18 | -4.09
Om;,1.3 X X RAP _brow 12.6 5.69
Onm; 14 X RAP_brow 5.44 2
Om; 15 x| X RAP_mouth 2.89 2
Oms 16 X RAP_mouth 11.77 4.44
Om, 17 X C.1 -23.36 -3.36
OMm;.1.8 X C2 42.46 5.3
OMm;.1.9 X C2 33.98 5.51
OMm; 1,10 X C.3 25.82 3.88
Om, 1,11 X C.3 17.61 2.74
Om, 1,12 X Ch -16.4 -2.5
O, 113 X broweye_12 149.31 3.15
Onm; 114 X broweye_13 128.49 5.76
Onm; 1,15 X | X | x| X | % broweye_r2 -61.58 -4.31
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parameter | H | SU | F | D | SA | A| N | O | DK | x¢to value | t-test O
Onm; 116 X X eye_angle_l 40.99 2.06
Onm; 117 X eye_brow_angle 1 | -126.55 -4.59
Onm; 118 X eye_mouth _dist_12 | -50.07 -2.13
Onms 119 X X X eye_mouth _dist_1 -32.09 -2.2
Onms 120 X eye_nose_dist_l 163.49 3.75
O, 121 X | X | X X eye_nose_dist_1 114.66 3.15
Om, 1,22 X | x| x | X X eye_nose_dist_r -256.49 -5.39
Onm; 1,23 X | X leye_h 52.58 3.73
Onm; 1.4 X | X | X | x| x |X mouth_h 90.92 2.96
Om,,1.25 X mouth_nose_dist | -342.14 -6.17
OM, 1,26 % mouth_w 228.81 4.47
0%, 1.1 X mouth_h, z; ¢, 0.13 4.46
0%, .12 X | X leye_h, z3 . 0.04 2.39
Table 11: Estimation results and description of the
specification of smoothed model, associated to the ex-
pression perception model
parameter | Yo value | t-test O
9%13 21 C.1 -234.75 -1.75
01, 2.2 eye_brow_angle | 548.34 1.76
6%13 23 mouth_w 23.29 1.81
6%13 24 C2 101.9 1.85
6%3‘2‘5 C3 -221.23 -1.57
9%43 26 C5 529.64 1.91
9%43 27 eye_h -122.15 -1.79
9%43 238 mouth_h 119.21 1.88
Table 12: Estimation results and description of the

specification of smoothed model, associated to the
model related to the detection of the first frame of the
relevant group of frames
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