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AbstractWe propose a dynami
 fa
ial expression re
ognition framework based ondis
rete 
hoi
e models (DCM). We model the 
hoi
e of a person who hasto label a video sequen
e representing a fa
ial expression. The originalityis based on the expli
it modeling of 
ausal e�e
ts between the fa
ial fea-tures and the re
ognition of the expression. Three models are proposed.The �rst assumes that only the last frame of the video triggers the 
hoi
eof the expression. The se
ond model is 
omposed of two parts. The �rstpart 
aptures the evaluation of the fa
ial expression within ea
h frame inthe sequen
e. The se
ond part determines whi
h frame triggers the 
hoi
e.The third model is an extension of the se
ond model. It assumes thatthe 
hoi
e of the expression results from the average of expression per
ep-tions within a group of frames. The models are estimated using videosfrom the Fa
ial Expressions and Emotions Database (FEED). Labelingdata on the videos has been obtained using an internet survey availableat http://transp-or2.ep
.
h/videosurvey/. The predi
tion 
apability ofthe models is studied in order to 
he
k their validity. Finally the modelsare 
ross-validated using the estimation data.
1 IntroductionFa
ial expressions are essential to 
onvey emotions and represent a power-ful way used by human beings to relate to ea
h other. When developinghuman ma
hine interfa
es, where 
omputers have to take into a

ount hu-man emotions, automati
 re
ognition of fa
ial expressions plays a 
entralrole. In this analysis, we propose a model predi
ting the evolution of aperson who has to identify the expression of a human fa
e on a video.Some 
oding systems have been proposed to des
ribe fa
ial expressions.Ekman and Friesen (1978) have introdu
ed the fa
ial a
tion 
oding sys-tem (FACS). They identify a list of fundamental expressions and asso
iategroups of mus
les tenseness or relaxations, 
alled a
tion units (AU) to ea
hbasi
 expression. A FACS expert 
an re
ognize AU a
tivated on a fa
e,and then dedu
t pre
isely the fa
ial expression mixture. This is now the
oding system of referen
e to 
hara
terize fa
ial expressions.The dynami
 fa
ial expression re
ognition (DFER) refers to the re
og-1



nition of fa
ial expressions in videos, whereas the stati
 fa
ial expressionre
ognition (SFER) 
on
erns the re
ognition of fa
ial expressions in im-ages. The DFER is an extension of the SFER. The DFER is a well knowntopi
 in 
omputer vision. A great deal of resear
h has been 
ondu
tedin the �eld. Cohen et al. (2003) have developed an expression 
lassi�erbased on a Bayesian network. They also propose a new ar
hite
ture ofhidden Markov model (HMM) for automati
 segmentation and re
ognitionof human fa
ial expression from video sequen
es. Panti
 and Patras (2006)present a dynami
 system 
apable of re
ognizing fa
ial AU and expressions,based on a parti
le �ltering method. In this 
ontext, Bartlett et al. (2003)use a Support Ve
tor Ma
hine (SVM) 
lassi�er. Finally, Fasel and Luettin(2003) study and 
ompare methods and systems presented in the literatureto deal with the DFER. They fo
us parti
ularly on the robustness in 
aseof environmental 
hanges.There is a re
ent interest for quantifying fa
ial expressions in di�erent�elds su
h as roboti
, marketing or transportation. In the roboti
 �eld,Tojo et al. (2000) have implemented fa
ial and body expressions on a 
on-versational robot. With some experiments, they showed the added valueof su
h a system in the 
ommuni
ation between humans and the robot.Miwa et al. (2004) have also developed a humanoid robot able to reprodu
ehuman expressions and their asso
iated human hand movements. In themarketing �eld, Weinberg and Gottwald (1982) have investigated humanbehavior 
hara
terizing impulse pur
hases. Emotions play a key role andfa
ial expressions appeared to be one of their main indi
ators. Small andVerro
hi (2009) studied how the vi
tim fa
es displayed on advertisementsfor 
harities a�e
t both sympathy and giving.The measuring of user emotions has be
ome an important resear
h topi
in transportation behavior analysis. For instan
e, it may be used to analysetravelers satisfa
tion in publi
 transportation. In the 
ar 
ontext, it mayallow to adapt the vehi
le fun
tionalities to the driver's mood for bothwell-being and safety reasons. Reimer et al. (2009) develop the 
on
ept of\awareness" of the vehi
le in order to improve the mobility, performan
eand safety of older drivers. Information about driver general states, su
has respiration, fa
ial expression or 
on
entration, are 
ru
ial to 
orre
tlyapprehend the immediate driver 
apabilities and adapt the vehi
le behaviorto it. Moreover, some 
ar manufa
turers are 
urrently working on thedriver's mood re
ognition in order to warn the driver about possible dangers2



generated by other users. This aims at preventing road rages. Currently,the mood re
ognition is based only on the driver's voi
e. Fa
ial expressionre
ognition 
an also be used as a 
omplementary sour
e of information todetermine the driver's mood. For routine trips, Abou-Zeid (2009) 
ondu
tsexperiments to measure the travel well-being for both publi
 transportationand 
ar modes. Colle
ted data were employed to estimate mode 
hoi
emodels. Well-being measures are used as utility indi
ators, in additionto standard 
hoi
e indi
ators. A system of fa
ial expression re
ognition
ould be 
oupled to su
h models, in order to better 
apture the 
ommuteremotional states. Another obvious appli
ation is se
urity, for example inairports or train stations. More generally, the DFER models 
ould be usedin any human-ma
hine interfa
e.In this paper, we propose the use of dis
rete 
hoi
e models (DCM) asthey are designed to des
ribe the behavior of people in 
hoi
e situations.We 
an 
onsider a de
ision-maker who has to label a video sequen
e by
hoosing among a list of fa
ial expressions. The list is 
omposed of theseven basi
 expressions des
ribed by Keltner (2000): happiness, surprise,fear, disgust, sadness, anger, neutral. We have also added \Other" and \Idon't know" , to avoid ambiguities. In the following, the expressions arerespe
tively denoted by H, SU, F, D, SA, A, N, DK and O.Contrarily to 
omputer vision algorithms whi
h are 
alibrated using aground truth, our models are estimated using behavioral data. Computervision algorithms 
an be often 
onsidered as a \bla
k box", as their pa-rameters are diÆ
ult to interpret. In our 
ase, a spe
i�
ation is proposedwhere 
ausal links between fa
ial 
hara
teristi
s and expressions are expli
-itly modeled. The output of the model is a probability distribution amongexpressions. We have su

essfully applied the approa
h for SFER (Sor
i,Antonini, Cruz, Robin, Bierlaire and Thiran, 2010, and Sor
i, Robin, Cruz,Bierlaire, Thiran and Antonini, 2010). We propose a logit model, with ninealternatives 
orresponding to the nine items 
ited above. Ea
h utility isa fun
tion of measures related to the AU asso
iated to the expression, asde�ned by the FACS. Sor
i, Antonini, Cruz, Robin, Bierlaire and Thi-ran (2010) have also introdu
ed the 
on
ept of expression des
riptive units(EDU), that 
apture intera
tions between AU. Moreover, some outputs ofthe 
omputer vision algorithm used to extra
t measures on fa
ial images,are also in
luded in the utility, in order to a

ount for the global fa
ialper
eption. 3



The DFER does not �t into the usual dis
rete 
hoi
e appli
ations, soadjustments have to be done. We took inspiration from the work of Choud-hury (2007) who uses a dynami
 behavioral framework to model 
ar lane
hanging. Three models are presented in this analysis. Di�erent mod-eling assumptions have been tested and 
ompared. We �rst present thebehavioral data used to estimate the models. Then the spe
i�
ation ofthe proposed models and the estimation results are presented. We �nallydes
ribe the validation and the appli
ations of the models.
2 DataThe data is derived from a set of video sequen
es from the fa
ial expressionsand emotions database (FEED) 
olle
ted by Wallho� (2004). They havere
orded students wat
hing television. Di�erent types of TV programs arepresented to the subje
ts in order to generate a large spe
trum of expres-sions. The database 
ontains 95 sequen
es from 18 subje
ts. The 
olle
tedvideos last between 3 and 6 se
onds. In ea
h video, the subje
t starts witha neutral fa
e (see example in Figure 1). Then, at some point the TVprogram triggers an expression.

Figure 1: Snapshot of a FEED database video: neutral fa
e (subje
t No2)
4



Figure 2: Snapshot of a FEED database video: expression produ
ed by theTV program (subje
t No2)We have sele
ted 65 videos from 17 subje
ts. The videos of subje
t No17were removed be
ause of the la
k of variability in fa
ial 
hara
teristi
s, ordue to some dis
ontinuities in the re
ording of the videos. The number of
onsidered videos per subje
t is shown in Figure 3. We have no a

ess to thetype of expression that was meant to be triggered during the experiment.A video is a sequen
e of images. For ea
h image, numeri
al data areextra
ted using an a
tive appearan
e model (AAM, Cootes et al., 2002).It permits to extra
t fa
ial distan
es and angles as well as fa
ial textureinformation (su
h as levels of gray) from ea
h image. This te
hnique isbased on several prin
ipal 
omponent analysis (PCA) performed on theimage treated as an array of pixel values. The algorithm tra
ks a fa
ialmask 
omposed of 55 points (see Figure 4) used to measure various fa
ialdistan
es and angles. Another ve
tor C of values 
apturing both the fa
ialtexture and shape is also generated by the AAM. A total of 88 variables
apturing distan
es (number of pixels) and angles (radians), as well as 100elements of the ve
tor C, have been generated for ea
h image in ea
h video.The video is dis
retized in groups of 25 images, ea
h 
orresponding toone se
ond of the video, i.e. the number of groups of images is equal to theduration in se
onds of the video. The features asso
iated with ea
h group5
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Subje
tsFigure 3: Numbers of 
onsidered videos per subje
t

Figure 4: Mask tra
ked by AAM along a video sequen
eof images are the features of the �rst image of the group. In the following,we use \frame" to refer to what is a
tually the �rst image of a group. Thefeatures of the 24 remaining images are used to 
ompute varian
es (seeEquation (2)). 6



For a given frame t and video o, three sets of variables are introdu
ed:
{xk,t,o}k=1,...,188, {yk,t,o}k=1,...,188, {zk,t,o}k=1,...,188. {xk,t,o}k=1,...,188 are the fea-tures extra
ted using the AAM. A 
omplete des
ription of these fa
ialmeasurements is presented by Sor
i, Antonini, Cruz, Robin, Bierlaire andThiran (2010). In order to 
hara
terize the frame dynami
s, some othervariables are 
al
ulated. For ea
h variable xk,t,o, k = 1, . . . , 188, we intro-du
e the variable yk,t,o de�ned as

yk,t,o = xk,t,o − xk,t−1,o for t = 2, . . . , To, (1)where To is the number of frames in the video o. As ea
h frame 
orrespondsto one se
ond, yk,t,o 
an be interpreted as the �rst derivative of xk,t,o withrespe
t to time, approximated by �nite di�eren
es. It quanti�es the levelof variation of the fa
ial 
hara
teristi
s between two 
onse
utive frames.Moreover, another variable zk,t,o is introdu
ed for ea
h xk,t,o, k = 1, . . . , 188,and is de�ned as
zk,t,o = Var(xk,t,o). (2)It is the varian
e of the features 
al
ulated over the 25 images pre
ed-ing the frame t. It 
hara
terizes the short time variations of the fa
ial
hara
teristi
 xk,t,o. For logi
al reasons, we have �xed

yk,1,o = zk,1,o = 0 ∀k, o , (3)meaning that the derivative and the varian
e of a variable in the �rst frameof all videos, is �xed to 0. We have a database of 564 (= 188× 3) variablesfor ea
h frame t in ea
h video o. The variables have been normalized in theinterval [−1, 1], in order to harmonize their s
ale: ea
h variable has beendivided by the maximum in absolute value between its observed maximumand minimum over all frames and videos.An internet survey has been 
ondu
ted in order to obtain labels ofFEED videos. It is available at http://transp-or2.ep
.
h/videosurvey/sin
e august 2008. During the �rst session, respondents are asked to 
reatean a

ount and �ll a so
io-e
onomi
 form. On
e the a

ount is 
reated,they have to de
ide how many fa
ial videos they want to label (5, 10 or 20).Videos are extra
ted randomly from the database. Then, the expressionlabelling pro
ess 
an start. A s
reen snapshot is shown at Figure 5.7



Figure 5: Snapshot of internet survey s
reen (subje
t No15)For this analysis, we have 
olle
ted 369 labels from 40 respondents. Therepartition of the observations among the expressions is displayed in Figure6.

00.050.1
0.150.2
0.250.3

H SU F D SA A N O DK
Frequen
ies

ExpressionsFigure 6: Distribution of the 
olle
ted labels among the expressions8



3 Models specificationThe model proposed by Sor
i, Antonini, Cruz, Robin, Bierlaire and Thiran(2010) is 
alled static model. In this analysis, three models based on dif-ferent assumptions have been developed. We suppose that the per
eption ofthe respondent starts at the �rst frame of the video. Then, we assume thatthe respondent updates her per
eption every se
ond, whi
h 
orresponds toevery frame (see Se
tion 2). In the �rst model we hypothesize that onlythe last frame of the video in
uen
es the observed 
hoi
e of label. This isthe simplest model presented in this analysis be
ause it does not in
ludedynami
 aspe
ts and it will be 
onsidered as a referen
e for 
omparison.This model is 
alled reduced model. In the se
ond model, only the mostimpressive frame is supposed to be in
uential on the 
hoi
e of label. It is
alled latent model. Finally in the third model, we hypothesize that itis the average per
eption of a group of 
onse
utive frames whi
h generatesthe 
hoi
e of label. This is 
alled smoothed model. The theoreti
al de-tails and spe
i�
ation of ea
h model are des
ribed in Se
tions 3.1, 3.2 and3.3. Due to the small number of respondents, their 
hara
teristi
s have notbeen in
luded in the models.
3.1 The reduced modelIn this model, only the per
eption of the last frame of a video is 
onsideredto be important for generating the observed 
hoi
e of label. This assump-tion 
omes from the stru
ture of a video. The �lmed subje
t starts with aneutral fa
e and evolves toward a 
ertain expression whi
h is triggered bythe TV program that she is wat
hing. Logi
ally the subje
t's fa
e on thelast frame should be expressive. The model is a dire
t adaptation of static

model.The model asso
iated to the per
eption of expressions is denoted by
PM1

(i|o, θM1
). It is the probability for an individual to label the video owith the expression i, given the ve
tor of unknown parameters θM1

. Thelast frame is supposed to be the only information used by the respondentto label the video o. The utility fun
tion asso
iated with ea
h expressionis de�ned in Equation (4).
9



VM1
(H|To, o, θM1

) = ASCH +

KM1∑

j=1

IM1,H,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(SU|To, o, θM1

) = ASCSU +

KM1∑

j=1

IM1,SU,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(F|To, o, θM1

) = ASCF +

KM1∑

j=1

IM1,F,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(D|To, o, θM1

) = ASCD +

KM1∑

j=1

IM1,D,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(SA|To, o, θM1

) = ASCSA +

KM1∑

j=1

IM1,SA,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(A|To, o, θM1

) = ASCA +

KM1∑

j=1

IM1,A,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(N|To, o, θM1

) = 0 ,

VM1
(O|To, o, θM1

) = ASCO +

KM1∑

j=1

IM1,O,jθM1,j

188∑

k=1

IM1,j,kxk,To,o ,

VM1
(O|To, o, θM1

) = ASCDK , (4)where To denotes the length of the video o in se
onds, whi
h is also the indexof the last frame of the video o. KM1
is the total number of parametersrelated to fa
ial measurements {xk,t,o} in reduced model. IM1,i,j is anindi
ator equal to 1 if the parameter j is present in the utility of expression

i, 0 otherwise. IM1,j,k is an indi
ator equal to 1 if the parameter j is relatedto the fa
ial measurement xk,To,o 
olle
ted in the last frame of the video o,0 otherwise. We have
188∑

k=1

IM1,j,k = 1 ∀j , (5)meaning that a parameter θM1,j is related to only one fa
ial measure-ment xk,To,o. {xk,To,o} are introdu
ed in Se
tion 2. Ea
h utility 
ontainsan alternative spe
i�
 
onstant ASCi ex
ept the neutral, whi
h is taken as10



the referen
e, and its utility is �xed to 0. Note that there is no expressionspe
i�
 attributes, as the fa
ial 
hara
teristi
s do not vary a
ross the ex-pressions. The details of the utility spe
i�
ations are presented in Tables4 and 5. For ea
h parameter θM1,j, if IM1,i,j is equal to 1, there is a \×" inthe 
olumn of the 
orresponding expression i. If IM1,j,k is equal to 1, therelative fa
ial 
hara
teristi
 xk,To,o is indi
ated. The model is a logit, so theprobability is
PM1

(i|o, θM1
) =

eVM1
(i|To,o,θM1

)

∑9

j=1 eVM1
(j|To,o,θM1

)
. (6)Then the log-likelihood is

L(θM1
) =

O∑

o=1

9∑

i=1

wi,o log(PM1
(i|o, θM1

)), (7)where wi,o is a weight, 
orresponding to the number of times the expression
i has been 
hosen for the video o in the 
olle
ted database of annotations(see Se
tion 2).Sor
i, Antonini, Cruz, Robin, Bierlaire and Thiran (2010) employed thedatabase proposed by T.Kanade (2000) when 
olle
ting behavioral data.The estimated parameters of the stati
 model 
annot be used dire
tly in ouranalysis due to problems of fa
ial position and s
ale between this databaseand the FEED (see Se
tion 2). The �lmed subje
ts are further from the
amera in the FEED, 
ompared to the Cohn-Kanade. Consequently, themodel has to be re-estimated. In addition, the spe
i�
ations of the utilitieshave been adapted to this analysis be
ause of the lower number of dataavailable. We use 369 observations of labels against 38110 for the work ofSor
i, Antonini, Cruz, Robin, Bierlaire and Thiran (2010). This impliesthe estimation of a lower number of parameters: the utility spe
i�
ationshave been simpli�ed and parameters have been grouped together regardingtheir sign and interpretability. The proposed model 
ontains 32 parametersagainst 135 for the static model.
3.2 The latent modelThe assumption supporting this model is that one frame in the video hasin
uen
ed the observed 
hoi
e of label, but the analyst does not knowwhi
h one. The DFER model 
onsists of a 
ombination of two models.11



The �rst model quanti�es the per
eption of expressions in a given frame.It is similar to reduced model presented in Se
tion 3.1. The se
ond modelpredi
ts whi
h frame has in
uen
ed the 
hosen label. It is a latent 
hoi
emodel where the 
hoi
e set is 
omposed of all frames in the video. Theinstantaneous per
eption of expressions and the most in
uential frame arenot observed. Only the �nal 
hoi
e of label for the video is observed.The �rst model provides the probability for a respondent to 
hoose theexpression i when exposed to the frame t of the video sequen
e o, andis written PM2
(i|t, o, θM2,1, α). The se
ond model provides the probabil-ity for the frame t of video o to trigger the 
hoi
e, and is denoted by

PM2
(t|o, θM2,2). The probability for a respondent to label the video o withexpression i, is denoted by PM2

(i|o, θM2
, α), whi
h is observable. θM2,1and θM2,2 are the ve
tors of unknown parameters to be estimated, mergedinto the ve
tor θM2

. α is a ve
tor of parameters 
apturing the memorye�e
ts, whi
h will be introdu
ed in Equation (11), and has to be estimated(α = {αi}i=H,SU,F,D,SA,A,O). We obtain
PM2

(i|o, θM2
, α) =

To∑

t=1

PM2
(i|t, o, θM2,1, α)PM2

(t|o, θM2,2). (8)For spe
ifying the model PM2
(i|t, o, θM2,1, α), we need to de�ne a utilityfun
tion asso
iated to ea
h expression. We hypothesize that the per
ep-tion of an expression i in frame t depends on the instantaneous per
ep-tions of this expression i in the frames t and t − 1. VM2

(i|t, o, θM2,1, αi)is a utility re
e
ting the per
eption of the expression i in frame t for thevideo o. We de
ompose it into two parts. First Vs
M2

(i|t, o, θM2,1) 
on-
erns the instantaneous per
eption of the frame t in the video o. Se
ond,
Vs

M2
(i|t − 1, o, θM2,1) 
on
erns the instantaneous per
eption of the frame

t − 1 in the video o. This is designed to 
apture the dynami
 nature ofthe de
ision making pro
ess, as illustrated in Figure 7. In this �gure, thefa
ial measurements {xk,t,o} and {zk,t,o} (introdu
ed in Equation (2)) are ob-served, they are en
losed in re
tangles and their in
uen
es are representedby plain arrows; whereas the utilities are latent, they are en
losed in el-lipses and their in
uen
es are marked by dashed arrows. {xk,t,o} and {zk,t,o}in
uen
e Vs
M2

(i|t, o, θM2,1), while VM2
(i|t, o, θM2,1, αi) is only fun
tion of

Vs
M2

(i|t, o, θM2,1) and Vs
M2

(i|t − 1, o, θM2,1).The spe
i�
ation of {Vs
M2

(i|t, o, θM2,1)} is presented in Equation (9)12



xk,t,o, zk,t,oxk,t−1,o, zk,t−1,o

Vs
M2

(i|t, o, θM2,1)Vs
M2

(i|t − 1, o, θM2,1)

VM2
(i|t, o, θM2,1, αi)VM2

(i|t − 1, o, θM2,1, αi)

b b bb b b

tt − 1

Figure 7: The dynami
 pro
ess of latent model

Vs
M2

(H|t, o, θM2,1) = ASCH +

KM2∑

j=1

IM2,1,H,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(SU|t, o, θM2,1) = ASCSU +

KM2∑

j=1

IM2,1,SU,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o

+

Kz
M2∑

j=1

Iz
M2,SU,jθ

z
M2,1,j

188∑

k=1

Iz
M2,j,kzk,t,o ,

Vs
M2

(F|t, o, θM2,1) = ASCF +

KM2∑

j=1

IM2,F,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(D|t, o, θM2,1) = ASCD +

KM2∑

j=1

IM2,D,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(SA|t, o, θM2,1) = ASCSA +

KM2∑

j=1

IM2,SA,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(A|t, o, θM2,1) = ASCA +

KM2∑

j=1

IM2,A,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(N|t, o, θM2,1) = 0 ,

Vs
M2

(O|t, o, θM2,1) = ASCO +

KM2∑

j=1

IM2,O,jθM2,1,j

188∑

k=1

IM2,j,kxk,t,o ,

Vs
M2

(O|t, o, θM2,1) = ASCDK , (9)13



where KM2
is the total number of parameters related to {xk,t,o}. Kz

M2
is thetotal number of parameters related to {zk,t,o}. The indi
ators are similar tothose introdu
ed in Se
tion 3.1. IM2,i,j is an indi
ator equal to 1 if the pa-rameter j is in
luded in the utility of expression i, 0 otherwise. IM2,j,k is anindi
ator equal to 1 if the parameter j is related to the fa
ial measurement

xk,t,o 
olle
ted in the frame t of the video o, 0 otherwise. We have
188∑

k=1

IM2,j,k = 1 ∀j , (10)meaning that a parameter θM2,j is related to only one xk,t,o. Iz
M2,SU,j and

Iz
M2,j,k have exa
tly the same role as IM2,i,j and IM2,j,k, but they 
on
ern theparameter θz

M2,j whi
h is related to zk,t,o. Ea
h utility 
ontains a 
onstant,ex
ept for the neutral expression, whose utility is the referen
e and is �xedto 0. The presen
e of {zk,t,o} (short time variations of fa
ial 
hara
teristi
s)in the surprise utility a

ounts for the per
eption of suddenness. {zkto} arebetter than {yk,t,o} in this 
ase, be
ause they 
apture faster variations offa
ial 
hara
teristi
s. This does not lead ne
essarily to the surprise fa
ialexpression, but a

ording to the 
olle
ted data (see Se
tion 2), fast varia-tions of fa
ial 
hara
teristi
s 
ould be per
eived as surprise by respondents.The detailed spe
i�
ation of {Vs
M2

(i|t, o, θM2,1)} is des
ribed in Tables 6 and7. The reading of the tables is exa
tly the same as for Table 4 des
ribed inSe
tion 3.1.The utility fun
tion VM2
(i|t, o, θM2,1, αi) is supposed to be the sum of

Vs
M2

(i|t, o, θM2,1) and {Vs
M2

(i|t − 1, o, θM2,1) weighted by αi, the parameterof memory e�e
t. The spe
i�
ation of VM2
(i|t, o, θM2,1, αi) is de�ned inEquation (11).

14



VM2
(H|t, o, θM2,1, αH) = Vs

M2
(H|t, o, θM2,1)

+ αHVs
M2

(H|t − 1, o, θM2,1),

VM2
(SU|t, o, θM2,1, αSU) = Vs

M2
(SU|t, o, θM2,1),

VM2
(F|t, o, θM2,1, αF) = Vs

M2
(F|t, o, θM2,1)

+ αFV
s
M2

(F|t − 1, o, θM2,1),

VM2
(D|t, o, θM2,1, αD) = Vs

M2
(D|t, o, θM2,1),

VM2
(SA|t, o, θM2,1, αSA) = Vs

M2
(SA|t, o, θM2,1)

+ αSAVs
M2

(SA|t, o, θM2,1),

VM2
(A|t, o, θM2,1, αA) = Vs

M2
(A|t, o, θM2,1),

VM2
(N|t, o, θM2,1, αN) = Vs

M2
(N|t, o, θM2,1) = 0,

VM2
(O|t, o, θM2,1, αO) = Vs

M2
(O|t, o, θM2,1)

+ αOVs
M2

(O|t, o, θM2,1),

VM2
(DK|t, o, θM2,1, αDK) = Vs

M2
(DK|t, o, θM2,1). (11)Note that this is not anymore a linear-in-parameter spe
i�
ation forhappiness, fear, sadness and anger, sin
e {αi} are estimated. Five memorye�e
ts parameters {αi}i=SU,D,A,N,DK have been �xed to zero : for neutralbe
ause it is the referent alternative, so its utility is �xed to zero; and for\I don't know" be
ause its utility 
ontains only ASCDK, whi
h is invarianta
ross the frames. For surprise, disgust and anger, they do not appearedto be signi�
ant in previous spe
i�
ations of the model (see Se
tion 4 andTable 8). {αi}i=H,F,SA,O are supposed to be in the interval [−1, 1] be
ausewe hypothesize that the instantaneous per
eption of expression i in theprevious frame t − 1 has less in
uen
e than the instantaneous per
eptionof expression i in the frame t, on the per
eption of expression i at time t.The model for PM2

(i|t, o, θM2,1, α) is a logit model, that is
PM2

(i|t, o, θM2,1, αi) =
eVM2

(i|t,o,θM2,1,αi)

∑
j e

VM2
(j|t,o,θM2,1,αj)

. (12)The model PM2
(t|o, θM2,2) is also spe
i�ed as a logit model. Note thatwe de
ide to ignore here the potential 
orrelation between error terms ofsu

essive frames. A utility VM2

(t|o, θM2,2) is asso
iated to ea
h frame tin the video o. The utility depends on variables {yk,t,o} whi
h 
apture15



the levels of variation of the fa
ial measurements between two 
onse
utiveframes (see Equation (1)), and {zk,t,o} whi
h 
apture the short time 
hangesof the fa
ial measurements (see Equation (2)). We de�ne VM2
(1|o, θM2,2) =

0 and, for t = 2, . . . , To,
VM2

(t|o, θM2,2) =

K
y
M2,2∑

j=1

θ
y
M2,2,j

188∑

k=1

I
y
M2,2,j,kyk,t,o

+

Kz
M2,2∑

j=1

θz
M2,2,j

188∑

k=1

Iz
M2,2,j,kzk,t,o , (13)and

PM2
(t|o; θM2,2) =

eVM2
(t|o,θM2,2)

∑To

ℓ=1 eVM2
(ℓ|o,θM2,2)

. (14)
K

y

M2,2 and Kz
M2,2 are the numbers of parameters asso
iated to {yk,t,o},and {zk,t,o} respe
tively, in the utility related to ea
h frame. I

y
M2,2,j,k isan indi
ator equal to 1 if the parameter θ

y
M2,2,j is asso
iated to yk,t,o, 0otherwise. As for the other indi
ators, it is related to only one yk,t,o, wehave

188∑

k=1

I
y

M2,2,j,k = 1 ∀j , (15)
Iz
M2,2,j,k is similar to I

y
M2,2,j,k, but is asso
iated to zk,t,o. The ve
tor of param-eters θM2,2 is des
ribed in Table 9 (same reading as for Table 4 des
ribedin Se
tion 3.1). Finally, the log-likelihood fun
tion is

L(θM2
, α) =

O∑

o=1

9∑

i=1

wi,o logPM2
(i|o, θM2

, α)

=

O∑

o=1

9∑

i=1

wi,o log( To∑

t=1

PM2
(i|t, o, θM2,1, αi)PM2

(t|o, θM2,2)). (16)
3.3 The smoothed modelIn this model, we hypothesize that the behavior of the respondent is 
om-posed of two 
onse
utive phases, when wat
hing a video. First the respon-dent is waiting for information, no per
eption of expressions is in
uen
ing16



the observed 
hoi
e of label. This is the �rst phase. At a 
ertain point intime, the respondent starts to use the information of the frames to makeher 
hoi
e of label. This 
onsideration of information is 
ontinued until theend of the video. It 
onstitutes the se
ond phase. The model 
ombines amodel related to the per
eption of expressions and a model whi
h dete
tsthe 
hanging of phase. The observed 
hoi
e of label is supposed to be theaverage a
ross the frames of the per
eption of expressions in the se
ondphase. Both models are latent as only the 
hoi
e of label is observed.The �rst model provides the probability for a respondent to 
hoosethe expression i when exposed to frame ℓ of the video sequen
e o, andis written PM3
(i|l, o, θM3,1). The se
ond model PM3

(t|o, θM3,2) providesthe probability for a respondent to enter in her se
ond phase when beingexposed to the frame t. The probability for a respondent to label the video
o with expression i, is denoted by PM3

(i|o, θM3
), whi
h is observable. θM3,1and θM3,2 are the ve
tors of unknown parameters to be estimated withinea
h of the two models, merged into the ve
tor θM3

. PM3
(i|o, θM3

) is theaverage of {PM3
(i|l, o, θM3,1)}l=t...To

, weighted by PM3,n(t|o, θM3,2), sum upover all the possibilities for t, whi
h are in {1 . . . To}. We obtain
PM3

(i|o, θM3
) =

To∑

t=1

PM3
(t|o, θM3,2)

1

To − t + 1

To∑

l=t

PM3
(i|l, o, θM3,1). (17)For PM3

(i|t, o, θM3,1), a utility VM3
(i|t, o, θM3,1) is asso
iated to ea
hexpression i. The spe
i�
ation of {VM3

(i|t, o, θM3,1)} is de�ned in Equation(18).

17



VM3
(H|t, o, θM3,1) = ASCH +

KM3∑

j=1

IM3,1,H,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(SU|t, o, θM3,1) = ASCSU +

KM3∑

j=1

IM3,1,SU,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o

+

Kz
M3∑

j=1

Iz
M3,SU,jθ

z
M3,1,j

188∑

k=1

Iz
M3,j,kzk,t,o ,

VM3
(F|t, o, θM3,1) = ASCF +

KM3∑

j=1

IM3,F,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(D|t, o, θM3,1) = ASCD +

KM3∑

j=1

IM3,D,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(SA|t, o, θM3,1) = ASCSA +

KM3∑

j=1

IM3,SA,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(A|t, o, θM3,1) = ASCA +

KM3∑

j=1

IM3,A,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(N|t, o, θM3,1) = 0 ,

VM3
(O|t, o, θM3,1) = ASCO +

KM3∑

j=1

IM3,O,jθM3,1,j

188∑

k=1

IM3,j,kxk,t,o ,

VM3
(O|t, o, θM3,1) = ASCDK . (18)The general des
ription of the utilities is exa
tly the same as for theutilities in Equation (9). The detailed spe
i�
ations of {VM3

(i|t, o, θM3,1)}are presented in Tables 10 and 11 (same reading as for Table 4 des
ribedin Se
tion 3.1). A logit form is postulated for PM3
(i|t, o, θM3,1)

PM3
(i|t, o, θM3,1) =

eVM3
(i|t,o,θM3,1)

∑
j e

VM3
(j|t,o,θM3,1)

. (19)The se
ond model PM3
(t|o, θM3,2) is 
apturing the 
hanging of phases.A utility VM3

(t|o, θM3,2) is asso
iated to ea
h frame t in the video o18



VM3
(t|o, θM3,2) =

K
y
M3,2∑

k=1

θ
y
M3,2,k

188∑

k=1

I
y
M3,2,j,kyk,t,o, (20)where K

y
M3,2 is the number of parameters asso
iated to this model. Thespe
i�
ation of VM3

(t|o, θM3,2) is generi
. I
y
M3,2,j,k is an indi
ator equal to1 if θ

y
M3,2,k is asso
iated to yk,t,o, 0 otherwise. θ

y
M3,2,k is linked to only one

yk,t,o, we have
188∑

k=1

I
y

M3,2,j,k = 1 ∀j , (21)the model 
ontains only {yk,t,o}. {zk,t,o} have been tested but do not appearto be signi�
ant . The detailed spe
i�
ations of the utilities are presentedin Table 12 (same reading as for Table 4 des
ribed in Se
tion 3.1). Finally,
PM3

(t|o, θM3,2) is a logit model
PM3

(t|o, θM3,2) =
eVM3

(t|o,θM3,2)

∑To

ℓ=1 eVM3
(ℓ|o,θM3,2)

, (22)and the log-likelihood fun
tion is
L(θM3

) =

O∑

o=1

9∑

i=1

wi,o logPM3
(i|o, θM3

)

=

O∑

o=1

9∑

i=1

wi,o log( To∑

t=1

PM3
(t|o, θM3,2)

1

To − t + 1

To∑

k=t

PM3
(i|k, o, θM3,1)).(23)

4 Estimations of the modelsThe models are estimated by maximum likelihood (see Equations (7), (16),and (23)) with 
odes based on the BIOGEME software developed by Bier-laire (2003) to do simultaneous estimation. Estimation results are presentedin Table 1.
Reduced model is the simplest model be
ause it only a

ounts for thein
uen
e of the last frame on the observed 
hoi
e of label. The values ofthe 32 estimated parameters and asso
iated t-tests are presented in Tables19



4 and 5. Fourteen parameters are related to fa
ial measurements 
hara
-terizing AU (see Se
tion 3.1). The signs are 
onsistent with the work ofSor
i, Antonini, Cruz, Robin, Bierlaire and Thiran (2010), and with theFACS (Ekman and Friesen, 1978). The asymmetry of the fa
e is takeninto a

ount by asso
iating di�erent parameters to the left and right mea-surements of a same type. All parameters related to AU are signi�
antlydi�erent from 0 (t-test ≥ 1.96). This is also the 
ase for the �ve parame-ters related to EDU and for the �ve parameters asso
iated to elements ofthe ve
tor C. Their signs are 
oherent with the work of Sor
i, Antonini,Cruz, Robin, Bierlaire and Thiran (2010). Some of the eight {ASCi} do notappear to be signi�
ant, whi
h is a good feature be
ause they are designedto absorb the unobserved per
eption of respondents.For latent model, the values and asso
iated t-tests of the 34 parame-ters related to the model handling with the per
eption of the expressionsare presented in Tables 6 and 7. Signs and signi�
an
e of parameters re-lated to AU, EDU and elements of the ve
tor C are 
orre
t and 
onsistentwith the estimated parameters obtained for reduced model. In addition,the model 
ontains two more parameters. The parameter θM2,1,22 asso
i-ated to the height of the mouth (\mouth h" ), appears to be signi�
ant,while it was not the 
ase for reduced model. This is due to the fa
t that
reduced model a

ounts only for the per
eption of the last frame in avideo, 
ompared to all the frames here. So the reduced model 
ould notbe as pre
isely spe
i�ed as this model. θz

M2,1,1 is related to the varian
eof the height of the mouth (\mouth h"). It is positive meaning that themore variations in the height of the mouth there are within the previousse
ond, the more the surprise will be favored, whi
h is logi
al. Four param-eters of memory e�e
t (αH, αF, αSA, αO) appear to be signi�
antly di�erentfrom zero (see Table 8). They have the same magnitude. Without any
onstraint, their estimated values are in [−1, 1] meaning that the presentper
eption is predominant, as expe
ted. Seven parameters related to themodel 
hara
terizing the in
uen
e of the frames are estimated signi�
antlydi�erent from zero (see Table 9). Six are asso
iated to {yk,t,o} and one to
z2,t,o whi
h is the varian
e of the distan
e between eyebrows (\brow dist").Their magnitude is larger than for the parameters asso
iated to the modelof per
eption of the expressions. This means that the model is sensitiveto small variations of features and tends to produ
e a sharp probabilitydistribution among the frames. The signs of the parameters are logi
al, for20



example θM2,2,5 is atta
hed to the height of the eyes (\eye h") and is neg-ative. This means that the more a subje
t has the eye 
losed on a frame,the more the frame has in
uen
e on the observed 
hoi
e of label.For smoothed model, the model dealing with the per
eption of theexpressions 
ontains 36 parameters (see Tables 10 and 11). Signs and sig-ni�
an
e of parameters related to AU, EDU and C parameters are the samethan for reduced model. The model 
ontains 4 more parameters. θM3,1,4and θM3,1,12 are respe
tively atta
hed to the EDU 
orresponding to the fra
-tion between the height of the eyebrows and their width (\RAP brow"),and to the �fth element of the ve
tor C (\C 5"). Both are in the utility ofdisgust. Compared to reduced model, they appear to be signi�
ant dueto the fa
t that we now a

ount for the total number of frames. θz
M3,1,1 and

θz
M3,1,2 are respe
tively related to the varian
e of the height of the mouth(\mouth h") and the varian
e of the height of the left eye (\leye h") andare in
luded in the utility of surprise in order to 
apture the per
eption ofsuddenness. They are positive as expe
ted, meaning that the higher z1,t,oand z3,t,o, the more the surprise is favored, whi
h is logi
al. The modeldesigned to dete
t the �rst frame of the relevant group of frames 
ontains8 parameters (see Table 12). They are all linked with {yk,t,o}. None of theparameters atta
hed to {zk,t,o} appeared to be signi�
ant. The per
eptionof the short time variations of fa
ial 
hara
teristi
s is not relevant for a
-tivating the se
ond phase of behavior, whi
h seems logi
al. The 
hangingin the fa
ial 
hara
teristi
s should be more drasti
, that's why {yk,t,o} arebetter adapted. As for reduced model , the magnitude of the parame-ters is larger 
ompared to the model handling with the per
eption of theexpressions. The interpretation remains the same as for latent model.The �nal log-likelihood is improved between reduced and latent mod-

els, and reduced and smoothed models. The three models 
an not be
ompared using likelihood ratio-tests. We use �ρ2 as a goodness of �t toidentify the best model. Looking at Table 1, latent model appears to bethe best model, 
losely followed by smoothed model. The improvementbrought by the dynami
 modeling is substantial.The magnitude of the parameter values and signs are the same forthe three models. For example, θM1,4, θM2,1,4 and θM3,1,5 are related tothe opening of the mouth (\RAP mouth"), de�ned as the fra
tion be-tween the height of the mouth (\mouth h") and the width of the mouth(\mouth w"). They are present in the utilities of surprise and fear. The21



Reduced model Latent model Smoothed modelNb of observations 369 369 369Nb of parameters 32 45 44Null log-likelihood −810.78 −810.78 −810.78Final log-likelihood −475.79 −441.28 −447.67�ρ2 0.374 0.400 0.394Table 1: General estimation resultsasso
iated parameters are all positive, showing the stability of the models.Their positive sign is logi
al be
ause when a person has the mouth opened,the per
eived fa
ial expression is more likely to be fear or surprise.The spe
i�
ations of the model related to the dete
tion of the mostimpressive frame in latent model, and to the dete
tion of the �rst frameof the relevant group of frames in smoothed model, are very similar.For latent model, it 
ontains parameters asso
iated with both {yk,t,o} and
{zk,t,o} and for smoothed model, only asso
iated with {yk,t,o}. For ex-ample, y2,t,o is present in both models and is related to the height of themouth (\mouth h"). Figure 9 displays the variation of this feature amongframes of a video. The frames of the 
onsidered video are shown in Figure8. The sign of the parameters asso
iated to y2,t,o (θM2,2,6 and θM3,2,8) ispositive for both latent and smoothed models, whi
h is logi
al. Thehigher the di�eren
e of mouth height between two 
onse
utive frames, themore important the se
ond frame is. In that spe
ial 
ase and regardingonly y2,t,o, frame 3 seems to be the most important.
Figure 8: Frames of the 
onsidered video whi
h is used for studying varia-tions of y2,t,o, in Figure 9In 
on
lusion, the parameters of the models are signi�
ant and inter-pretable. Moreover, the addition of a dynami
 part in the model signi�-22
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FrameFigure 9: Variations of y2,t,o, related to the height of the mouth(\mouth h") for the video presented in Figure 8
antly improves the �t.
5 Prediction capabilityThe predi
tion 
apability is tested in order to ensure the quality of themodels. The dataset used in this se
tion is the same as the one used inSe
tion 4. We pro
eed in three steps: the �rst one 
onsists of 
omparing theper
entages of badly predi
ted observations for the proposed models. In ase
ond step, the models are validated using the method of 
ross-validation.In the third step, we study the predi
tions of the proposed models at a moredisaggregated level. This 
onsists of pi
king a 
ertain video and analysingthe predi
tions of the models in detail.
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5.1 Aggregate predictionAn observation is 
onsidered as badly predi
ted, if its fore
asted 
hoi
eprobability is less than 1
9
, whi
h 
orresponds to the probability predi
tedby a uniform probability on the number of alternatives. Table 2 summarizesthe per
entages of badly predi
ted observations per model. The per
entagesare 
onsistent with the �tting results presented in Se
tion 4, whi
h is agood sign. The per
entage of badly predi
ted observations is already lowfor reduced model. The improvement brought by latent and smoothed

models 
ompared to reduced model is minor in terms of predi
tion.This 
an be explained by the stru
ture of the 
onsidered fa
ial videos.As the \peak" emotion is often observed at the end of the video, thereare few observations where the dynami
 models 
ould do better. However
smoothed model is the best.

Reduced model Latent model Smoothed model

17.89 17.34 15.45Table 2: Per
entages of badly predi
ted observations on the estimationdataThe 
umulative distributions of the 
hoi
e probabilities predi
ted bythe models are displayed in Figure 10. If the models were perfe
t, the
urves should be 
at with a pi
k for 
hoi
e probabilities equal to one.This would mean that the models repli
ate exa
tly the observed 
hoi
esof labels. Of 
ourse this is not the 
ase. The three 
urves are 
lose inthe \badly predi
ted" interval (
hoi
e probabilities less than 1
9

= 0.112).This is 
onsistent with the results shown in Table 2. Then, in the interval
[0.112, 0.680] the latent and smoothed models are better than reduced

model. In the last interval, reduced model appears to be better than
smoothed model, but latent model is largely better than reduced and
smoothed models, and predi
t the highest probabilities (its 
urve is thelast to rea
h the level of one). These results show that latent model isalways better than reduced model, and 
onsequently demonstrate theadded value of the dynami
 modeling.

24



0
0.2
0.4
0.6
0.8
1

1.2

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Frequen
ies

Choi
e probabilities

Redu
ed modelLatent modelSmoothed model

Figure 10: Cumulative distributions of the 
hoi
e probabilities predi
tedby the three proposed models, on the estimation data
5.2 Cross-validationThe study of the badly predi
ted observations, des
ribed in Se
tion 5.1 isdone on the estimation data presented in Se
tion 2. The �nality of themodels is to be used on some data not involved in the estimation pro
ess,for predi
tion. Consequently the quality of the model should be tested onsome new data, but we do not have su
h data. In this situation, the 
ross-25



validation allows to validate the models. The methodology is inspired fromthe work of Robin et al. (2009) who su

essfully 
ross-validate a model ofpedestrian behavior. The dataset is split into an estimation subset anda validation subset. The models are estimated on the estimation data,and are applied on the validation data. The dataset is randomly splita
ross the videos, in �ve subsets. Ea
h subset 
ontains twenty per
ent ofthe videos. In the data, there are 65 videos, so ea
h subset 
ontains the
olle
ted labels related to 13 videos. Four subsets are 
ombined into theestimation dataset. After estimation, the model is applied on the remainingsubset. The operation is repeated �ve times. The per
entages of badlypredi
ted observations, 
al
ulated over the validation subsets are presentedin Table 3.Validation subsets 1 2 3 4 5
Reduced model 28.74 26.15 21.31 21.87 28.26

Latent model 24.14 13.85 11.48 17.19 21.74

Smoothed model 20.69 16.92 18.03 15.63 10.87Table 3: Per
entages of badly predi
ted observations 
al
ulated over thevalidation subsets, obtained when 
ross-validating the modelsLooking at Table 3, the two dynami
 models (latent and smoothed

models) are always better than reduced model. In addition, the per-
entages of badly predi
ted observations are 
lose from those obtained onthe entire estimation data (see Table 2) for latent and smoothed models,not reduced model. The dynami
 models appear to be mu
h more robustthan reduced model. This justi�es the goodness of the approa
h and thevalidity of the dynami
 models.
5.3 Disaggregate predictionWe looked at the power of predi
tion over the estimation dataset, at theaggregate level. The study of a parti
ular video allows to go in detailsof the predi
tions of the three models. The video is the same than theone 
onsidered in Figure 8. The detailed predi
tions of the models areshown in Figure 11 for reduced model, Figure 12 for latent model,and Figure 13 for smoothed model. On those �gures, ea
h 
olumn isrelated to a frame, ex
ept the extreme right. The �rst line displays the26




onsidered frames. As mentioned in Se
tion 2, ea
h frame is the �rst ofa group of images 
orresponding to one se
ond in a video. The se
ondline 
on
erns the predi
tions of the model asso
iated to the per
eption ofthe expressions. For ea
h frame, the probability distribution among theexpressions is presented. The third line shows the in
uen
e of the frames.The 
ontributions of the frames sum up to one. For reduced model,only the last frame is 
onsidered relevant, so the peak is logi
ally on thislast frame. For latent model, it shows the in
uen
e of ea
h frame onthe �nal expression 
hoi
e. For smoothed model, the peak measures the
ontribution of the average per
eption of the following group of frames(until the end of the video), in
luding the frame of the peak. Finally inthe extreme right 
olumn, you �nd on the se
ond row the �nal probabilitydistribution among the expressions, whi
h is predi
ted by the model, andon the third row, the distribution of the 
olle
ted labels for the video.On the �rst frame of the 
onsidered video (see Figures 11, 12 and 13),the fa
e tends to be neutral, and then evolves toward a di�erent expression.Seven respondents have labelled this video: three gave the label happiness,three gave the label surprise, and one the label anger. Anger does notseem to be appropriate for this video, but it has been kept be
ause therewas no proof of mistakes made by the respondent. In addition the subje
ton the two �rst frames of the video 
ould be 
onsidered angry. The ob-served distribution of the 
olle
ted labels is displayed at the bottom rightof the �gures. Reduced model predi
ts 65% of happiness, 35% of surprise,and 0% for anger. The predi
tion seems logi
al regarding only the fa
ial
hara
teristi
s in the last frame.
Latent model predi
ts 24% of happiness, 58% of surprise, 18% of dis-gust and 0% for anger. This is further away from the distribution of the
olle
ted labels, 
ompared to reduced model. The model has sele
tedframe 3 as being the most impressive frame, with a probability almostequal to one, so the predi
tions of the model results only from the per
ep-tion of this frame. This is logi
al be
ause the utilities of the frames 
ontainboth {yk,t,o} and {zk,t,o} (see Se
tion 3.2), and they appear to be very highfor frame 3 (see Figure 9 for the height of the mouth). For this frame, thepredi
ted probability of surprise is very high. This is logi
al, be
ause theutility of surprise 
ontains {zk,t,o} (see Equation (9)), whi
h a

ount for theper
eption of suddeness. For this frame, the high probability for happinessis also intuitive due to the fa
ial 
hara
teristi
s. The predi
tion of disgust27



does not seem to be appriopriate.
Smoothed model predi
ts 58% of happiness, 38% of surprise, 4% ofdisgust and 0% of anger. The predi
tion is well adapted to the observeddistribution of labels. The model dete
ts frame 3 as being the �rst frameof the relevant group of frames. As for latent model, this is due to thepresen
e of {yk,t,o} in the utilities of the frames (see Se
tion 3.3), and {yk,t,o}are higher for this frame (see Figure 9). The model handling with the per-
eption of the expressions predi
ts more surprise than happiness for frame3, and the 
ontrary for frame 4. This is logi
al due to the per
eption ofsuddenness in frame 3 (see the utility of surprise in Equation (18)). Thefa
ial 
hara
teristi
s are stabilized in frame 4 and lead to the expressionhappiness, whi
h is 
oherent. The �nal predi
tion of the model is the aver-age of the per
eption of expressions among the frames of the relevant group(frames 3 and 4), whi
h explains the balan
ed share between happiness andsurprise.The predi
tions of the three models are explainable. Smoothed modelseems to be the most interpretable and predi
ts the 
losest distribution ofprobability a
ross the expressions, from the 
olle
ted labels.

6 Conclusions and PerspectivesWe propose a new approa
h for the re
ognition of dynami
 fa
ial expres-sions. The estimation of the models is based on labels 
olle
ted throughrespondents to an internet survey. The developed models 
apture up 
ausale�e
ts between fa
ial 
hara
teristi
s and expressions. Statisti
al tests andmodel predi
tions have proved the quality of the models, and the addedvalue of the dynami
 formulation (latent and smoothed models 
om-pared to reduced model). The models have been 
ross-validated on theestimation data, latent and smoothed models appear to be more ro-bust than reduced model. Finally, some qualitative analysis of the modelpredi
tions allow to 
on�rm the modeler's intuition about the fa
ial video.As su
h, the model 
an be used dire
tly for appli
ations. The majordiÆ
ulty 
on
erns the 
omputation of the variables. The quality of the
onsidered videos should be very high, in terms of de�nition and size ofthe fa
e. The appli
ations in the �eld of transportation 
ited in the intro-du
tion 
ould be 
onsidered. The videos of the FEED database are not28



dedi
ated to transportation (the stimuli used to generate the fa
ial expres-sions of the subje
ts were not ne
essarily related to the �eld). In a �rst time,this is not an insurmountable problem, in the sense that FEED videos arequite general, and labels about all expressions have been 
olle
ted. Some
ase studies 
an be 
ondu
ted in order to 
ompletely prove the model ap-pli
ability to transportation (Denis, 2009). For immediate appli
ations,we 
an install 
ameras in front of users (drivers, or publi
 transportationusers), 
ouple 
ameras with fa
ial tra
king systems, for extra
ting fa
ialfeatures, and then determine users fa
ial expressions by using the proposedmodels. In a se
ond time, we 
an dedi
ate the model to transportation, byestimating it on data related to the �eld. Instead of FEED videos, some fa-
ial videos of transportation users in spe
ial situations 
ould be employed.The video 
olle
tion 
ould 
onsist in a
quiring some fa
ial videos of drivers,when pla
ed in simulators. Typi
al driving situations 
ould be displayed asstimuli, to generate drivers expressions. Note that the experimental designof the video 
olle
tion has to be 
losely linked to the appli
ation. Finallyin the 
ontext of \Aware" vehi
les, the proposed model 
ould be in
orpo-rated in global emotion re
ognition systems, in
luding other elements ofre
ognition, su
h as the intonation of the voi
e or the 
on
entration.Even if this new modeling framework is meaningful, some improvements
ould be done. The model has been estimated on a small dataset. Moreobservations would be useful. The number and type of videos is also a
riti
al aspe
t, feature variabilities are quite low and should be in
reased.This 
ould allow to have more 
omplete spe
i�
ations. In addition, more
omplex stru
tures 
ould be tested for the 
hoi
e models, su
h as MEVor mixtures of logit. This allows to a

ount for 
orrelation between alter-natives. Moreover, the spe
i�
ities of respondents 
ould be taken into a
-
ount in the model by spe
ifying an error 
omponent 
apturing unobservedheterogeneity. A validation should be done on another dataset. Finally a
omparison with a state of the art ma
hine learning method, su
h as neuralnetworks (NN) would be interesting.
AcknowledgmentsWe are very grateful to Matteo Sor
i who provided the ne
essary programsused to extra
t fa
ial features using AAM.29



Figure 11: Example of a detailed predi
tion of reduced model30



Figure 12: Example of detailed predi
tion of latent model31



Figure 13: Example of detailed predi
tion of smoothed model32
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parameter H SU F D SA A N O DK xk,To,o value t-test 0
ASCA × 1 0.95 0.28
ASCD × 1 25.38 7.88
ASCDK × 1 -0.69 -1.79
ASCF × 1 0.49 0.19
ASCH × 1 -3.14 -0.79
ASCO × 1 6.95 3.20
ASCSA × 1 10.80 2.54
ASCSU × 1 -11.27 -5.63Table 4: Estimation results of the 
onstants for re-

duced modelparameter H SU F D SA A N O DK xk,To,o value t-test 0
θM1,1 × EDU 6 -6.52 -3.63
θM1,2 × EDU 8 -4.75 -6.18
θM1,3 × × RAP brow 6.70 4.53
θM1,4 × × RAP mouth 2.94 2.85
θM1,5 × RAP mouth 9.36 5.35
θM1,6 × C 1 -16.30 -3.51
θM1,7 × C 2 23.98 3.49
θM1,8 × C 2 26.22 5.16
θM1,9 × C 3 15.34 3.13
θM1,10 × C 3 15.73 3.27
θM1,11 × broweye l2 153.91 3.17
θM1,12 × broweye l3 85.58 5.75
θM1,13 × × × × × broweye r2 -49.81 -4.30
θM1,14 × × eye angle l 58.55 3.43
θM1,15 × eye brow angle l -140.87 -5.10
θM1,16 × eye mouth dist l2 -69.83 -3.42
θM1,17 × × × eye mouth dist l -36.03 -2.89
θM1,18 × eye nose dist l 245.03 5.05
θM1,19 × × × × eye nose dist l 147.67 4.89
θM1,20 × × × × × eye nose dist r -213.93 -6.04
θM1,21 × × leye h 20.97 2.09
θM1,22 × × mouth nose dist2 -90.97 -2.1536



parameter H SU F D SA A N O DK xk,To,o value t-test 0
θM1,23 × mouth nose dist -236.37 -5.65
θM1,24 × mouth w 188.42 4.90Table 5: Estimation results and des
ription of the spe
-i�
ation of reduced modelparameter H SU F D SA A N O DK xk,t,o value t-test 0
ASCA × 1 -5.86 -1.31
ASCD × 1 22.73 4.48
ASCDK × 1 -0.71 -1.83
ASCF × 1 -4.55 -1.13
ASCH × 1 3.02 0.22
ASCO × 1 14.44 4.22
ASCSA × 1 8.54 1.57
ASCSU × 1 -25.69 -7.08Table 6: Estimation results of the 
onstants for latent

model, asso
iated the expression per
eption modelparameter H SU F D SA A N O DK xk,t,o value t-test 0
θM2,1,1 × EDU 6 -6.92 -3.37
θM2,1,2 × EDU 8 -3.92 -5.42
θM2,1,3 × × RAP brow 7.84 4.45
θM2,1,4 × × RAP mouth 4.93 3.42
θM2,1,5 × RAP mouth 12.74 2.54
θM2,1,6 × C 1 -38.18 -5.27
θM2,1,7 × C 2 40.99 4.81
θM2,1,8 × C 2 45.77 7.12
θM2,1,9 × C 3 23.96 3.71
θM2,1,10 × C 3 24.46 4.11
θM2,1,11 × broweye l2 240.75 4.11
θM2,1,12 × broweye l3 104.09 4.61
θM2,1,13 × × × × × broweye r2 -41.76 -2.93
θM2,1,14 × × eye angle l 44.95 2.58
θM2,1,15 × eye brow angle l -199.01 -6.0437



parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM2,1,16 × eye mouth dist l2 -73.15 -2.72
θM2,1,17 × × × eye mouth dist l -84.03 -3.83
θM2,1,18 × eye nose dist l 217.99 3.69
θM2,1,19 × × × × eye nose dist l 80.02 2.09
θM2,1,20 × × × × × eye nose dist r -211.73 -4.45
θM2,1,21 × × leye h 51.35 4.12
θM2,1,22 × × × × × × mouth h 98.27 3.27
θM2,1,23 × × mouth nose dist2 -92.34 -2.04
θM2,1,24 × mouth nose dist -412.5 -5
θM2,1,25 × mouth w 158.29 2.13
θz

M2,1,1 mouth h, z1,t,o 50.21 3.04Table 7: Estimation results and des
ription of the spe
-i�
ation of latent model, asso
iated to the expressionper
eption modelparameter value t-test 0
αH -0.62 -8.18
αF -0.33 -2.73
αSA -0.46 -2.04
αO -0.70 -2.68Table 8: Estimation results of latent model, asso
iatedto the memory e�e
ts parametersparameter yk,t,o value t-test 0

θ
y

M2,2,1 C 2 -426.75 -1.83
θ

y
M2,2,2 eye brow angle 350.53 1.7

θ
y
M2,2,3 mouth w 407.34 1.76

θ
y

M2,2,4 C 4 463.35 1.75
θ

y

M2,2,5 eye h -566.62 -1.79
θ

y

M2,2,6 mouth h 104.51 1.84
θz

M2,2,1 brow dist, z4,t,o 261.65 1.84
38



parameter yk,t,o value t-test 0Table 9: Estimation results and des
ription of the spe
i-�
ation of latent model, asso
iated to the model whi
hdete
ts the most meaningful frameparameter H SU F D SA A N O DK xk,t,o value t-test 0
ASCA × 1 -7.53 -1.63
ASCD × 1 20.28 4.03
ASCDK × 1 -0.69 -1.79
ASCF × 1 -0.35 -0.09
ASCH × 1 -7.66 -1.43
ASCO × 1 12.95 4.38
ASCSA × 1 4.17 1.04
ASCSU × 1 -29.15 -7.07Table 10: Estimation results of the 
onstants for

smoothed model, asso
iated to the expression per
ep-tion modelparameter H SU F D SA A N O DK xk,t,o value t-test 0
θM3,1,1 × EDU 6 -9.19 -3.82
θM3,1,2 × EDU 8 -4.18 -4.09
θM3,1,3 × × RAP brow 12.6 5.69
θM3,1,4 × RAP brow 5.44 2
θM3,1,5 × × RAP mouth 2.89 2
θM3,1,6 × RAP mouth 11.77 4.44
θM3,1,7 × C 1 -23.36 -3.36
θM3,1,8 × C 2 42.46 5.3
θM3,1,9 × C 2 33.98 5.51
θM3,1,10 × C 3 25.82 3.88
θM3,1,11 × C 3 17.61 2.74
θM3,1,12 × C 5 -16.4 -2.5
θM3,1,13 × broweye l2 149.31 3.15
θM3,1,14 × broweye l3 128.49 5.76
θM3,1,15 × × × × × broweye r2 -61.58 -4.3139



parameter H SU F D SA A N O DK xk,t,o value t-test 0
θM3,1,16 × × eye angle l 40.99 2.06
θM3,1,17 × eye brow angle l -126.55 -4.59
θM3,1,18 × eye mouth dist l2 -50.07 -2.13
θM3,1,19 × × × eye mouth dist l -32.09 -2.2
θM3,1,20 × eye nose dist l 163.49 3.75
θM3,1,21 × × × × eye nose dist l 114.66 3.15
θM3,1,22 × × × × × eye nose dist r -256.49 -5.39
θM3,1,23 × × leye h 52.58 3.73
θM3,1,24 × × × × × × mouth h 90.92 2.96
θM3,1,25 × mouth nose dist -342.14 -6.17
θM3,1,26 × mouth w 228.81 4.47
θz

M3,1,1 × mouth h, z1,t,o 0.13 4.46
θz

M3,1,2 × × leye h, z3,t,o 0.04 2.39Table 11: Estimation results and des
ription of thespe
i�
ation of smoothed model, asso
iated to the ex-pression per
eption modelparameter yk,t,o value t-test 0
θ

y

M3,2,1 C 1 -234.75 -1.75
θ

y
M3,2,2 eye brow angle 548.34 1.76

θ
y
M3,2,3 mouth w 23.29 1.81

θ
y
M3,2,4 C 2 101.9 1.85

θ
y

M3,2,5 C 3 -221.23 -1.57
θ

y

M3,2,6 C 5 529.64 1.91
θ

y

M3,2,7 eye h -122.15 -1.79
θ

y

M3,2,8 mouth h 119.21 1.88Table 12: Estimation results and des
ription of thespe
i�
ation of smoothed model, asso
iated to themodel related to the dete
tion of the �rst frame of therelevant group of frames
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