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Abstract

This study presents a system dynamics framework that integrates transport and land use components internally,
explicitly capturing their interrelations and model their evolution over time. The model operates at a discrete
zonal scale with sub-annual time steps, enabling the representation of temporal lags at differing process speeds.
A case study at a cross-national scale demonstrates the model’s ability to capture interregional dynamics, in-
cluding commuting flows that span administrative borders —essential in regions where labour markets and
infrastructure extend beyond a single country. The framework incorporates endogenous feedbacks that drives
the system behaviour, while remaining computationally efficient, thus enabling planners and policymakers to
assess the aggregate effects of short- to long-term urban and transport strategies in a timely manner. Applied to
the Greater Region of Luxembourg, the model reproduces observed dynamics and explores policy scenarios.
Results show that infrastructure investments in isolation provide only temporary relief, emphasising the need
for integrated, forward-looking housing and transport strategies.

Keywords: Decision Support tool; Dynamic modelling; System thinking; Housing location; Transport eco-
nomics and policy.
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1 Introduction

1.1 Motivation
Think of a territory where people are living in, whether urban or rural. Within such a context, a range of choices
exists across (i) different time horizons such as short-term, mid-term, and long-term, and (ii) different levels
of authority, from household and individual decisions to those of public authorities. Thus, there are various
decisions made at different temporal, spatial, and hierarchical levels. Figure 1 presents example choices and
decisions at different temporal and hierarchical levels together with their interactions.

Figure 1: Choices and decisions in urban/rural context

Territories face challenges stemming from the interplay of transport and land use developments such as con-
gestion, accessibility issues, increasing housing prices, housing shortage, relocation of residents, and migration.
Transport and land use planning are highly interdependent, involving complex two-way causality; households
and firms adapt their location decisions to the transport opportunities and accessibility -the ease of reaching
jobs and services via the transport network- while those collective location patterns in turn reshape travel de-
mand and network performance over time. For example transport investments change accessibility, accessibility
changes location attractiveness, which alters land use, and this new land use pattern feeds back into transport
demand and performance. Thus, for a structured urban decision-making process, we need a comprehensive
model accounting for these spatial and temporal interrelations over time, enabling decision-makers to imple-
ment effective strategies towards defined goals.

The interactions between transport and land use are not effectively captured in conventional transport plan-
ning models, as land use is typically assumed to be constant and treated exogenously. Coordinating transport
and land use planning is essential for informed and structured decision-making (Kaufmann and Jemelin, 2003).
One approach to combine transport and land use sub-models is Land-Use Transport Interaction (LUTI) models
(Wegener, 2021; Acheampong and Silva, 2015; Black, 2018; Bierlaire et al., 2015; Waddell, 2014). These mod-
els capture the connection between land use and transport by linking a location choice model for households or
firms with a transport model of travel demand and network performance. They are used to assess the impact of
given transport and land use policies, such as infrastructure expansion, new housing developments, or changes
in public transport services and fares. They also serve to analyse broader socio-demographic trends (e.g., pop-
ulation growth, migration) and economic scenarios (e.g., economic growth/decline).
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Land use and transport are parts of a dynamic system, evolving at different time scales: travel behaviour can
adjust within days to months in response to congestion or cost changes, whereas land use evolves more slowly
due to their considerable inertia, as they are tied to physical structures. This mismatch dynamic creates tem-
poral asynchronies, with some urban processes responding sooner and others with a lag. Moreover, transport
policies can have lasting long-term impacts on urban dynamics. For example, road pricing or transit expansions
may affect congestion in short run, but also shift the spatial distribution of housing and employment in long term.

In static LUTI models, the link between the future projections and current conditions is neglected, as the
trajectory toward future states is unspecified. Conventional LUTI models, similar to traditional transport mod-
elling, follow the notion of equilibrium, assuming that urban systems are always in a state of stationary equi-
librium. However, this assumption is unrealistic, as urban systems may never reach a long-term stationary
equilibrium (Simmonds et al., 2013). The appeal of equilibrium lies in its analytical elegance, allowing for
straightforward comparisons. However, it overlooks the inherent inertia of urban systems, which tend to evolve
only gradually over many years. Instead, their co-evolution should be captured, moving beyond stationary equi-
libria to transitory equilibrium to reflect behavioural dynamics, market fluctuations, and policy responsiveness.
The time horizon of urban planning extends into the long term, making it essential to explicitly recognise that
urban systems are continuously evolving. The supply and demand are in constant motion, adjusting gradu-
ally over time. For example, increasing travel demand without corresponding infrastructure expansion leads
to congestion and shifts in demand, while uneven residential demand drives rental price shifts and residential
relocation. These changes often occur with time delays, reflecting the feedback-driven nature of urban systems,
which rarely function in stationary equilibrium.

Moreover, aggregate system behaviour, critical for strategic decision-making, is often overlooked. To eval-
uate the long-term effects of multiple competing strategies, understanding the macroscopic dynamics of the
urban system is essential. For strategic planning, factors such as data availability, low implementation cost, and
short run times are often more valuable than highly detailed disaggregate precision. Acheampong and Silva
(2015) argues that, in addition to the considerable demand for high-quality data, a key challenge of disaggre-
gation is the long execution time required to run disaggregate models, which makes it difficult to evaluate the
large number of scenarios needed for developing integrated strategies or policy packages. Current studies pre-
dominantly focus only on city-wide or nation-wide cases, overlooking cross-national spatial dimensions such as
cross-border commuting and immigration. This is important especially for small countries with high economic
growth and wages, where the cross-border commuters from neighbouring countries represent a substantial share
of the workforce and daily commutes. Most existing strategic models use yearly timesteps, which fail to cap-
ture the shorter time lags of processes operating on monthly or daily scales. As a general guideline, Forrester
(1970) recommends that the timestep should not exceed half the duration of the shortest time lag in the system.
Furthermore, many models couple transport and land use components externally, rather than integrating them
endogenously within a unified framework, which creates the additional challenge of ensuring consistent infor-
mation exchange between sub-models.

Addressing these issues involves several challenges: (i) Explicitly modelling the dynamics between land use
and transport systems is complex, as changes occur at different speeds—ranging from fast (e.g., transport users),
to medium (e.g., residential location choices), to slow (e.g., infrastructure and land use developments). (ii) Each
urban process has its own reaction speed, making it essential to account for their specific time lags. (iii) Striking
a balance between sufficient accuracy to support data-driven planning, and computational efficiency presents an
additional challenge (Kii et al., 2019). These limitations and challenges highlight an opportunity to advance the
state of practice by endogenously integrating residential location and transportation within a single model, at a
cross-national spatial scale, and using sub-annual timesteps to effectively capture processes with varying reac-
tion speeds. Addressing this gap allows for the development of an efficient decision-support tool for evaluating
potential policy interventions at a cross-national level with zonal spatial resolution.
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1.2 Goals and objectives
In this manuscript, we develop a computationally quick dynamic model for transportation and land use over a
time horizon of multiple years. The model’s timestep is days so the time delays and reaction speeds of different
processes can be effectively captured. We integrate transport and land use models within a unique frame-
work, modelling the pathway of the transport and land use systems over time, explicitly accounting for their
interactions. On the land use side, this study focuses on residential location choices and treats workplace as
exogenously given in the model. The framework is developed at a cross-national spatial dimension, with spatial
granularity of discrete zonal level to capture the transport and land use dynamics between different zones of a
region through time. Our approach is based on the principles of System Dynamics (Sterman, 2000; Forrester,
1961), as a well-suited approach for complex systems that changes over time, due to their ability to model feed-
back, delays, and dynamic adaptation.

The focus of our study is the case of Luxembourg; a small country with exceptionally high levels of cross-
border commuting. As of 2014, approximately 40% of Luxembourg’s labour force consisted of cross-border
workers residing in neighbouring countries (France, Belgium, and Germany) (Walczak and Mathae, 2018).
This unique context requires any LUTI model to account for interactions that extend beyond national borders,
as both housing markets and transport networks span multiple jurisdictions. Most existing models focus on a
single metropolitan area, overlooking flows and interactions across administrative borders. Our model explic-
itly represents Luxembourg’s internal cantons along with adjacent cross-border regions, capturing the dynamic
feedback between domestic development and the external commuting hinterland. For instance, increasing hous-
ing demand within Luxembourg, combined with limited housing supply, may lead more households to settle in
neighbouring regions —thereby intensifying cross-border traffic. This extended application addresses a limita-
tion in typical LUTI cases, which rarely consider multi-country systems or the policy coordination issues they
entail.

The remainder of this manuscript is structured as follows. We give a review of the literature in Section 2.
The contributions of this work are summarised next in Section 3. The integrated framework is explained in
Section 4. An illustrative example for the case of Luxembourg is presented in Section 5 to showcase the capa-
bilities of the proposed framework. The concluding remarks and opportunities for future research are discussed
in Section 6.

2 Relevant literature
In classical transport modelling practice, land use inputs -such as population and employment distributions- are
typically treated exogenously. Most conventional travel demand models assume a predetermined land use sce-
nario that does not change in response to transportation improvements (Johansen et al., 2015). In fact, transport
project evaluations often hold land use constant between the base case and project case, meaning any shifts in
where people live or work are ignored when forecasting. This simplifying assumption makes modelling more
straightforward, but it fails to capture the two-way feedback between transport and land developments. As a re-
sult, analyses based on exogenous land use can misestimate long-term impacts, since they exclude the potential
land use changes spurred by improved accessibility (Le et al., 2023).

LUTI models formalise the linkage between where people live (land use) and how they travel (transport),
by combining a land use component (often a model of household or firm location choice) with a transport com-
ponent (modelling travel demand and network performance). The first operational model to implement a land
use transport feedback cycle was based on analogies to physics, Lowry’s Model of Metropolis (Lowry, 1964), a
spatial interaction model, allocating population and employment across zones based on accessibility in a grav-
ity model. Though static in nature, the Lowry’s model provided a template for how transport accessibility can
drive land use patterns in an aggregate model. This work inspired a wave of increasingly complex models in
the 1970s and 1980s (Putman, 1983; Mackett, 1983; Goldner, 1971; Echeñique et al., 1969). These pioneering
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efforts established the foundation for treating land use and transport as a unified, interacting system rather than
as isolated components.

Multiple approaches exist to model transport within land use models. LUTI models can be broadly clas-
sified along two key dimensions: (i) the treatment of time, and (ii) the level of aggregation. In terms of time
dynamics, models are either (i) static; focusing on a single time point without explicitly considering how the
system evolves, or (ii) dynamic; capturing the development path over time and allow for feedback effects and
temporal adjustments. In terms of aggregation, models range from (i) aggregates; working with zonal averages
or market-level quantities, to (ii) disaggregate; simulating individual agents such as households or firms. Recent
reviews emphasise this classification (Moeckel et al., 2018; Sivakumar, 2007; Timmermans, 2006). We high-
light foundational and recent literature for major categories of LUTI modelling approaches.

Discrete choice models based on random utility theory originating from micro-economics (Haque et al.,
2019; Yang et al., 2013; Lee and Waddell, 2010; Vega and Reynolds-Feighan, 2009; Mokhtarian and Cao, 2008;
Martínez and Henríquez, 2007; Bhat and Guo, 2007; Ben-Akiva and Bowman, 1998; Lerman, 1976; Domen-
cich and McFadden, 1975; McFadden, 1974) and mathematical programming models (Bravo et al., 2010; Pinjari
et al., 2009; Alonso, 1964; White, 1988) represent a class of disaggregate static models. These models maximise
household utility while describing the interaction between transportation and activity location. By incorporating
detailed location characteristics and individual decision-making behaviour through a wide range of indicators,
random utility models provide valuable insights but remain too simplistic to fully capture the complex interplay
between transportation and land use; in particular, they do not explicitly model the feedback loop between ur-
ban transport and residential location choices. There are also examples of other modelling approaches, such as
the application of bi-level optimisation to capture the relationship between traffic cost impedance and location
attractiveness (Chang and Mackett, 2006). However, finding an optimal solution to a bi-level programming
problem is often challenging in practice. Although disaggregate static models capture heterogeneity, they do
not account for temporal evolution and are therefore more suitable for assessing immediate impacts.

In contrast to disaggregate models that focus on individual agents and their choices, aggregate models
analyse the behaviour of groups or zones as a whole. They seek to represent the equilibrium of markets (hous-
ing, labour, transport) at a macroscopic level. Spatial computable general equilibrium (SCGE) models are a
prime example of aggregate static frameworks, borrowing methods from economic general equilibrium theory
(Tscharaktschiew and Hirte, 2012; Anas and Liu, 2007; Anas, 1994). These models typically solve for a si-
multaneous equilibrium in land use and transport given supply/demand relationships, but often for a single time
period, which can then be updated exogenously or in steps. SCGE models are example aggregate static models,
bridging between spatial economics and transport modelling by emphasising market-level outcomes rather than
individual behaviour. Earlier aggregate models, such as MEPLAN (Echenique et al., 1990; Echeñique et al.,
1969) and TRANSUS (de la Barra, 1989) , while not full computational general equilibrium in the modern
sense, used spatial input-output and equilibrium concepts to integrate land use and transport. They paved the
way for later SCGE models by showing that one can link economic activities, land use, and transport in an
equilibrium-consistent manner.

Aggregate static models are powerful for economic appraisal and theoretical insight, though ignore dynamic
and temporal co-evolution of urban land use and transport networks. The common feature of these models is
their lack of memory; they allocate activities afresh in each period without reference to past states. Spatial inter-
action models do not account for time and often conflate processes with different temporal dynamics —linking
slow, inert location changes with fast, flexible travel behaviour without considering the lagged effect of ac-
cessibility in location choice. Static equilibrium models assume that interdependent variables -such as prices,
supply, and demand— adjust instantaneously to reach equilibrium, without accounting for the sequence of
events or path dependence. These models abstract away from time and do not represent temporal dynamics or
chronological progression. By forecasting static outcomes, they often omit slow processes and inertia effects.
As a result, they risk mis-estimating responses to change, with no assurance that over- and under-statements
will balance out.
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Microsimulation models extend disaggregate approaches into the dynamic domain. UrbanSim (Waddell,
2002) coupled with a transport model such as MATSIM (Axhausen et al., 2016), ILUTE (Salvini and Miller,
2005), and ILUMASS (Moeckel et al., 2007) demonstrate how microsimulation can incorporate both random
utility models and rule-based processes to capture urban markets (housing, labour, transport) in a unified way,
are example microsimulation models. de Palma et al. (2005) develop a modelling framework that couples Ur-
banSim with a dynamic traffic assignment model, explicitly capturing two forms of endogeneity in residential
location choices: the interdependence between residential location and rent prices, and the interdependence
between residential location and commute times. Microsimulation approaches capture individual heterogeneity
and path-dependence over time, building on the theoretical foundations of random utility models and extending
them into a time-evolution simulation context. However, disaggregate dynamic models are often complex, com-
putationally demanding -posing challenges for calibration, model updates, and scenario analysis- and data in-
tensive. Large-scale implementations can be slow to run or complex to calibrate, especially when incorporating
daily activity-travel simulations. This can hinder policy exploration, as testing many scenarios or running long-
term (multi-decade) forecasts becomes time-consuming. Simmonds (2016) emphasise the flexibility of micro
models for research but recommended simpler macroscopic models for practitioners to reduce run times. An-
other challenge is transparency as highly complex agent-based systems can appear opaque to decision-makers,
making it hard to trace policy effects, whereas simpler models may more clearly convey causal mechanisms.

Cellular Automata (CA) models represent another dynamic approach, operating at spatially fine-grained ge-
ography scale and capable of simulating map-based urban growth patterns while incorporating high-resolution
GIS data (Gerber et al., 2018; Lau and Kam, 2005; Von Neumann, 1968). CA use transition probabilities to
update land use over time. These models typically include accessibility as a key factor in their transition rules.
However, accessibility is often measured using simple proxies, such as the distance to the nearest road or transit
line, which ignores the actual performance of the transport system, such as network travel times, congestion,
and capacity constraints. As a result, traditional CA models do not simulate transport flows or travel demand
explicitly, instead assuming static infrastructure influence. This limits their ability to capture critical feedback
loops, such as how new development may generate congestion that in turn affects the desirability of that area.
The absence of an explicit transportation component has constrained the policy relevance of early CA models
(Xie and Batty, 2004). Recent research has therefore advanced the integration of transport models with CA by
running transport simulations in tandem with the land use model (Pinto et al., 2021; Aljoufie et al., 2013; Zhao
and Peng, 2012). By explicitly modelling accessibility as an endogenous variable, affected by infrastructure
capacity and travel demand, these models better capture the two-way interaction of land development and trans-
portation. While these models might replicate various features of the dynamic and complex land use system,
they typically lack behavioural foundations to explain the processes driving it.

Dynamic aggregate approaches adopt a top-down perspective, focusing on stocks and flows at a macro level
and the feedback loops among them (Forrester, 1970). Dynamic models make the representation of movement
through time explicit. Rather than assuming that each period reflects an equilibrium state, these models sim-
ulate flows or transitions - such as changes in population, employment, or land development - year by year
(Batty, 1971). Key streams of work in this category include dynamic spatial equilibrium models (Lennox,
2023), system dynamics models (Pfaffenbichler et al., 2008; Swanson and Gleave, 2008), spatial interaction
models (Lopane et al., 2023), and flow-based model such as Delta (Feldman and Simmonds, 2005; Simmonds,
1999). DELTA is a rule-based dynamic model that moves beyond static equilibrium by simulating processes
of change through a series of interconnected sub-models updated each year. This approach reflects a dynamic
equilibrium perspective; rather than assuming the system instantly reaches equilibrium, it allows changes to
unfold incrementally. Aggregate dynamic models provide holistic view of the system, remaining particularly
relevant for system-level feedback and strategic appraisal, especially when data or computational constraints
limit the feasibility of microsimulation.

There are examples of applying System Dynamics (SD) approach to represent urban systems as dynamic
entities. Fabolude et al. (2025) reviews recent SD papers with an applications in urban studies. Zhang and
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Li (2022); Yu et al. (2018) develop multi-scale models to simulate urban expansion scenarios by embedding
multi-scale spatial interactions into the transition rule system of CA, although transport is not incorporated in
their modelling framework. Chen et al. (2021); Khosravi et al. (2020); Fontoura et al. (2019) use SD to analyse
the influence of policy scenarios on urban transport, focusing on system vulnerability as well as environmental,
economic, and traffic variables, while not considering the land use component. urban mobility, thought not
considering the land use component.

The MARS model is an example of a LUTI model that employs the SD approach (Pfaffenbichler, 2003).
The MARS model has been later coupled with a vehicle fleet model to study the co-evolution of land use trans-
port policies and technological change (e.g., adoption of electric cars) (Ummah, 2019). The work of Haghani
et al. (2003b,a) represents an early attempt to apply the SD approach to simultaneous treatment of complex land
use and transportation interactions, using a case study of Montgomery County, USA, to evaluate the effects of
highway capacity expansion and the resulting changes in land use, which subsequently influence demand and
the performance of the transport network. Subsequent studies suggest expansion to multi-modal transport, ex-
ploring more sophisticated equations and estimation techniques, and addressing data-related challenges. (Shen
et al., 2009) build a high-level SD model to compare high- and low-density land use policies for Hong Kong,
concluding that only long-term planning and integrated transit investment could achieve sustainable outcomes.
These studies highlight that often, short-term fixes (e.g., building more roads) lead to longer-term unintended
consequences (e.g., induced traffic and sprawl), which SD models effectively capture through feedback delays.

SD models build on the tradition of urban dynamics (Forrester, 1970) and systems thinking (Sterman, 2000),
emphasising feedback structure -reinforcing or balancing loops- in complex urban systems. There has been still
limited application of SD applied in transportation (Pfaffenbichler et al., 2024; Shepherd, 2014). By operating
at the zonal level and avoiding individual-level simulation, they run extremely fast, enabling rapid scenario
testing and sensitivity analysis that would be prohibitively slow with agent-based models. Their computational
efficiency also makes them highly scalable, allowing simulation at national or multi-regional levels without the
state-space explosion typical of microsimulation. A further advantage is transparency; SD models explicitly
represent feedback loops, often through causal loop diagrams, helping planners and stakeholders qualitatively
grasp system dynamics before engaging with quantitative results. Although the limitations of SD models stem
from their aggregate nature, the choice of approach depends on the study goals. For example strategic planning
and rapid scenario testing often favor SD, while detailed operational forecasting might favor Activity-based
models (ABMs) or hybrid approaches. In summary, ABMs and SD offer a trade-off: ABMs provides granular-
ity and behavioural richness at high computational cost, whereas SD offers speed and clarity at the expense of
detail.

While the aforementioned studies offer valuable insights into transport and land use interactions, there re-
mains a gap for an agile cross-national decision-support tool that is understandable to policymakers, operates
at short daily timesteps to account for processes with varying reaction speeds — from daily travel behaviour
changes to long-term infrastructure expansion — and remains computationally efficient. Another challenge lies
in the calibration of these models, particularly aggregate ones, which often lack detailed behavioural represen-
tation. The application of rigorous estimation methods can enhance the behavioural dimension of the model and
improve calibration efficiency.

3 Contributions
Our framework contributes to the state of practice in LUTI modelling by: (i) incorporating cross-national spa-
tial granularity at the zonal level, (ii) dynamic modelling to capture system evolution over time for strategic
decision-making, (iii) effectively accounting for time lags between different processes by modelling system
states at daily times steps, (iv) eliciting the underlying structure driving system behaviour, and (v) remaining
computationally quick. This deliberately designed strategic aggregate model connects long- and short-term
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urban choices. The developed framework serves as a decision-support tool to understand system behaviour,
anticipate future developments, and evaluate the impacts of policy interventions —accounting for the interre-
lated dynamics of transport, congestion, accessibility, housing markets, land constraints, and population change.

In our study, we estimate certain sub-models using maximum likelihood estimation with the available data,
while employing heuristics to calibrate the remaining parameters. A key challenge in SD models is calibration,
which is often carried out through trial-and-error procedures, literature-derived elasticities, or expert judgment.
Incorporating estimation techniques can enhance behavioural realism and increase the efficiency of parameter
calibration. In short, the current study retains the computational efficiency and transparency of the SD approach
while extending its scope to a multi-regional scale and grounding its assumptions in localised data. This enables
the development of an aggregate model that supports rapid policy evaluation across a wide range of scenarios,
remains interpretable to policy makers, and offers scalability for future extensions.

4 Methodology
We develop a system-level framework to jointly model the transport and land use dynamics over a time horizon
of multiple years. These modules interact in a time-lagged and bidirectional manner, reflecting the dynamic
nature of urban systems. The transport module feeds into the land use module through accessibility, which rep-
resents the potential for residents to reach workplaces, services, and other essential opportunities. Accessibility
is a key determinant of where people choose to live and work, influencing patterns of urban growth and de-
velopment. In turn, the land use module is linked back to the transport module through spatial distribution and
location choice. These choices, influenced by factors such as housing availability, rent prices, and infrastructure,
shape the demand for transport services and the configuration of transportation networks. This bidirectional and
time-lagged interaction between transport and land use modules captures how changes in one system (e.g., new
transport infrastructure) impact the other, creating a dynamic and interdependent model of urban development.
Figure 2 presents the general structure of inter-relationships between these modules.

Figure 2: General structure of the integrated framework

This framework builds on the principles of system thinking and system dynamics (Sterman, 2000; For-
rester, 1961) and utilises transport manuals, econometric, and behavioural models for quantification. System
dynamics is an established discipline developed at MIT, that focuses on understanding and modelling complex,
feedback-driven systems over time. The system dynamics approach connects structure and behaviour by explic-
itly modelling causalities, feedback relationships, and time lags between processes, using dynamic modelling
to determine the state of the systems and capture the underlying feedback loop structure of causes and effects.
The primary goal of system dynamics models is to understand the underlying structure driving the dynamic
behaviour of the system, and to evaluate different policies, which are long-term, macro-level decision rules.
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Some specifications of our framework are as follows: (i) The temporal timesteps are set to days. This
choice is motivated by the need to capture delays across different urban processes, including short delays such
as transport mode choice decisions that may occur within a few days. (ii) The spatial boundaries of the model
extend across national borders and are analysed at the level of discrete zones corresponding to existing func-
tional regional divisions such as cantons, cities, or municipalities. (iii) The attractiveness of the region under
study and migration patterns are assumed to be exogenously determined. The dynamics of economic prosperity
of the region is considered outside the scope of the model. (iv) Travel times and costs for private modes are
updated endogenously within the model, whereas those for public transport are treated as exogenous. Public
transport fares are typically fixed by regulation, and travel times are assumed externally given. This assump-
tion is justified as part of public transport is rail-based, where travel times remain fixed regardless of demand,
while the bus-based component may operate in either mixed traffic or on separated lanes. Since detailed data
on this classification are not available and the combined effect on travel times is non-trivial and out of scope
of this study, public transport travel times are treated as exogenous. (v) Renting is considered the sole means
of satisfying housing demand. (vi) Rent prices are determined endogenously based on the balance of demand
and supply at each timestep. (vii) The distribution of workplaces across zones is exogenously given. (viii) The
dynamics of land prices fall outside the scope of this study. (ix) The state of the urban system is directly derived
through dynamic modelling.

In the remainder of this section, we first present a high-level causal loop diagram to qualitatively illustrate
the key feedbacks between transport and residential location choice (Section 4.1). Next, we define the model
boundaries and introduce the key model variables in Section 4.2. The quantification of the transport module and
the land use module is then detailed in Sections 4.3 and 4.4, respectively.

4.1 Causal loop diagrams
The urban system is composed of various sub-systems including the population, housing, and transport. Our
mental models often fail to include the critical feedbacks driving the dynamics of the system. To represent a
visual narrative of feedback mechanisms within the system of interest, causal loop diagram consisting of vari-
ables connected by arrows denoting the causal influences among the variables are developed using the Vensim
PLE software (Ventana Systems, 2025), with the output shown in Figures 3 and 4. In a causal loop diagram, the
variable from which the arrow originates represents the cause, while the variable at the arrow’s destination is
the affected variable. The effect is either positive, where an increase in one variable leads to an increase in the
affected variable, indicated by a “+" on the arrow, or negative, where increasing one variable leads to a decrease
in another, indicated by a “-" on the arrow. A reinforcing loop (R) amplifies change in the system; a change in
one variable leads to further change in the same direction, causing differences to become magnified over time.
A balancing loop (B), by contrast, counteracts change; when a variable shifts, corrective actions push it back
toward equilibrium, stabilising the system. In causal loop diagrams, delays are indicated by short double slashes
“//" on the causal arrows.

Consider a region with two residential zones i and j. In the transport module (Figure 3), an increase in
the commute time for residents of zone i reduces their accessibility to workplace, which subsequently lowers
the relative attractiveness of zone i. As the relative appeal of zone i declines, the relative attractiveness of
residential zone j increases (loop R1). This shift in attractiveness motivates a rise in the relocation of residents
from zone i to zone j. However, the relocation of population responds gradually to changes, as such moves
involve substantial transaction costs, and typically take several months to complete due to factors such as house
hunting, negotiations, and settling into new homes. Additionally, there is an information delay; it takes time
for residents to perceive the reduced accessibility, and their decision to relocate is influenced by the gradual
realisation of these changes in accessibility. As more population move to zone j, the number of daily commutes
from zone j also increases, leading to heightened traffic congestion, longer travel times, and overcrowding of
public transport system for residents of zone j. This increase in travel times reduces the accessibility of zone j
and decreases its relative attractiveness as a place to live (loop B1), controlling the relocation inflow to zone j.
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The reduced accessibility can be further moderated by two mechanisms. The first balancing mechanism
involves changes in transport mode choices, where residents, facing increased travel time or overcrowding, may
switch to alternative transport modes that offer faster or more efficient travel options (loop B2 and B4). The
second balancing mechanism considers the expansion of transport infrastructure, which aims to reduce con-
gestion by increasing the capacity of roads, public transport, or other relevant infrastructure (loop B3 and B5).
However, the effects of these balancing loops are subject to different time lags. The perception of increased
travel time by residents is delayed, as it may take months for them to perceive the change in congestion levels.
Even after perceiving the change, it can take several more days for residents to adjust their mode choice accord-
ingly. Additionally, infrastructure expansion involves a significant delay; planning and obtaining the necessary
licenses for new infrastructure can take several months to a couple of years, and the construction itself often
spans multiple years. The time lags between the initiation of these interventions and their observable impacts
on the system vary, adding an additional layer of complexity to the dynamics of the region’s transport system.

In the residential relocation module (Figure 4), an increase in the population of zone i raises the demand for
housing. In addition to relocation from other zones, population growth in a zone is driven by net immigration
to the region and the net birth rate. The latter contributes to a reinforcing loop, as a higher birth rate increases
the population, which in turn fuels further population growth (loops R3 and R4). This change in population
and thus housing demand is reflected in the dwelling market, specifically in the rental prices and ultimately in
the dwelling stock. In particular, dwelling price effects are driven by the interaction between housing demand
and supply. When a zone experiences a surge in housing demand while supply remains constant, the average
housing surface per person decreases, tightening the market and driving rental prices upward. The effect of
population growth on rental prices is not immediate. There is a time lag in how quickly the market adjusts. It
may take several months for the rent prices to reflect the increased demand, as the market gradually responds
to changing conditions. Once rent prices increase, it may take additional months for residents to perceive the
higher costs. This reduces the attractiveness of the zone, prompting some to relocate, which in turn decreases
both the population of zone i and its housing demand, ultimately stabilising rent prices (loop B15).

This increase in rental prices, in turn, boosts the attractiveness of housing development in the area. If there
is room for new development, an increase in housing demand can lead to an expansion of the housing stock.
Rising rents incentivise developers to invest in new residential projects, which over time increases housing sup-
ply and moderates rental prices (loop B11). In addition to price incentives, greater market tightness and demand
also stimulate further construction (loop B14). However, the housing development process is controlled by
land availability (loop B12), and rising land prices (loop B13), both of which play critical roles in initiating
housing construction. The expansion of housing supply helps to alleviate the excess demand for housing, but
this process is subject to significant time delays, known as construction time lags. These delays mean that the
impact of new housing on the market is not immediate. As new homes become available, the excess housing
demand in zone i is gradually reduced, leading to stabilisation of residential rent prices (loop B11 and B14).
Lower rent prices then increase the relative attractiveness of residential zone i, making it more appealing to
potential residents. This, in turn, drives the relocation of individuals to zone i, further influencing the dynamics
of competing residential zones.

The dynamics of residential relocation are interdependent, as changes in the attractiveness of one zone, such
as zone i, influence the relative appeal of other zones (loop R6). For instance, as more residents move to zone i
due to its improved housing availability, the demand for housing in neighbouring zones may decrease, affecting
the dynamics in those areas. Consequently, the housing development process in zone i not only impacts its own
residential market but also alters the population distribution and competitive balance across other zones.

A number of factors contribute to the complexity of these interactions: on one hand, land development
regulations and the decision-making processes of land developers, which shape housing supply and, in turn,
influence housing prices; on the other hand, the location choice behaviour of individuals and firms, which deter-
mines the spatial distribution of socio-economic activities within the study area. The population movement and
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relative attractiveness of the residential zones are the common variables between the transport and residential
location module, joining these two modules and affecting their inter-related dynamics.
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Figure 3: Causal loops in transport
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Figure 4: Causal loops in residential relocation
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4.2 Model boundary
To clarify the scope of the system dynamics framework, we define the model boundary. Considering this bound-
ary, the variables are classified into three main categories -endogenous, exogenous, and excluded variables- as
summarised in Table 1. Endogenous variables can influence the behaviour of the system and are influenced by
it. Exogenous variables can influence the behaviour of the system but are not be influenced by it. Excluded
variables are omitted from the model either because their influence is assumed negligible or because they lie
outside the scope of this study. For clarity, only key variables are listed in the table. It is important to note that
the excluded variables presented in the table are merely examples. Many other factors are also not represented
in the model, such as taxes and transfers, firms’ land demand, goods consumption, and proximity to sellers.

Table 1: Model boundary: Key model variables by types.

Variable
Type

Variable Name Notation Description Unit

Endogenous Residents zone i NR
i (t) Number of residents in zone

i.
Person

Employed population zone i N
Empl
i (t) Number of employed resi-

dents in zone i.
Person

Residents move-in rate zone i mvin
i (t) Number of residents moving

into zone i at each timestep.
Person/Year 1

Residents move-out rate zone i mvout
i (t) Number of potential resi-

dents leaving zone i at each
timestep.

Person/Year 1

Total potential movers Nmv
T (t) Total number of individuals

who may change residence
within the study area, com-
posed of net births, migra-
tion flows, and out-movers
from all zones at each
timestep.

Person/Year 1

Rent price in zone i Ri(t) Monthly rent per square me-
ter in zone i.

Euro/m2/Month

Residential surface zone i Si(t) Total residential floor area in
zone i.

m2

Housing surface per resident zone i S
per
i (t) Living space available per

resident in zone i.
m2/Person

Available land to construct zone i Li(t) Maximum buildable floor
space given current land
constraints in zone i.

m2

Accessibility zone i Acci(t) A relative measure of a ac-
cessibility to workplace for
residents of zone i.

-

Travel time by mode m from zones i
to j

TTm
ij (t) Travel time by mode m from

zone i to j at morning peak
hour.

Min

Travel cost by car from zones i to j TCPC
ij (t) Total travel cost by car from

zone i to j at morning peak
hour.

Euro

Continued on next page
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(Continued from previous page)

Type Name Notation Description Unit

Fuel cost for commute by car from
zone i to j

cfuel
ij (t) Cost of fuel for travel by car

from zone i to j.
Euro

Endogenous Operating cost for commute by car
from zone i to j

cmaint
ij (t) Vehicle’s maintenance and

operating cost for travel by
car from zone i to j.

Euro

Toll cost for commute by car from
zone i to j

ctoll
ij (t) Cost of toll fees for travel by

car from zone i to j.
Euro

Number of commuters from zone i Ti(t) Total number of individuals
commuting from zone i dur-
ing morning peak hour on a
workday.

Person/hr

Number of car commutes from zone
i to j

CPC
ij (t) Number of cars commuting

from zone i to j at morning
peak hour on a workday.

Veh/hr

Number of bus commutes from zone
i to j

Cbus
ij (t) Number of bus-based pub-

lic transport commutes from
zone i to j at morning peak
hour on a workday.

Veh/hr

Number of commuters from zone i to
j

Tij(t) Number of commuters from
zone i to j at morning peak
hour on a workday.

Person/hr

Number of commuters from zone i to
j by mode m

Tm
ij (t) Number of commuters from

zone i to j by mode m
at morning peak hour on a
workday.

Person/hr

Road infrastructure capacity from
zone i to j

CapPC
ij (t) Relative road corridor ca-

pacity between zones i and
j, scaled to 1 at baseline (t =
0), representing available in-
frastructure capacity.

-

PT capacity between zone i and j CapPT
ij (t) Maximum hourly capacity

of public transport services
between i and j without
overcrowding.

Person/hr

Car speed between zone i and j vPC
ij (t) Trip-specific speed for travel

from zone i to j by car at
morning peak hour.

km/hr

Exogenous Initial Conditions - Condition or value of
component classes (e.g.,
residents, housing surface,
transport infrastructure)
at the beginning of the
dynamic model (t = 0).

-

Residents in the study area NR
T (t) Total number of residents in

the study area of interest.
Person

Net birth rate NB(t) Annual net population
change from births and
deaths in the study area.

Person/Year 1

Continued on next page
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(Continued from previous page)

Type Name Notation Description Unit

Exogenous Migration rate MigT (t) Annual number of individ-
uals migrating to the study
area.

Person/Year 1

Employment rate zone i λ
Empl
i (t) The proportion of employed

residents relative to the
working age residents in
zone i based on census data.

-

Share of working-age residents in
zone i

λ
WorkAge
i (t) The proportion of working-

age residents relative to the
resident population in zone i
based on census data.

-

Morning peak hour commute rate λ
peak
trip Proportion of total daily

commute trips that occur
during the morning peak pe-
riod.

1/hr

Travel cost by public transport from
zone i to j

TCPT
ij (t) Total travel cost by public

transport from zone i to j at
morning peak hour.

Euro

Distance zone i to j dij Total travel distance by car
from i to j.

km

Fuel price pfuel(t) Price of fuel per liter in the
study area.

Euro/liter

Fuel consumption ηf(t) Fuel consumption of vehicle
per 100 kilometers travelled.

liter/100km

Maintenance cost per kilometer κmaint(t) Monetary cost per kilometer
to run a vehicle covering ex-
penses such as maintenance,
insurance, and depreciation.

Euro/km

Toll fees ptoll(t) Monetary charges for us-
ing specific roads infrastruc-
tures.

Euro

Car occupancy OccPC(t) Average number of individ-
uals travelling in a car per
trip.

Person/Veh

Bus occupancy Occbus(t) Average number of individ-
uals per bus.

Person/Veh

Attraction of zone j for commuters Aj(t) Relative attractiveness of
zone j as a workplace
destination, proxied by the
number of jobs in the zone.

-

Proportion of bus-based commutes ϕ Proportion of public trans-
port commutes that use bus.

-

Free-flow speed vFFS
ij Free-flow speed of car for

travel from zone i to j in
uncongested conditions with
no traffic interference.

km/hr

Continued on next page
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(Continued from previous page)

Type Name Notation Description Unit

Threshold car speed between zone i
and j

vθ,PC
ij Minimum acceptable car

speed from zone i to j at
morning peak hour; speeds
below this threshold trigger
infrastructure expansion.

km/hr

Exogenous Threshold variables θPC, θPT Threshold variables denote
policy or operational trigger
points beyond which infras-
tructure investment is initi-
ated.

-

Normative housing surface per per-
son zone i

A
per,norm
i Normative or target residen-

tial surface area per person
based on planning guide-
lines or historical standards.

m2/Person

Average time living in zone i τmv
i Average time living in zone

i before moving to another
zone.

Year

Average building lifetime τlife
Res Average lifetime of a resi-

dential building.
Year

Residential construction duration τCnst
Res Time lag between the start of

construction and the avail-
ability of housing.

Year

Road infrastructure construction du-
ration

τCnst
PC Time lag between project

initiation and the availability
of new road infrastructure.

Year

Public transport infrastructure con-
struction duration

τCnst
PT Time lag between project

initiation and the availability
of new public transport in-
frastructure.

Year

Physical and information time delays - Time delays for information
perception and physical con-
struction.

-

Model parameters - Parameters used for model
calibration and in utility for-
mulations.

-

Excluded Relative attractiveness of the greater
region

- The relative attractiveness of
the study area that affects its
annual net external migra-
tion rate.

-

Workplace location - The workplace relocation
and workplace infrastruc-
ture developments dynamics
within zones of the study
area.

-

1Although the model operates with a daily timestep, demographic rates are defined in persons per year for interpretability. Internally,
they are converted to daily rates.
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4.3 Transport module
The transport module builds on the causal loops presented in Figure 3, situating its formulation within that
broader feedback structure. It captures the effects of population growth and the resulting decline in accessibility
due to longer travel times (loops B1 and B6 in Figure 3), the long-term balancing role of infrastructure expan-
sion in meeting increased commuting demand (loops B3, B5, B8, and B10 in Figure 3), and the mode choice
behaviour of the population that helps to alleviate congestion and capacity insufficiency (loops B2, B4, B7, and
B9 in Figure 3). Through these mechanisms, changes in transport demand and supply are linked to changes
in accessibility, which in turn influence land use patterns, particularly the spatial distribution of population and
economic activities.

The transport module models the travel behaviour of the population and has two models; (i) a travel demand
model, and (ii) a travel infrastructure model (supply). The travel demand model captures passenger travels,
comprising 4 sub-models (i) trip generation, (ii) trip distribution, (iii) mode choice, and (iv) trip assignment.
The travel infrastructure model represents the state and capacity of the transport supply system, including both
public transport and road infrastructure. It provides information on available infrastructure and is updated to
reflect capacity changes driven by demand. The interaction between the demand and infrastructure models en-
ables the system to account for network conditions, congestion, and accessibility. Figure 5 presents a general
scheme of the sub-models and outputs of transport module.

Figure 5: Transport module

4.3.1 Travel demand model

In this framework, travel demand is represented by trip generation volume, expressed as the average number
of daily commuters during the morning peak hour. Morning peak is chosen because traffic-related problems
are most pronounced at peak times, especially in the morning, which accounts for 45% of daily work trips
(Department for transport, directorate for mobility planning, 2018). The trip generation step estimates the
number of commuters originating from each zone. Commuting trips are driven by the employed population,
with only morning peak-period trips being considered. A trip rate method is applied, in which the number of
employed residents in each zone is multiplied by a fixed commute trip rate at morning peak per person on a
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typical workday. These trip rates are assumed to remain constant per capita and per workday across zones.

Ti(t) = N
Empl
i (t) λpeak

trip (1)

where Ti(t) is the number of morning peak-period commuters originating from zone i at timestep t. λpeak
trip is the

average commute trip rate per employed individual during the morning peak hour. N
Empl
i (t) is the number of

employed residents in zone i at time t. It is calculated as the product of the resident population in zone i, the
employment rate in zone i, and the share of the working-age population in zone i:

N
Empl
i (t) = NR

i (t) λ
WorkAge
i (t) λEmpl

i (t) (2)

where NR
i (t) is the number of residents in zone i at time t, λWorkAge

i (t) is the ratio of working-age population
(15-64 years) in zone i, and λ

Empl
i (t) is the employment rate among working age population in zone i, obtained

from census data.

In trip distribution, the trips generated in the trip generation step are allocated to destination zones, deter-
mining the spatial pattern of commuting flows. The trip distribution sub-model calculates the proportion of
commute trips to each chosen destination from a given origin. This step is central to four-step travel demand
models, as it links trip origins with plausible destinations based on opportunities and travel impedance. This
allocation is performed using a gravity model (Ortuzar and Willumsen, 2011), a widely used spatial interaction
model in transportation planning to estimate how trips are distributed from origins to destinations. It assumes
that the number of trips between two zones is directly proportional to the attractiveness of the destination and
inversely proportional to the generalised travel cost between them. Given the total number of trip productions
Ti(t) from each origin zone i, the raw attractiveness values Aj(t) for each destination zone j (e.g., number of
jobs in zone j), and the generalised travel cost GCij(t), the production-constrained (singly constrained) gravity
model is expressed as folows:

Tij(t) = Ti(t)
Aj(t) FF(GCij(t))∑
k Ak(t) FF(GCik(t))

(3)

where Ti(t) is the number of commuters from zone i at morning peak. Tij(t) denotes the number of morning
peak hour commuters from origin zone i to destination zone j. The function FF(GCij(t)) represents a deterrence
function, which is a monotonically decreasing function of perceived generalised cost. It captures the diminish-
ing likelihood of choosing more distant or expensive destinations. The denominator

∑
k Ak(t) FF(GCik(t))

serves as a normalisation term, ensuring that the total number of trips from each origin zone i are proportionally
distributed across all destinations based on their relative weighted attractiveness. Since this model is singly
constrained, only origin totals are preserved. Destination totals emerge endogenously as destinations compete
for trips based on their attractiveness adjusted by travel impedance.

The form of FF(GCij(t)) is typically chosen based on the trip purpose and empirical evidence of travel
behaviour. For commute trips, an exponential decay form is commonly applied as Equation 4.

FF(GCij(t)) = eβGCGCij(t) = e
βGC

(
βGC

TT TT
(∆tperc,transp)
ij

(t)+βGC
TC TC

(∆tperc,transp)
ij

(t)
)

(4)

where βGC is the impedance parameter that reflects the sensitivity of trip distribution to generalised cost, esti-
mated to fit data using Hyman method (Hyman, 1969). The generalised cost, GCij(t), is expressed as a money-

metric utility, composed of perceived travel time TT
(∆tperc,transp)
ij (t) , and perceived travel cost TC

(∆tperc,transp)

ij (t).
These quantities are averaged over a perception time window ∆tperc,transp, capturing the information delay in the
decision-making process, reflecting how travel time and cost are perceived by commuters over a specific time
period rather than instantaneously. The parameter βGC

TT is the parameter the travel time, denoting the willing-
ness to pay, and allows for the conversion of travel time into monetary units. βGC

TC is parameter of travel cost,
normalised to -1 to maintain consistency with the money-metric utility formulation.
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Once the generated trips are distributed across destination zones, the mode choice step determines how these
trips are divided among available transportation modes. The mode choice sub-model calculates the proportion
of total commuters between each origin-destination pair allocated to each mode. The mode choice sub-model
uses a logit specification, to relate the attractiveness of each mode to its perceived characteristics. Each transport
mode is associated with a utility function that captures the perceived travel cost and travel time for that mode.
Importantly, both travel time and cost are perceived through a temporal filter, averaged over a perception window
, ∆tperc,transp, that reflects the delayed adjustment to changes in travel conditions. The resulting number of
commuters by mode is given by:

Tm
ij (t) = Tij(t)

eµVm
ij (t)∑

m ′ e
µVm ′

ij
(t)

(5)

where Tm
ij (t) denotes the number of morning peak-period commuters from zone i to j using mode m. µ is a

scale parameter. Vm
ij (t) is the systematic utility associated with mode m for the same origin-destination pair,

(i,j). The utility function Vm
ij (t) is defined as:

Vm
ij (t) = ASCm + βm

TTTT
(∆tperc,transp),m
ij (t) + βm

TCTC
(∆tperc,transp),m

ij (t) (6)

where TT
(∆tperc,transp),m
ij (t) is the perceived travel time from origin i to destination j by mode m, averaged over

the perception time window ∆tperc,transp. TC
(∆tperc,transp),m

ij (t) is the perceived travel cost between zones i and j by
mode m, smoothed over the same perception time window, ∆tperc,transp. βm

TT and βm
TC are mode-specific utility

parameters reflecting the disutility of travel time and travel cost, respectively. ASCm is the alternative specific
constant, representing the baseline preference for choosing mode m beyond accounted travel attributes.

The travel time by car between each origin destination pair at morning peak-hour can be estimated using the
fundamental relationship between speed and distance, as Equation 7.

TTPC
ij (t) =

dij

vPC
ij (t)

· 60 (7)

where TTPC
ij (t) is the travel time by car from i to j. dij is the total travel distance by car from zone i to j.

vPC
ij (t) denotes the trip-specific speed for travel from zone i to j by car. A BPR-type speed–flow relationship

is applied to express speed as a function of demand–capacity ratio, using the standard functional form found in
macroscopic travel demand models (e.g., Ortuzar and Willumsen (2011)). The commute speed by car between
zones i and j at each timestep t is given by:

vPC
ij (t) =

vFFS
ij (t)

1+ α · (DFPC
ij (t))

β
(8)

where vFFS
ij (t) denotes the free-flow speed by car for travel from zone i to j, representing the speed of vehicles

under low-volume conditions, when drivers are free to travel at their desired speed without being constrained
by other vehicles or downstream traffic controls. This speed approximates the theoretical condition where both
traffic density and flow rate are near zero. In practice, posted speed limits are often used as a proxy for free-flow
speed. DFPC

ij (t) is demand factor of corridor from i to j during the morning peak period at timestep t. Parameters
α and β are empirical coefficients, set to α = 0.15 and β = 4 (California Department of Transportation, 2022).
DFPC

ij (t) is derived based on Equation 9.

DFPC
ij (t) = DFPC

ij (0)
CapPC

ij (0)

CapPC
ij (t)

·
CPC

ij (t) + Cbus
ij (t)

CPC
ij (0) + Cbus

ij (0)
(9)

where CapPC
ij (t) denotes the relative road corridor capacity from zone i to j at timestep t. CapPC

ij (t) is a di-
mensionless, non-negative variable defined on a relative scale with respect to the road infrastructure capacity at
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timestep 0, CapPC
ij (t) ∈ (0,∞). A value of CapPC

ij (t) = 1 indicates that the road capacity is equal to the base-
line capacity at timestep 0. A value of CapPC

ij (t) = 0 represents a fully non-functional (closed) corridor. Values
greater than 1 indicate an increased capacity relative to the base case (e.g., due to infrastructure expansion),
while values less than 1 represent a reduced capacity (e.g., due to disruptions or degradation). The capacity may
vary over time, taking values above or below 1 depending on infrastructure development or deterioration of the
network. CPC

ij (t) is the number of car-based commutes from i to j at timestep t, calculated using the morning
peak origin-destination commuter flows and car occupancy as Equation 10.

CPC
ij (t) =

TPC
ij (t)

OccPC(t)
(10)

where TPC
ij (t) is the number of morning peak-period commuters from zone i to j using private vehicle, and

OccPC(t) is the average car occupancy, expressed as the number of people per car.

In Equation 9, Cbus
ij (t) denotes the number of bus-based public transport commutes from i to j at timestep t.

It is computed based on the total number of public transport commuters during the morning peak, TPT
ij (t), the

proportion of those using buses with mixed traffic ϕ, and the average occupancy of buses Occbus(t) expressed
as average number of people per bus, as follows:

Cbus
ij (t) =

ϕ TPT
ij (t)

Occbus(t)
(11)

DFPC
ij (0) is the initial demand factor, used to initialise the transport model and calculated as:

DFPC
ij (0) =

β

√
vFFS
ij (0) − vPC

ij (0)

α · vPC
ij (0)

(12)

where vPC
ij (0) is the trip-specific speed at morning peak from zone i to j by car at timestep 0. The trip-specific

speed can be computed as:

vPC
ij (0) =

dij

TTPC
ij (0)

· 60 (13)

where dij is the commute distance from zone i to j. TTPC
ij (0) is the travel time from i to j by car at timestep 0,

which is estimated based on Google maps data.

The travel cost for private car trips, denoted as TCPC
ij (t), comprises multiple components, calculated as

Equation 14.

TCPC
ij (t) = cfuel

ij (t) + cmaint
ij (t) + ctoll

ij (t) (14)

where cfuel
ij (t) represents the fuel cost, cmaint

ij (t) refers to the vehicle’s maintenance and operating costs, ctoll
ij (t)

accounts for toll charges and road pricing. The fuel cost component, cfuel
ij (t), can be estimated as Equation 15.

cfuel
ij (t) = 100 dij ηf(t) p

fuel(t) (15)

where dij is the travel distance between zones i and j in kilometers, ηf(t) is the fuel consumption of vehicle
expressed as liter per hundred kilometers (liter/100km). pfuel(t) is the fuel price per unit (Euro/liter).

The vehicle operating cost, cmaintenance
ij (t), covers wear-and-tear expenditures such as maintenance, tires,

insurance, and depreciation, and is estimated as:

cmaint
ij (t) = dij κ

maint(t) (16)
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where κmaint(t) denotes monetary cost per kilometer to run a vehicle covering expenses such as maintenance,
insurance, and depreciation (Euro/km).

The cost of toll charges for car travel from zone i to j, denoted as ctoll
ij (t), is calculated by summing the toll

fees ptoll associated with all tolled links along the shortest or assigned path between the two zones.

ctoll
ij (t) =

j∑
i

ptoll(t) (17)

For public transport modes, travel costs are defined exogenously, as they are typically regulated. Travel times
are primarily derived exogenously from observed performance data. However, to account for the fact that some
bus-based services operate in mixed traffic and are thus affected by road congestion, a weighted average is ap-
plied. This average combines the exogenously defined travel time with an endogenously calculated travel time
that reflects current road traffic conditions. The weight assigned to each component depends on the proportion
of the public transport service that is affected by general traffic conditions. For instance, corridors with services
operating entirely on dedicated lanes (e.g., trams or buses with exclusive right-of-way) rely on exogenous travel
time data. By contrast, corridors with bus services that share road space with private vehicles are more sensitive
to congestion and therefore incorporate endogenous travel time estimates, weighted by the share of public trans-
port operating in mixed traffic within the corridor. The travel cost for public transport is defined exogenously
and regulated.

Trips are analysed at the corridor level, with one corridor defined between each origin–destination pair.
Consequently, the trip assignment stage is simplified, and only a single route is considered between each pair of
zones.

In the travel demand model, at each timestep, the transport flows at an origin-destination basis by each trans-
port mode, the average travel times and travel costs between each origin-destination pair per transport mode are
modelled.

4.3.2 Travel infrastructure model

In the transport infrastructure development model, the decision to increase the road transport infrastructure
capacity is determined with a set of rules based on the commute speed by car at morning peak and number of
commutes as follows:

If
C

PC,(∆tdec,transp)

ij (t)

CPC
ij (0)

≥ 1+ θPC and v
PC,(∆tdec,transp)
ij (t) ≤ vθ,PC

ij , then CapPC*
ij (t) =

C
PC,(∆tdec,transp)

ij (t)

CPC
ij (0)

(18)

where C
PC,(∆tdec,transp)

ij (t) is the perceived average number of commutes during the morning peak from zone i to
j at timestep t, averaged over the decision time window ∆tdec,transp. This smoothing accounts for the fluctua-
tions in commute patterns over time and provides a more stable estimate for decision-making regarding road
expansion. CPC

ij (0) is number of commutes at morning peak from i to j at the start of the modelling (t = 0).
θPC is a threshold for road capacity expansion (e.g., 0.25), indicating when the road needs expansion based on
changes in the number of morning peak commutes. vPC,(∆tdec,transp)

ij (t) is the perceived trip-specific speed by car
at the morning peak from zone i to j at timestep t, averaged over the decision time window ∆tdec,transp. vθ,PC

ij

is the minimum acceptable threshold car commute speed. If the perceived trip-specific car speed falls below
this threshold, it suggests that the road is congested and needs to be expanded. CapPC*

ij (t) is the desired road
capacity from zone i to j at timestep t, based on the decision criteria. Once initiated, transport infrastructure
come into operation after a time delay of construction time, τCnst

PC .
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Public transport infrastructure development follows a similar rule-based approach, driven by demand during
the morning peak and the capacity constraints of existing public transport links between zones. Once initiated,
transport infrastructure come into operation after a time delay of construction time, τCnst

PT .

In the travel infrastructure model, the state of the transport infrastructure at each timestep is modelled and
updated. Using the outputs from transport module, the accessibility measure is computed, linking the transport
module back to the land use module.

The accessibility measure is derived by integrating outputs from the transport and land use modules. Ac-
cessibility is measured using a Hansen-type indicator (Miller, 2020), which quantifies the ease of reaching em-
ployment opportunities. This measure is based on the gravity model, which assumes that accessibility depends
on both the number of available jobs at destination and the impedance of travel (Ibeas et al., 2013; Coppola and
Nuzzolo, 2011). The accessibility measure for residents of each zone i, denoted as Acci(t), is calculated as
shown in Equation 19.

Acci(t) =
∑
j

Aj(t) e
βAcc

TT TTij(t) (19)

where Aj(t) is the number of jobs in destination zone j, TTij(t) is average travel time at morning peak hour
for trip from zone i to j at timestep t, and βAcc

TT is a decay parameter reflecting sensitivity of accessibility mea-
sure to travel time. The exponential decay function captures how accessibility declines with increasing travel
time. Higher values of accessibility indicate greater access to employment opportunities within reasonable travel
times. We focus on accessibility to workplaces for two main reasons. First, access to employment is a key factor
in residential location choice models from a theoretical perspective (Alonso, 1964; Lowry, 1964). It influences
individuals’ job prospects, supports activity participation, and affects overall quality of life (Niedzielski and
Eric Boschmann, 2014). Second, employment accessibility is strongly correlated with accessibility to shopping
and leisure opportunities (Baraklianos et al., 2020).

4.4 Land use module
The land use module models the dynamics of residential and workplace relocation and development, consisting
of two models; (i) a residential model, and (ii) a workplace model (Figure 6). The residential and workplace
location models determine the placement of population and jobs. These models adjust previous spatial distribu-
tions in response to changing conditions. In the current framework, we focus only on the residential model and
assume the workplace model as given and exogenous. In further operational extensions of the framework, the
workplace model can be endogenised. The residential model has two sub-models; (i) a residential relocation
sub-model (demand), and (ii) a housing development sub-model (supply). Residential location choices are influ-
enced by factors such as housing supply, accessibility, rental prices, all of which are endogenously determined
within the model. The major factor for housing development is the increase in housing demand due to increase
in population. Housing development is also influenced by housing market factors such as housing prices and is
constrained by land available for residential development.

The residential model builds on the causal loops presented in Figure 4, situating its formulations within
that broader feedback structure. It captures the effects of population growth (loops R3 and R4 in Figure 4),
including the resulting surge in housing demand, increased market pressure, and rent dynamics that influence
the relative attractiveness of zones for residents (loops B15 and B16 in Figure 4). It also reflects the long-term
balancing role of housing developments (loops B11, B14, B17, and B20 in Figure 4), as well as constraints from
land availability (loops B12 and B18 in Figure 4). An analysis of land price dynamics lies beyond the scope of
this study (loop 13 and B19 in Figure 4). Through these mechanisms, changes in housing demand and supply
translate into shifts in the number of residents in each zone and commuting demand, which in turn influence
transport patterns.

23



Figure 6: land use module

4.4.1 Residential relocation sub-model

The residential relocation sub-model identify the the number of residents who will relocate within the current
timestep and assigns them to zones within the study area. The residential relocation is formulated as a rate-based
logit model. Once the potential number of residents to relocate is estimated, the location choice sub-model
assigns them to specific destination zones using a multinomial logit specification. The relocation of residents
within the study area is modelled through three steps:

(i) Out-migration of residents: The potential number of residents relocating from each zone is estimated
based on the average duration of residence.

mvout
i (t) =

NR
i (t)

τmv
i

(20)

where mvout
i (t) is the move-out rate from zone i, NR

i (t) is the number of residents in zone i at timestep
t, and τmv

i represents the average length of residence in zone i, estimated from housing survey data.

(ii) Pooling of movers: At each timestep, the total pool of potential movers in the region consists of net births,
net migration into the study area, and out-migration from all zones:

Nmv
T (t) = NB(t) + MigT (t) +

∑
i

mvout
i (t) (21)

where Nmv
T (t) is the total number of potential movers in the greater region. NB(t) is the net birth rate,

and MigT (t) is the net migration rate to the study area, both derived exogenously from population census
data.

(iii) Allocation of movers to zones: Movers are distributed across residential zones using a logit model that
accounts for the characteristics of destination zones, such as perceived accessibility to workplace and rent
prices. Additional proxy for area quality (e.g., distance to the city center, average income of residents,
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etc) may also be included.

mvin
i (t) = Nmv

T (t)
eµVi(t)∑
k e

µVk(t)
(22)

where µ is a scale parameter, and the systematic utility of each zone, Vi(t), is defined as follows:

Vi(t) = ASCi + βRent Ri(t)
(∆tperc,Res) + βAcc Acc

(∆tperc,Res)

i (t) (23)

ASCi is the alternative specific constant associated with zone i. Ri(t)
(∆tperc,Res) denotes the perceived

monthly rent per square meter in zone i at timestep t, averaged over the perception delay window,
∆tperc,Res. This temporal averaging captures information delays and smooths short-term fluctuations in

rent over the specified period. Acc
(∆tperc,Res)

i (t) represents the perceived accessibility to workplace from
zone i, averaged over the same perception time window, ∆tperc,Res. This smoothing accounts for temporal
changes in accessibility, again reflecting the lag in perception. The parameters βRent and βAcc calibrated
from observed data, capture the sensitivity of residential utility to perceived rent and accessibility, respec-
tively. In the allocation of potential movers, it is assumed that the choice of destination is not influenced
by the location of the current domicile of movers.

Rent prices are determined endogenously in the model based on the available surface area per resident in
each zone. At each timestep, a desired rent price R∗

i (t) is computed as a function of the tightness of the housing
market in zone i, defined as the ratio between the current surface area per person and a normative benchmark
for that zone:

R∗
i (t) = Ri(t) · fR

(
S

per,(∆tdec,Res)

i (t)

S
per,norm
i

)

= Ri(t) · fR
(
S
(∆tdec,Res)

i (t)/N
R,(∆tdec,Res)

i (t)

(Si/NR
i )

norm

)
= Ri(t) · fR

(
1

Tight
(∆tdec,Res)

i (t)

)
(24)

where Ri(t) is the monthly rent price per square meter in zone i at timestep t, Si(t) is the residential surface

area, and NR
i (t) is the number of residents in zone i at timestep t. S

per,(∆tdec,Res)

i (t) denotes the perceived
residential surface area per person in zone i at timestep t over the decision time window ∆tdec,Res. S

per„norm
i is

the normative or target residential surface area per person in zone i, based on planning guidelines or historical
standards. S

per,norm
i

S
per
i
(t)

represents the tightness of the housing market in zone i, quantifying how tight or loose
the market is —that is, whether housing is scarce or abundant relative to the number of people needing it.
The function fR expresses how deviations from the target density level influence the desired rent price. A
high tightness value indicates overcrowding (low surface area per person), which drives the desired rent price
upward; conversely, low tightness suggests abundance of housing and lowers the desired rent. The function fR

is a nonlinear lookup function calibrated to replicate historical rent prices across zones. The actual rent price,
Ri(t), does not adjust instantaneously to the desired level. Instead, it evolves gradually over time, reflecting the
inertia of real estate markets. The rate of change in the rent price is governed by:

dRi(t)

dt
=

R∗
i (t) − Ri(t)

τ
adj
Rent

(25)

where τ
adj
Rent is the time lag associated with rent adjustment. This formulation captures the delayed response of

rent prices to supply–demand imbalances.
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4.4.2 Residential development sub-model

The housing development sub-model determines the expansion of residential floor space in each zone, account-
ing for both demand-driven triggers and physical constraints. This process is guided by planning policy inputs
and is influenced by rent levels, residential densities, and the availability of land designated for residential
construction. The decision to develop is based on three key factors: (i) housing demand, (ii) rent prices, and
(iii) availability of land for residential construction. Housing surface tightness is defined in terms of the ratio
between a desired/normative benchmark and the current surface area per resident. When this ratio goes over one
—indicating overcrowding— the pressure to develop increases. Higher rent prices provide financial incentives
for development, while land availability constrains the total amount that can be built. Housing development
takes one or more years to complete. As a result, newly constructed dwellings become available only after a
predefined construction time lag. As new housing is added, the overall floor space increases, raising the surface
area per resident. This reduces development pressure and contributes to stabilising or lowering rent levels.

Figure 7 presents a system dynamics stocks and flow for residential development mechanism. New hous-
ing developments enter the system through the housing development rate, accumulates in the housing under-
construction stock, and is added to the available housing surface after a construction delay. The available
housing surface gradually ages and depreciates based on the average building lifetime.

Figure 7: Scheme of housing development dynamics in zone i.

The desired housing surface, A∗
i (t) is computed as a function of the existing housing surface in decision

time t, the surface area available per resident relative to a normative benchmark, and rent levels. Specifically,
when the housing surface per resident is low or rent prices are high, the desired housing surface increases.

S∗
i (t) = Si(t) · fS

(
S

per,(∆tdec,Res)

i (t)

S
per,norm
i

)
·

(
R
(∆tdec,Res)

i (t)

Rref
i

)Φ

(26)

where Si(t) is the housing surface in zone i at decision time t. S
per,(∆tdec,Res)

i (t) is the perceived housing sur-
face per resident over decision time period ∆tdec,Res. S

per,norm
i is the normative per capita housing surface. The

function fS is a nonlinear lookup function, capturing how development pressure responds to deviations from
the target surface area per person. The function fS increases as the surface per resident decreases, reflecting
growing development pressure when space becomes scarce. R

(∆tdec,Res)

i (t) is the perceived rent price smoothed
over the decision time window ∆tdec,Res. RRef

i is a reference rent, and Φ denotes the elasticity of housing supply
with respect to rent price. This formulation means that incentive for development increases when living space
is tight and rent prices are high.

This desired surface is compared to the existing stock to determine the rate at which new housing enters
construction. The actual construction inflow is limited by land availability Li(t), leading to the formulation:

dSin construction
i (t)

dt
= min (max (S∗

i (t) − Si(t), 0) , Li(t)) (27)

where Li(t) is the maximum buildable floor space given current land constraints. This equation ensures that
construction only occurs if the desired surface exceeds the current surface (S∗

i (t) > Si(t)) and that it remains
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within the land constraint.

Once initiated, housing remains under construction for a duration of construction time, τCnst
Res , as shown in

the central stock of the diagram in Figure 7. After this delay, housing is added to the built environment at
a completion rate. This corresponds to the rightward flow in the diagram from the “Housing surface under
construction" to the “Housing surface" stock.

dSi(t)

dt
=

Sin construction
i (t)

τCnst
Res

−
Si(t)

τlife
Res

(28)

where τCnst
Res is the average construction time delay. Finally, assuming a constant-rate decay, housing depreciates

over time and exits the stock at a rate proportional to the average building lifetime, τlife
Res.

Together, these equations describe the dynamics of residential development: from identifying the need for
new housing, through the constraints and time lags of the construction process, to eventual delivery and depreci-
ation. The output of the land use module at each timestep is the spatial distribution of residential and workplace
locations, which links the land use module back to the transport module.

5 The case of Luxembourg
In this section, we present the application of the model through a case study of Luxembourg. Section 5.1
introduces the main characteristics of the study area and the model setup. The key assumptions and data are
explained in Section 5.2. Section 5.3 discusses the model calibration and parameters. The results and model fit
are presented and analysed in Section 5.4, with example policy scenarios explored in Section 5.5.

5.1 Case study area
The area of study in this application is the Greater Region of Luxembourg. Luxembourg is a small country with
a total area of 2’586 km2, bordered by Germany, Belgium, and France. Its dynamic economy attracts approx-
imately 200’000 cross-border workers everyday from the neighbouring countries, accounting for nearly half
of the national workforce. This substantial volume of daily commuting highlights the strong interconnection
between Luxembourg and its cross-border regions, particularly in terms of both daily and residential mobil-
ity. Accordingly, the study area includes the Grand-Duchy of Luxembourg and the bordering territories of the
neighbouring countries in Germany (Saarland and Rhineland-Palatinate), Belgium (Wallonia), and France (Lor-
raine). The cross-border areas are at border proximity territories defined based on the proximity zones identified
in Luxembourg’s national spatial planning strategy (PDAT) (Ministère de l’Aménagement du Territoire, 2023).
The cross-border functional area of Luxembourg is illustrated in Figure 8. The Grand Duchy of Luxembourg is
divided into 12 cantons, which serve as its administrative districts, as presented in Figure 9. For the analysis,
each of these 12 internal cantons is taken as a zone. In addition, each bordering cross-border region in France,
Belgium, and Germany is represented as a single aggregated zone, resulting in a total of 15 zones in the model.

Luxembourg has experienced remarkable economic prosperity in recent decades, emerging as one of the
most prosperous countries in Europe. This growth has been accompanied by rapid demographic change. The
population has increased by 54% since 2000 reaching 672’000 person in 2024, driven by both international
migration and strong labour demand. In response to its favourable economic climate, many companies have
relocated to or opened offices in Luxembourg, which has led to a substantial rise in job opportunities. The
growth in number of jobs has outpaced population growth in relative terms, with a job per resident ratio of 0.76
in 2023, reflecting the exceptional weight of the labour market relative to the national population (Observatoire
du développement territorial, 2025). A large share of jobs is filled by cross-border commuters, whose numbers
rose from approximately 105’000 in 2005 to 166’000 in 2019 —an increase of 37%. Today, cross-border work-
ers represent more than 40% of total employment, a proportion that has steadily grown over the past decade.
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Figure 8: Map of greater region of Luxembourg; Luxembourg’s cross-border functional area (Adapted from
Ministère de l’Aménagement du Territoire (2023)).

In 2023, Luxembourg recorded 499’985 jobs, of which only 265’000 were held by residents, meaning 47% of
the workforce lived in neighbouring countries, 43% of whom come from France, and almost equally from Ger-
many and Belgium. This marks a dramatic shift from just 3% in 1961, highlighting the continued and growing
dependence on cross-border labour (Observatoire du développement territorial, 2025). This puts pressure on
transport networks, prompting each state to adjust its services to better meet user needs.

These combined trends reflect high levels of both residential and daily mobility, contributing to dynamic
labour markets and population concentration in and around the country. A significant share of total employment
is concentrated in Luxembourg City. This concentration of economic activity has placed strong pressure on the
housing market, triggering a sharp rise in real estate prices not only in Luxembourg’s urban core but also in its
immediate surroundings. However, the housing supply has remained relatively inelastic, with limited new con-
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Figure 9: Plan of Luxembourg and its cantons

struction. This structural constraint has further intensified price growth and reduced accessibility to housing.
As a result, households are pushed to relocate to suburban or neighbouring cross-border regions, reinforcing
urban sprawl and increasing the need for daily travel. Empirical evidence shows that current urbanisation trends
toward suburban and more remote peri-urban areas favour urban sprawl and car dependence. Although public
transport has been free in Luxembourg since February 2020, this policy has not led to a significant reduction
in car usage. The country continues to exhibit a high reliance on private vehicles, with 95% of households
owning at least one car (MMUST, 2022). These developments have contributed to growing traffic congestion
and complex interdependencies in spatial planning.

In light of these dynamics —marked by rapid population growth, cross-border labour dependence, hous-
ing pressure, and rising mobility demand— this case study adopts a systems thinking approach to model the
complex interactions between population growth, residential mobility, and labour mobility within the greater
region of Luxembourg. By capturing the spatial-temporal dimensions of urban change, we assess how housing,
spatial planning, and mobility influence one another, and evaluate the impacts of policy measures and planning
scenarios. The resulting tool enhances understanding of residential and mobility behaviours and provides a
framework for projecting future trends in urban sprawl and population distribution. It supports decision-making
by enabling stakeholders to assess the effects of different land use and transport policies , evaluate trade-offs,
and align decisions with long-term territorial development objectives.
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5.2 Data and key assumptions
This case study integrates data from multiple sources covering the period from 2001 to 2024, with temporal
resolution varying from annual to decennial intervals, depending on data availability and collection frequency.
Demographic data such as population counts, employment, and socio-demographic characteristics for Luxem-
bourg are primarily obtained from national social security records. Corresponding data for the cross-border
regions are collected from the respective national social security data of France, Belgium, and Germany. In-
formation on commuting patterns and transport is derived from Luxembourg Mobility Observatory, including
data from the 2001, 2011, and 2021 census datasets, as well as supplementary datasets on cross-border com-
muters. Housing and land use data such as housing surface, developments, land availability, rental prices, and
urban densification are sourced from the Luxembourg Housing Observatory (Ministry of Housing and Spatial
Planning, 2025) and the national population census. Due to the limited availability of detailed housing and land
use data for the cross-border regions, simplified assumptions are applied to approximate these variables in the
aggregated neighbouring zones.

The modelling time period is from 2001 for a period of 50 years. Daily timesteps are used in the model. As
empirically observed, new immigrants to Luxembourg typically settle first in Luxembourg City. Accordingly,
the model assumes that newly arrived immigrants choose the canton of Luxembourg as their initial place of resi-
dence. We assume that residents of Luxembourg work exclusively within the country and not in the cross-border
regions. This is supported by MMUST (2022), which reports that only 1.5% work in neighbouring countries,
a share sufficiently low to justify their exclusion from the model. Renting is assumed as the only means of
satisfying housing demand.

In the transport demand model, the mode alternatives are car and public transport. All public transport is
assumed to operate on an exclusive right-of-way; therefore, the proportion of public transport running in mixed
traffic is zero, ϕ = 0. Travel distances by car are computed as the distance between canton centroids, following
a systematic approach based on official GIS data. The coordinates of each canton centroid in Luxembourg are
derived from administrative boundary data provided by the Administration du Cadastre et de la Topographie
(ACT) (Administration du Cadastre et de la Topographie, n.d.) via the Luxembourg open data portal. Centroids
are calculated as the geometric center of each canton polygon in a GIS environment. For internal trips, average
distances are estimated from canton surface areas, assuming trips are uniformly distributed within the zone. The
average internal distance is approximated as the radius of a circle with an area equal to half the canton’s area:

dint ≈
√

Sz

2π
(29)

where dint denotes the average travel distance for intra-zonal commutes (origin and destination within the same
zone), and Sz is the surface area of zone z.

In the three cross-border zones, simplifying assumptions are adopted due to data limitations. For the cross-
border commuters, commute distances are estimated using the average home-to-work distances reported for
employed persons Observatoire du développement territorial (2025). Rental prices in the cross-border regions
are treated as exogenous, set to observed historical values and projected forward using an assumed growth
rate, as these regions lie outside Luxembourg’s planning boundary and their housing dynamics depend on fac-
tors other than cross-commuting. Furthermore, population dynamics in these zones are governed not only by
endogenous move-in and move-out rates, but also by an exogenous migration component. This component
captures in-migration from areas beyond the model boundaries into the cross-border regions and is estimated
using annual population time series from the statistical institutes of the neighbouring countries. Moreover, in
cross-border regions, only the share of residents who commute across the border is considered when estimating
the pool of potential residential movers.
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The model does not account for freight transport, route choice, general economic development, or popula-
tion ageing processes. Car ownership and parking availability and pricing are not considered in the model. The
case study is implemented in Vensim Personal Learning Edition (PLE) (Ventana Systems, 2025), a free version
of the Vensim software designed for designing, modelling, and analysing system dynamics models.

5.3 Model parameters and calibration
Calibrating system dynamics models is inherently complex due to the high number of parameters, the interplay
among variables, nonlinear feedback structures, data limitations, and the added challenge of the system being
dynamic (Walker and Wakeland, 2011). According to Barlas (1996), feedback loops and time delays complicate
calibration and the establishment of model fit, making the process both technically and conceptually demand-
ing. Changes in one part of the model affect the other parts. This is a significant challenge in the calibration of
the model due to its large size and its many relevant outputs.

The calibration of the model is carried out through an iterative, partly manual process. Parameter values are
adjusted incrementally through trial-and-error. Empirical comparisons between model outputs and historical
data are central to this process, guided by aggregated performance metrics. Calibration follows a sequential
improvement approach, in which changes are introduced step by step and their effects on model outputs are
monitored to reproduce the observed variables in the historical data as closely as possible. To reduce the endless
loops of adjustments that can arise when calibrating a complex model, individual submodels are first calibrated
in isolation before integrating them into the full framework. This involves building standalone versions of sub-
models to test key control logic before addressing the ensemble model. It is notable that while most system
dynamics models are not primarily intended to produce point forecasts, reproducing historic trends increases
model credibility.

The model is initialised with data from 2001, which serves as the base year. The model was then run dynam-
ically from 2001 to 2024. Through an iterative process, the parameters are adjusted to match the population,
rent prices, housing surface, and transport modal shares as close as possible. Model performance is evaluated
by comparing modelled and observed values using indicators such as absolute relative deviation (Equation 30),
mean percentage error (MPE) (Equation 31), and root mean squared error (RMSE) (Equation 32), with their
formulas given below. yobs(t) denotes the observed value of the variable at time t, and ypred(t) is the modelled
value at time t.

Absolute Relative Deviation =
|ypred(t) − yobs(t)|

|yobs(t)|
(30)

MPE =
1

T

T∑
t=1

ypred(t) − yobs(t)

yobs(t)
(31)

RMSE =

√√√√ 1

T

T∑
t=1

(ypred(t) − yobs(t))
2 (32)

We employ estimation techniques for model parameters wherever possible with the data available to us. The
parameters of the money-metric utility of generalised cost, GCij(t) in Equation 4, are estimated by maximum
likelihood using transport data from 2001. In the gravity model for trip distribution, the impedance parameter
βGC, in the deterrence function in Equation 4 is estimated with the Hyman method (Hyman, 1969), based on
2001 transport data. The Hyman method is an iterative calibration procedure that adjusts βGC until the modelled
travel flows matches the observed travel flows, using interpolation between successive estimates to accelerate
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convergence.

The parameters of the model for the case study, calibrated to the existing data or derived from consensus
values in the empirical literature, are summarised in Table 2.

Table 2: Values and sources of parameters in the case study model.

Variable Description Unit Value Comment

λ
peak
trip Average commute rate per

employed individual dur-
ing morning peak.

- 0.6 -

λ
Empl
i (t) Employment rate in zone i. - λ

Empl
i (t) ∈ [0, 1]. Based on population

census.
λ

WorkAge
i (t) Ratio of working age pop-

ulation in zone i.
- λ

WorkAge
i (t) ∈ [0, 1]. Based on population

census.
βGC Impedance parameter. 1/Euro 0.154 Estimated using Hy-

man method.
µ Scale parameter - 1 Normalised to 1 as in

linear-in-parameters
utility specification.

βGC
TT Parameter of travel time in

generalised cost.
Euro/Min -0.634 Estimated with max-

imum likelihood esti-
mation.

βGC
TC Parameter of travel cost in

generalised cost.
- -1 Normalisation for

money-metric utility
formulation.

βcar
TC, βPT

TC Parameter travel time by
car/public transport.

1/Euro -0.18 Estimated using
maximum likelihood
estimation.

βcar
TT, βPT

TT Parameter travel time by
car/public transport.

1/Min -0.12 Estimated using
maximum likelihood
estimation.

α Scaling parameter in BPR
relationship.

- 0.15 Based on California
Department of Trans-
portation (2022).

β Shape parameter in BPR
relationship.

- 4 Based on California
Department of Trans-
portation (2022).

OccPC Car occupancy. Person/Veh 1.16 for Luxem-
bourg residents, 1.22
for cross-border
workers.

Luxmobil survey
2017 (Ministere
du Developpment
durable et des Infras-
tructures, 2017).

ηf(t) Fuel consumption. liter/100km A value between 6.15
and 8.5.

Based on data on
fuel consumption of
cars (Odysse Muree,
2024; International
Energy Agency,
2021).
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(Continued from previous page)

Variable Description Unit Value Comment

pfuel(t) Fuel price. Euro/liter A value between 0.75
and 1.56.

Based on historical
data on fuel price
from Luxembourg
national statistics
(Statista Research
Department, 2025;
Rhinocarhire.com,
2025).

κmaint(t) Operating cost per kilome-
ter.

Euro/km A value between 0.37
to 0.5.

Based on Markus
Maibach et al.
(2006).

ptoll(t) Toll fees. Euro 0 Luxembourg motor-
ways are toll free
(Wikipedia contribu-
tors, 2025).

TCPT
ij (t) Travel cost of public trans-

port.
Euro Before 2020: 2

Euro (Luxembourg
residents), 7 Euro
(cross-border com-
muters); After 2020:
Free (Luxembourg
residents), 5 Euro
(cross-border com-
muters).

Based on Lux-
embourg public
transport website
(Mobilitéit, 2025).

θPC Road demand surge thresh-
old.

- 0.25 -

θPT Public transport demand
surge threshold.

- 0.25 -

vθ,PC
ij Threshold speed car. km/hr 30 km/hr for local

roads and 55 km/hr
for inter-cantonal
roads.

Selected as a deci-
sion criterion con-
sidering information
on average speed at
morning rush hour on
road and motorways
in Luxembourg (RTL
Today, 2023b,a).

βAcc
TT Parameter travel time in

accessibility.
1/Min -0.123 Calibrated to model

fit.
∆tperc,transp Perception time of travel

cost and time.
Day 60 -
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(Continued from previous page)

Variable Description Unit Value Comment

τCnst
PC , τCnst

PT Road/public transport
infrastructure construction
duration.

Year 3 years for local
roads and 10 years
for motorways.

Based on project
timeline from plan-
ning to inauguration
by Deputy Prime
Minister of Luxem-
bourg (Ministry of
Mobility and Public
Works (MMTP),
Department of Mo-
bility and Transport,
2022).

∆tdec,transp Time window within
which transport demand
changes are perceived
for capacity expansion
decision-making.

Day 730 -

τmv
i Average residence time in

zone i.
Day A value between

3600 to 4500 days.
Based on data from
Housing Observa-
tory.

βRent Parameter of rent price in
residential location choice.

m2 · Month/Euro -0.3 Calibrated to model
fit.

βAcc Parameter of accessibil-
ity in residential location
choice.

- 0.9 Calibrated to model
fit.

∆tperc,Res Perception time of rent and
accessibility changes.

Day 90 -

S
per,norm
i Normative residential sur-

face area per person.
m2/Person Domicile surface

area per person in the
corresponding zone
in base year 2001.

Based on data from
Housing observatory
data.

τ
adj
Rent Time to adjust rent price. Day 365 -
Φ Elasticity of housing sup-

ply to rent price.
- 0.02 Based on Dautel

et al. (2024).
τCnst

Res Residential construction
duration.

Day 720 -

τlife
Res Average building lifetime. Year 100 -

∆tdec,Res Time window within
which housing con-
struction and rent price
changes are perceived for
decision-making.

Day 365 -

5.4 Results and analysis: Base scenario and model assessment
Using the calibrated model, population dynamics are modelled from 2001 to 2024. Figure 10 presents the
number of residents in each zone over this period. According to the model results, the population of the Grand-
Duchy of Luxembourg increase by 228’160 persons, or 52%, between 2001 and 2024. Among the internal
cantons of Luxembourg, the largest absolute increases occur in zone 3 (canton of Luxembourg) with +62’197

34



persons, zone 2 (canton of Esch-sur-Alzette) with +44’539, and zone 1 (canton of Capellen) with +20’970 per-
sons. This can be explained with their higher accessibility and the concentration of jobs -more than 70% of
national employment is located in these zones, particularly in zones 2 and 3— which makes them attractive
despite their higher rent prices. Zone 3 in particular shows the strongest population growth as newcomers to
Luxembourg tend to settle first in central zone 3, the canton of Luxembourg.

Meanwhile, the population in the cross-border regions appears relatively stable. The strongest increase is
in the Belgian cross-border zone, with growth of about 10%, or +348’000 persons, between 2001 and 2024. In
the plot, this apparent stability can be explained by the much larger population base of the cross-border regions,
in the order of millions, compared to country of Luxembourg, which has a population in the hundreds of thou-
sands. The entire country of Luxembourg has only about 670’000 residents in 2024, so changes of just a few
thousand people in individual cantons already appear as visible shifts in the curves.

The model results are compared with observed data to evaluate the model fit. Figure 10 provides a visual
comparison of the observed and modelled number of residents by zone in the Greater Region of Luxembourg,
illustrating the overall agreement of modelled results with the data. To quantify the model fit, we compute
performance indicators for the period 2001–2024. Statistical measures —absolute relative deviation (Equation
30), mean percentage error (MPE, Equation 31), and root mean squared error (RMSE, Equation 32) between
modelled and data— are reported in Table 3, quantifying the deviation between modelled and observed number
of residents by zone. The model shows a reasonable fit across Luxembourg’s zones, with maximum absolute
relative deviations mostly below 0.15, except in zones 5 and 8. Errors are generally larger for Luxembourg’s
internal zones (higher RMSE values) compared to the cross-border regions, where deviations remain very small.
This can be attributed to the population structure of the cross-border zones: while the plots show their entire
resident population, only a small fraction of these residents —less than 8%— are commuters to Luxembourg
and thus eligible for residential relocation in our framework. As a result, the potential relocating population
from these zones is very limited, which keeps deviations small.

Similarly, Figure 11 presents the modelled and observed rent price, while Table 4 summarises the corre-
sponding performance indicators for 2001-2024. The results indicate an overall reasonable fit, with median
absolute relative deviations mostly below 0.2. Larger deviations appear in some zones, most notably in zone 5.
Across most zones, Figure 11 shows a systematic underestimation of rent prices, with mean percentage errors
(MPE) generally below 15%. This underestimation stems from the residential development sub-model, which
tends to overestimate new construction volumes (Table 5), thereby reducing market tightness and lowering the
modelled rents. Overall, the model captures the general spatial variation in rent prices but consistently underes-
timates their magnitude.

For the transport sub-model, we have only three data points from census years 2001, 2011, and 2021. The
share of car commutes from the model results is compared with the corresponding shares computed from the
data. Table 6 summarises the modelled and observed modal shares of car for these years. Overall, the data con-
firm that the modal split is dominated by cars. The model consistently underestimates car use, with moderate
deviations in 2001 but a much stronger underestimation in 2011 and 2021. This suggests that the model does not
fully capture changes in commuting behaviour or influencing factors. Addressing these discrepancies require
further investigation into the determinants of commuting behaviour, supported by access to disaggregate cen-
sus and mobility survey data. In addition, testing different coefficient parameters for the BPR-type speed–flow
relationship (Equation 8), as recommended in transport modelling manuals, could improve the calibration of
congestion effects, which influence mode choice outcomes in the model.

Overall, the agreement between the model and observed data is satisfactory for a first implementation,
confirming that the structural assessment of the model is correct and providing a solid foundation for further
refinements to improve the model fit.
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Table 3: Performance indicators for modelled number of residents versus observed data from 2001 to 2024 in
Greater region of Luxembourg.

Zone Absolute Relative Deviation MPE RMSESum Max Standard deviation Median
1 301.10 0.079 0.021 0.035 -0.007 1939.20
2 453.61 0.12 0.041 0.055 -0.052 11943.14
3 287.33 0.091 0.025 0.027 -0.0074 7724.57
4 238.18 0.079 0.019 0.022 -0.0097 1078.30
5 1058.9 0.30 0.091 0.104 0.050 2934.22
6 351.95 0.13 0.035 0.027 0.030 1858.73
7 457.17 0.10 0.034 0.051 -0.048 1016.67
8 944.73 0.21 0.080 0.14 0.11 2313.86
9 642.71 0.14 0.046 0.071 0.044 464.87

10 725.83 0.14 0.043 0.097 -0.043 1626.09
11 245.37 0.085 0.022 0.028 0.027 1055.26
12 383.10 0.098 0.028 0.045 -0.012 1097.48

Belgium 7.86 0.0015 0.0005 0.00108 0.00083 3815.37
Germany 5.97 0.003 0.00075 0.00058 0.00071 5250.77
France 23.20 0.0045 0.0015 0.0028 0.0027 5592.43

Table 4: Performance indicators for modelled rent price versus observed data from 2001 to 2024 in Grand
Duchy of Luxembourg.

Zone Absolute Relative Deviation MPE RMSESum Max Standard deviation Median
1 724.92 0.13 0.035 0.09 -0.086 1.57
2 341.77 0.16 0.038 0.030 -0.037 1.11
3 689.37 0.23 0.040 0.082 -0.082 2.24
4 775.30 0.24 0.061 0.088 -0.092 1.92
5 1830.87 0.36 0.11 0.25 -0.21 3.15
6 1090.17 0.27 0.058 0.13 -0.12 2.09
7 1308.15 0.26 0.063 0.18 -0.15 2.20
8 1092.80 0.21 0.051 0.13 -0.13 1.70
9 1193.77 0.25 0.057 0.14 -0.14 1.91

10 1244.02 0.29 0.072 0.16 -0.14 2.30
11 945.34 0.20 0.049 0.11 -0.11 1.95
12 1368.96 0.21 0.053 0.18 -0.16 2.58
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Table 5: Relative deviation (%) of housing surface between model results and data in Grand Duchy of Luxem-
bourg.

Zone 2011 2021
1 8.37% 8.66%
2 5.93% 4.54%
3 3.66% 6.88%
4 8.50% 7.56%
5 11.70% 17.63%
6 7.74% 10.78%
7 34.69% 30.75%
8 15.27% 16.02%
9 7.80% 12.47%
10 4.95% 8.02%
11 5.24% 7.28%
12 5.08% 7.23%

Table 6: Share of car commutes in model results and data.

Year Model Data Deviation
2001 0.60 0.72 -0.12
2011 0.52 0.72 -0.20
2021 0.43 0.68 -0.25
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(a) Residents zone 1 (b) Residents zone 2

(c) Residents zone 3 (d) Residents zone 4

(e) Residents zone 5 (f) Residents zone 6

(g) Residents zone 7 (h) Residents zone 8

Figure 10: Number of residents by zone in the Greater Region of Luxembourg - Continued.
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(i) Residents zone 9 (j) Residents zone 10

(k) Residents zone 11 (l) Residents zone 12

(m) Residents cross-border Belgium (n) Residents cross-border Germany

(o) Residents cross-border France

Figure 10: Number of residents by zone in the Greater Region of Luxembourg.
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(a) Rent price zone 1 (b) Rent price zone 2

(c) Rent price zone 3 (d) Rent price zone 4

(e) Rent price zone 5 (f) Rent price zone 6

(g) Rent price zone 7 (h) Rent price zone 8

Figure 11: Monthly rent price per square meter by zone in Grand Duchy of Luxembourg - Continued.
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(i) Rent price zone 9 (j) Rent price zone 10

(k) Rent price zone 11 (l) Rent price zone 12

Figure 11: Monthly rent price per square meter by zone in Grand Duchy of Luxembourg.
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5.5 Policy and scenario analysis
In this section, we present model results under example counterfactual scenarios and policies over a time hori-
zon from 2001 to 2051, to analyse their impact on distribution of residents in cantons of Grand Duchy of
Luxembourg. For the demographic and economic projections, we use the guidelines of National Institute of
Statistics and Economic Studies of Luxembourg (STATEC), following its intermediate growth scenario, which
assumes annual GDP growth of 3% and provide demographic projections for 2030 and 2060 (Statec, 2017).
Key demographic changes include the number of additional residents, jobs, and cross-border workers. The net
annual birth rate is projected at 2’978 person per year until 2030, declining to 793 person per year until 2060.
Until 2030, 10’000 foreign workers are expected to be attracted each year, equally split between cross-border
commuters and active immigrants (5’000 person each). Accounting for inactive immigrants, the net annual mi-
gration is projected at 10’080 persons until 2030, and 10’313 persons thereafter. By 2030, the number of jobs in
Luxembourg will reach 570’000, comprising 268’000 cross-border workers and 302’000 resident workers. By
2051, total employment will rise to 726’000, with 374’000 cross-border workers and 352’000 resident work-
ers. The relative distribution of jobs across the cantons of Luxembourg is assumed to follow the proportions
observed in the latest census in 2021. For the 2001–2051 model, these demographic changes are used as exoge-
nous demographic drivers, while the model endogenously propagates the population across different zones.

The framework allows us to identify the start and end points, as well as the initial and final levels of any
policy instrument. It also enables the specification of combination policies by implementing multiple policy in-
struments simultaneously. The following scenarios presented are illustrative examples, intended to demonstrate
the model’s capabilities and application, and are not a comprehensive exploration or evaluation of alternative
policies to determine the most effective means of achieving specific objectives. As in most prospective research,
the scenarios are what-if cases meant to spark discussion about possible futures, not absolute predictions.

5.5.1 Construction of affordable housing

A plausible policy scenario is the construction of affordable housing in different cantons of Luxembourg. In
our analysis, affordable housing refers to dwellings provided through public or subsidised schemes, available to
all households and rented at a price lower than the average rent of the zone at the time. In reality, the concept
in Luxembourg is more specific: it designates publicly or subsidised dwellings offered for rent or purchase at
prices linked to household income and composition, allocated through legal eligibility criteria to ensure that
modest-income residents can secure adequate housing without exceeding a reasonable share of their budget
(Ville de Luxembourg, 2025). Since our model does not account for income groups and considers renting as
the sole means of meeting housing demand, we apply a simplified definition in which affordable housing is
available to all and exclusively offered for rent at below-average zone prices.

The scenario analysis is defined as follows. We assume a construction shock of 150’000 square meters of af-
fordable housing, completed in 2030. This construction volume is applied consistently across different regions
of Luxembourg. We denote the scenario involving the construction in zone i as AFFORDCONSTR_i. Figure
12 presents the evolution of residents by zone for selected scenarios as examples: (i) construction of affordabe
housing in zone 1 (AFFORDCONSTR_1), (ii) construction of affordabe housing in zone 3 (AFFORDCONSTR_3),
and (iii) construction of affordabe housing in zone 9 (AFFORDCONSTR_9), The base scenario serves as the ref-
erence for evaluating the effects of the tested policies. Table 7 reports the percentage deviation in population
across the zones of Grand Duchy of Luxembourg relative to the baseline scenario, under the affordable housing
construction policies, for the period following policy implementation (2030–2051). Table 8 summarises the
corresponding absolute deviations in the number of residents by zone.

Assuming uniform construction costs nationwide, an equal investment yields varying population effects
across zones. As expected, building affordable housing in a given zone increases that zone’s population, while
other zones experience a small decrease or no change at all. The relative effect is more pronounced in smaller,
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less developed zones; for instance, constructing affordable housing in zone 9 can produce a maximum popula-
tion increase of 65% and an average population 30% higher than in the baseline scenario. In absolute terms,
however, construction in zones with better accessibility and stronger job markets produces larger population
gains. For example, the same level of investment results in an average population increase of 34’400 residents
in the central zone 3, compared to 3’700 additional residents in the less developed zone 9 over time period of
2030-2051.

Following the construction shock, the initial population surge gradually tapers toward baseline levels with-
out falling below them, due to reduced accessibility from traffic congestion and higher rents driven by market
pressure from the earlier growth. Nonetheless, the overall population trend in the zone with housing construc-
tion remains upward between 2030 and 2051. In the long term, constructing housing while controlling rent
prices appears to be an effective strategy for attracting and retaining residents in a zone. It is also notable
that accounting for income groups and latent proxies of neighbourhood quality within the model could further
influence these dynamics, which can be explored in future extensions.
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Table 7: Percentage change in zone population relative to baseline under affordable housing policy scenarios (AFFORDCONSTR_i) for the period 2030-2051.

Zone
Scenario AFFORDCONSTR_1 AFFORDCONSTR_2 AFFORDCONSTR_3 AFFORDCONSTR_4

Max Min Average Max Min Average Max Min Average Max Min Average
1 31% 0% 17% 4% -10% -3% 3% -9% -3% 1% -2% -1%
2 1% -3% -1% 27% 0% 15% 2% -7% -2% 1% -2% 0%
3 1% -2% -1% 3% -6% -2% 29% 0% 14% 1% -1% -1%
4 1% -3% -1% 2% -7% -3% 2% -6% -3% 33% 0% 19%
5 2% -4% -1% 4% -10% -3% 5% -9% -3% 2% -2% -1%
6 2% -3% -1% 3% -8% -3% 3% -7% -3% 2% -2% -1%
7 2% -3% -1% 4% -9% -3% 3% -7% -3% 2% -2% -1%
8 3% -4% -1% 5% -10% -2% 4% -9% -3% 2% -2% -1%
9 4% -5% 0% 7% -11% -2% 6% -10% -2% 3% -3% -1%
10 2% -4% -1% 5% -9% -2% 4% -8% -2% 2% -2% -1%
11 1% -3% -1% 3% -7% -2% 2% -7% -3% 1% -2% -1%
12 2% -3% -1% 4% -8% -2% 3% -8% -2% 2% -2% -1%

Zone
Scenario AFFORDCONSTR_5 AFFORDCONSTR_6 AFFORDCONSTR_7 AFFORDCONSTR_8

Max Min Average Max Min Average Max Min Average Max Min Average
1 1% -2% 0% 1% -2% -1% 1% -1% 0% 1% -2% 0%
2 1% -2% 0% 1% -2% 0% 1% -1% 0% 1% -1% 0%
3 1% -1% 0% 1% -2% 0% 1% -1% 0% 1% -1% 0%
4 1% -2% 0% 1% -2% -1% 1% -1% 0% 1% -1% 0%
5 42% 0% 18% 3% -3% 0% 1% -2% 0% 1% -2% 0%
6 1% -2% 0% 34% 0% 18% 1% -1% 0% 1% -2% 0%
7 1% -2% 0% 2% -2% -1% 36% 0% 20% 1% -2% 0%
8 2% -2% 0% 2% -2% -1% 0% -1% 0% 41% 0% 20%
9 2% -2% 0% 3% -3% 0% 2% -2% 0% 2% -2% 0%
10 1% -2% 0% 2% -2% -1% 1% -1% 0% 1% -2% 0%
11 1% -2% 0% 1% -2% -1% 1% -1% 0% 1% -1% 0%
12 1% -2% 0% 2% -2% -1% 1% -1% 0% 1% -2% 0%

Zone
Scenario AFFORDCONSTR_9 AFFORDCONSTR_10 AFFORDCONSTR_11 AFFORDCONSTR_12

Max Min Average Max Min Average Max Min Average Max Min Average
1 1% -1% 0% 1% -1% 0% 1% -2% -1% 1% -2% 0%
2 1% -1% 0% 1% -1% 0% 1% -2% 0% 1% -2% 0%
3 1% -1% 0% 1% -1% 0% 1% -1% 0% 1% -1% 0%
4 1% -1% 0% 1% -1% 0% 1% -2% -1% 1% -1% 0%
5 1% -1% 0% 1% -2% -1% 2% -2% -1% 1% -2% 0%
6 1% -1% 0% 1% -1% 0% 1% -2% -1% 1% -2% 0%
7 1% -1% 0% 1% -2% 0% 1% -2% -1% 1% -2% 0%
8 0% -1% 0% 1% -2% 0% 2% -2% -1% 1% -2% 0%
9 66% 0% 30% 2% -2% 0% 2% -3% 0% 2% -2% 0%
10 1% -1% 0% 42% 0% 21% 2% -2% -1% 1% -2% 0%
11 1% -1% 0% 1% -1% 0% 36% 0% 20% 1% -1% 0%
12 1% -1% 0% 1% -2% 0% 1% -2% 0% 43% 0% 21%
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Table 8: Absolute change in zone population relative to the baseline scenario under affordable housing policy scenarios (AFFORDCONSTR_i) for the period
2030-2051.

Zone
Scenario AFFORDCONSTR_1 AFFORDCONSTR_2 AFFORDCONSTR_3 AFFORDCONSTR_4

Max Min Average Max Min Average Max Min Average Max Min Average
1 27587 0 15371.87 3705 -8230 -2474.93 3278 -7359.70 -2667.31 1268 -1701.20 -461.26
2 2702 -6515 -1585.02 62113 0 33903.14 3734 -14390 -4612.87 2647 -3986.00 -984.44
3 3146 -6150 -2106.77 6078 -15150 -5218.48 68112 0 34464.36 2480 -3636 -1329.56
4 759.90 -1395.50 -499.91 1368.40 -3351.60 -1282.78 1106.80 -2977 -1387.65 16688.80 0 9958.38
5 971.30 -1542.70 -352.84 1635.30 -3653.50 -907.66 1921.60 -3228.20 -925.09 923.50 -956.60 -208.77
6 1091.30 -1667.80 -551.68 2067.00 -3973.30 -1409.82 1720.40 -3517.10 -1547.74 923.40 -1023.60 -346.28
7 601.40 -922.90 -293.18 1188.20 -2210.60 -740.64 979.40 -1981.60 -807.27 487.10 -567.40 -184.91
8 955.30 -1321.20 -267.66 1916 -3135.80 -660.25 1564.60 -2815.70 -782 770.40 -808.30 -174.67
9 574.10 -564 -12.30 971.60 -1336.90 -175.77 798.20 -1180 -198.85 409.60 -343 11.85
10 773.60 -1104 -288.55 1550.20 -2594.70 -732.85 1288.50 -2390.60 -827.34 623.90 -680.90 -184.11
11 694.30 -1275.90 -383.68 1287.20 -3069.30 -978.23 1054 -2741 -1079.20 604.60 -777.10 -240.58
12 670.50 -1112.60 -251.75 1284.10 -2662.10 -636.70 1049 -2390.60 -742.12 572.40 -676.20 -160.75

Zone
Scenario AFFORDCONSTR_5 AFFORDCONSTR_6 AFFORDCONSTR_7 AFFORDCONSTR_8

Max Min Average Max Min Average Max Min Average Max Min Average
1 948 -1511.20 -232.67 1221 -1846.50 -432.91 703 -953.70 -229.51 546 -1337.60 -267.23
2 2410 -3588 -501.76 2479 -4260 -922 1451 -2264 -498.02 1518 -3142 -574.53
3 2011 -3360 -872.51 2585 -3979 -1320.01 1467 -2139 -709.67 1449 -3043 -834.81
4 447.50 -764.50 -177.79 661.60 -921.90 -298.01 388.90 -485 -159.91 320.80 -654.80 -187.45
5 14847 0 6717.04 830.50 -1028.50 -207.20 492.70 -544.70 -108.03 375.90 -713.50 -142.77
6 652.30 -912.60 -188.16 17857.90 0 9870.13 530.30 -583.20 -177.02 462.40 -779.40 -200.65
7 365.50 -501.70 -104.14 495.50 -610.90 -177.03 9710.10 0 5503.67 264.20 -432.40 -108.52
8 679.70 -726.10 -73.49 781.50 -875.20 -157.43 435.80 -465.50 -85.63 13118.20 -1751.50 6709.02
9 392.30 -311.10 27.04 457 -373.10 17.98 235.30 -197.80 -12.10 278.30 -265.50 6.29
10 494 -603.50 -90.68 634.30 -733.80 -171.28 357.40 -388.80 -92.56 328 -515.80 -99.69
11 439.70 -698.30 -130.96 597.50 -841.80 -228.67 344.90 -444.80 -123.11 284 -600.50 -140.42
12 500.10 -609.70 -72.45 570.80 -733.50 -146.80 322.50 -389.10 -79.66 321 -526.80 -84.82

Zone
Scenario AFFORDCONSTR_9 AFFORDCONSTR_10 AFFORDCONSTR_11 AFFORDCONSTR_12

Max Min Average Max Min Average Max Min Average Max Min Average
1 541 -779.60 -126.08 762 -1239.70 -263.24 1052 -1575.20 -392.66 704 -1387.90 -284.65
2 1259 -1909 -278.22 1564 -2933 -569.15 2118 -3648.80 -839.46 1526 -3253 -610.99
3 1218 -1801 -468.99 1735 -2778 -844.36 2208 -3464.40 -1155.95 1721 -3130 -891.63
4 303 -401.20 -96.23 430.20 -623.90 -186.65 580.20 -778.80 -266.73 411 -681.80 -199.86
5 350.50 -436.50 -67.44 494.10 -692.40 -132.08 708.30 -866.40 -184.11 405 -746.60 -147.12
6 417.10 -477.10 -103.86 599.60 -746.70 -203.64 790.40 -932.20 -294.86 574.20 -812.70 -215.25
7 226.60 -261.60 -57.37 326.10 -413.60 -110.32 423.60 -517.90 -157.99 318.90 -450.70 -116.44
8 370.70 -381.50 -43.56 504.30 -596.40 -93.06 650.40 -743.30 -142.61 490.50 -651 -94.42
9 8051.60 0 3746.32 300.70 -254.30 15.30 352.80 -316.30 9.37 297.10 -276.70 8.92
10 288 -314.80 -51.92 12378.40 0 6566.23 535.30 -620 -154.08 397.20 -538.40 -108.18
11 270.80 -366.40 -72.18 384.30 -571.40 -141.76 15381.40 0 8874.09 361.80 -625 -150.33
12 273.60 -320.40 -42 361.60 -500 -88.28 476.70 -623.60 -133.71 13568.10 0 7092.67
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(a) Residents zone 1 (b) Residents zone 2

(c) Residents zone 3 (d) Residents zone 4

(e) Residents zone 5 (f) Residents zone 6

(g) Residents zone 7 (h) Residents zone 8

Figure 12: Number of residents in each zone under affordable housing policies (AFFORDCONSTR_i) - Continued.
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(i) Residents zone 9 (j) Residents zone 10

(k) Residents zone 11 (l) Residents zone 12

Figure 12: Number of residents in each zone affordable housing policies (AFFORDCONSTR_i).

5.5.2 High speed tram between Luxembourg City and Esch-sur-Alzette

In this subsection we evaluate two policy scenarios. We model a policy scenario with a fast-tram link between the
cantons of Luxembourg and Esch-sur-Alzette (zones 2 and 3) that opens in 2030, reducing travel time between these
zones by 30%. We refer to this scenario as TRAM. We also test a combined policy case in which the fast tram is
accompanied by a one-off addition of 60’000 square meters affordable housing in zone 3, available in 2030. We refer
to this scenario as TRAM+HOUSE3. Figure 13 presents the evolution of residents by zone under both scenarios.
The base scenario serve as the reference for evaluating the effects of the tested scenarios.

The TRAM scenario, initially increases the populations of zones 2 and 3. The new fast tram line between these
zones boosts accessibility, enhancing their relative attractiveness and drawing more residents. Zone 3, as the central
district with higher rents but abundant job opportunities, experiences a moderate population increase. Zone 2, a sub-
urban area with lower rental prices and a solid though smaller job market, sees a more substantial average increase.
This difference reflects the tendency of households to relocate farther from the central zone when improved transport
connections allow convenient access, especially when rent prices are lower. As zones 2 and 3 already host about 60%
of the country’s population, the inflow toward them is mirrored by declines elsewhere. The increases, however, are
temporary. Within about five years, rising demand drives up rents and induces more travel, which increases travel
times and reduces accessibility. The subsequent decline in the populations of zones 2 and 3 is therefore driven by both
higher rents from earlier growth pressures and reduced accessibility due to congestion. These effects prompt a gradual
decrease in population, eventually returning toward —and in some cases falling below— baseline levels.

In TRAM+HOUSE3, the additional housing in zone 3 dampens and delays this decline: populations remain el-
evated for longer, and the subsequent drop is smaller. Overall, the results indicate that while fast transit can quickly
shift residential patterns, maintaining these shifts over time requires adequate housing supply to ease market pressure
and prevent rent escalation.
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Table 9 summarises the percentage deviation in population across the zones of the Grand Duchy of Luxembourg,
relative to the baseline scenario, under the fast-tram link (TRAM) and the combined tram and housing shock in zone
3 (TRAM+HOUSE3). The table reports the maximum and minimum percentage changes in population relative to
the baseline, along with the average deviation over the period following policy implementation (2030–2051). In the
TRAM scenario, the fast tram boosts the population in zones 2 and 3, with maximum deviations of +27% and +7%,
respectively. When the housing addition is introduced, population of zone 3 rises further while the growth of zone 2
slows slightly, resulting in maxima of +31% for zone 3 and +23% for zone 2. The average population difference in
zone 3 increases from +2% in TRAM to +15% in TRAM+HOUSE3, indicating that the housing pulse helps sustain
growth above the baseline for a longer period. Conversely, many other zones remain below baseline for much of
the combined scenario, showing larger negative average differences and deeper minima. Overall, both TRAM and
TRAM+HOUSE3 policy scenarios sustain average population gains in zones 2 and 3, while other zones experience
average losses.

Table 10 summarises the change in public transport modal share between zones 2 and 3, compared to the baseline
scenario, under the TRAM and TRAM+HOUSE3 policy scenarios. It reports the maximum, average, and standard
deviation of changes, over the period following policy implementation (2030–2051). The fast tram increases the public
transport modal share between zones 2 and 3, with a larger increase observed for commutes from the central zone 3
to zone 2. To understand this result, the model’s causalities are examined. Zone 3, as the central zone with a concen-
tration of jobs, attracts a large number of morning peak commutes, exceeding the flows from zone 3 to zone 2 in the
morning. With fewer commuters and lower traffic volume from zone 3 to 2 in the morning, road congestion and car
travel times are lower, resulting in a higher share of car commutes from zone 3 to 2 compared to the reverse direction.
Consequently, the baseline public transport modal share is lower for trips from zone 3 to 2. With the opening of the fast
tram, both zones attract more residents, with zone 3 experiencing a larger surge in absolute population numbers. This
leads to a stronger increase in commutes from zone 3 to zone 2, generating greater road congestion in this direction.
As a result, the modal shift towards public transport is more pronounced for trips originating from zone 3 under both
the TRAM and TRAM+HOUSE3 scenarios. In the TRAM+HOUSE3 case, the shift is even stronger, reflecting the
additional population surge in zone 3.

These results highlight that population patterns are dynamic, and that the benefits of infrastructure investments
alone may be temporary; coordinated planning of housing and transport is essential to sustain gains and manage unin-
tended outcomes. Moreover, railway and express public transport services, can improve accessibility, reduce vehicle-
related pollutants, particulate emissions, and traffic noise, influence land use for potential housing and commercial
developments, and support urban regeneration. This underscores the importance of integrated, forward-looking plan-
ning.

Table 9: Percentage change in zone populations relative to baseline scenario under (TRAM) and (TRAM+HOUSE3)
scenarios for the period 2030-2051.

Zone
Scenario TRAM TRAM+HOUSE3

Max Min Average Max Min Average
1 11% -16% -1% 10% -20% -5%
2 27% -11% 4% 23% -10% 3%
3 7% -2% 2% 31% -1% 15%
4 10% -14% 0% 9% -17% -4%
5 13% -17% -2% 12% -23% -5%
6 10% -15% 0% 8% -19% -4%
7 12% -15% 0% 10% -19% -3%
8 15% -18% -2% 14% -24% -4%
9 12% -22% -3% 14% -28% -6%
10 12% -16% -1% 10% -20% -4%
11 10% -14% 0% 8% -17% -3%
12 13% -15% 0% 11% -20% -3%
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Table 10: Change in public transport modal share between zone 2 & 3, compared to baseline scenario under (TRAM)
and (TRAM+HOUSE3) scenarios for the period 2030-2051.

Zone
Scenario TRAM TRAM+HOUSE3

Max Average Standard deviation Max Average Standard deviation
2 to 3 0.13 0.08 0.026 0.12 0.08 0.024
3 to 2 0.17 0.15 0.014 0.22 0.18 0.026
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(a) Residents zone 1 (b) Residents zone 2

(c) Residents zone 3 (d) Residents zone 4

(e) Residents zone 5 (f) Residents zone 6

(g) Residents zone 7 (h) Residents zone 8

Figure 13: Number of residents in each zone under (TRAM) and (TRAM+HOUSE3) scenarios - Continued.
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(i) Residents zone 9 (j) Residents zone 10

(k) Residents zone 11 (l) Residents zone 12

Figure 13: Number of residents in each zone under (TRAM) and (TRAM+HOUSE3) scenarios.

6 Conclusion
This study is motivated by having a computational efficient decision support tool that offers a systematic view of com-
bined land use and mobility, aimed at assessing the long-term impacts of transport and land use policies. In this paper,
we combine transport and land use models within the same framework, simultaneously considering the development
path of the modules over a time period of multiple years with dynamic modelling. The framework explicitly accounts
for the interactions and feedback between transport and land use systems. The model is developed based on the princi-
ples of System Dynamics, leveraging transport manuals, econometric, and behavioural models for quantification. The
choice of system dynamics is motivated by its ability to capture feedback loops and complex nonlinear interactions,
represent time delays, and serve as a decision-support tool for assessing long-term policy impacts with high computa-
tional efficiency in integrated land use and transport systems.

The framework offers the following key specifications: (i) an integrated design that enables the simultaneous
consideration of transport and land use dynamics, (ii) incorporation of transitory equilibrium, with the system state
dynamically derived from the model and accommodating different time delays, (iii) daily modelling timesteps, effec-
tively capturing the time delays and reaction speeds of different processes, (iv) representation of the development path
over time through dynamic modelling, (v) a modular structure that provides flexibility for incorporating new features
and aspects required by the analyst, (vi) reproducible results, (vii) high computational efficiency, (viii) modest data re-
quirements, and (ix) ease of understanding, allowing it to function as a decision-support tool capable of evaluating the
combined effects of multiple policies over a time horizon in a manner transparent to decision-makers. The framework
also allows the analyst to define the start and end points, as well as the levels, of policy instruments.

Using the framework, a cross-national application is conducted for the Greater Region of Luxembourg. Model
parameters are calibrated through a sequential, partly manual process guided by performance metrics to reproduce as
closely as possible the observations gathered in the area of study. Calibration is first performed on standalone submod-
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els before integrating them into the full framework, controlling the endless adjustment loop. The model fit and example
policy scenarios are analysed. As in most prospective research, the results are not pure predictions but aim to highlight
key trends and stimulate debate about possible futures. The findings show that the long-term evolution of popula-
tion is dynamic, and the benefits of infrastructure investments alone may be temporary without coordinated planning
of housing and transport. This underscores the importance of forward-looking strategies with a systematic perspective.

Integrating land use and transport presents multiple challenges and limitations. Data availability and quality are
key issues, as models require information from various sources, entities, domains, and spatial scales. In cross-border
applications, the coordination of different planning systems add further complexity. Engaging with all relevant stake-
holders, harmonising datasets, addressing missing values, and imputing unavailable variables are significant hurdles.
Poor data quality can further compromise model accuracy and reliability. Moreover, integration is inherently interdis-
ciplinary, requiring a trans-disciplinary approach to combine expertise from different fields. All models have inherent
limitations, yet many can still yield valuable insights. The current integrated framework is no exception. While it is not
a universal solution for every urban planning challenge, it offers a powerful lens for examining complex systems, with
the flexibility to incorporate additional components and feedback loops as new data becomes available. By recognising
and addressing its underlying assumptions, we can leverage the framework’s strengths while mitigating its limitations.

The current model has limitations that should be acknowledged. It does not incorporate expectations and assume
fully rational or perfect decision-making. Moreover, demographic and economic segmentation—such as age, income,
and education groups—is not explicitly represented. Household income, however, can be used as a proxy for neigh-
bourhood quality and incorporated into the residential location choice model. The workplace submodel is assumed
exogenous, without capturing endogenous development or relocation of workplaces across zones. Furthermore, the
overlap of traffic between different corridors is not considered. Finally, the model does not include a network assign-
ment stage; integrating this functionality would require substantial additional data and resources, a network plan, and
an interface to link the model to an external assignment tool. The opportunities for future research are discussed in
detail in what follows.

This work offers several avenues for extension and improvement, paving the way for future research. The work-
place model is currently assumed to be exogenous; future studies could focus on endogenising workplace relocation
dynamics by incorporating employment location choice into the framework. Additional dimensions of choice com-
plexity could also be explored. For example, while renting is currently the sole means to meet housing needs, incor-
porating the option of buying would provide a more comprehensive representation of residential demand, enabling a
detailed analysis of the interplay between renting and buying decisions. Moreover, incorporating the evolution of the
population’s age structure and analysing household transitions such as children leaving home, household separation,
and couple formation would enrich the model’s demographic realism. Expanding the framework to include education
and income groups, and studying their evolution over time under various policy scenarios presents another valuable
research direction. Different population segments have distinct preferences and place varying importance on specific
attributes and variables in their decision-making. Rather than assuming homogeneous preferences across the entire
population, segmenting the population and analysing their characteristics in residential and transport choices would
enhance the model’s capacity to capture heterogeneity (Schultheiss et al., 2024; Escolano-Utrilla et al., 2024). The cur-
rent model specifications are deterministic. Introducing stochasticity and exploring probabilistic formulations could
capture uncertainty more realistically and enhance the robustness of the model’s outcomes.

The framework can also be extended to incorporate additional transport mode choices, including soft modes such
as cycling and walking, enabling more comprehensive analyses of modal shares. Further enhancements could involve
integrating variables such as distance to public transport stops, frequency of public transport services, and latent factors
like perceived convenience of car and public transport. Moreover, parking availability and pricing play a critical role
in mode choice; incorporating parameters such as parking capacity, pricing, and average time spent searching for park-
ing would represent a valuable extension of the model. Two factors that may change significantly over the considered
time horizon are car ownership and technological developments, such as improvements in fuel consumption, electric
mobility, and autonomous vehicles. These require further investigation and present interesting directions for model
extension. In addition, emerging services such as shared mobility could have substantial impacts and should be con-
sidered in future modelling efforts. Currently, car ownership is not included in the model specifications; incorporating
it into travel mode choice models could enhance their realism. In addition, the changing attitudes and preferences of
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the population over the modelling horizon are aspects that warrant further study and should be considered in future
work.

Moreover, a wider spectrum of accessibility indicators can be considered and tested within the framework, with the
choice guided by specific policy questions and evaluation criteria (van Wee, 2015). Further work may also investigate
alternative definitions of accessibility, integrating subjective dimensions such as perceived travel time quality along-
side traditional measures of cost and time. In addition, causal discovery algorithms could be applied to extract and
validate causal structures from observed data. Applying such methods to model location and transportation choices,
as demonstrated in recent studies that combine causal discovery with structural equation modelling (Chauhan et al.,
2024), could strengthen the framework’s capacity to identify and interpret underlying causal relationships.

With richer data on cross-border regions, the model’s simplifications for cross-national zones can be relaxed. For
example, in the case study of the Greater Region of Luxembourg, access to data from the Luxmobil survey (Minis-
tere du Developpment durable et des Infrastructures, 2017), which contains representative information on the travel
behaviour of both cross-border commuters and residents, would allow for more detailed modelling. Assumptions re-
garding cross-border zones, such as the distribution of cross-border trips across Luxembourg’s internal cantons, could
be refined.

One important policy under consideration is the promotion of remote work arrangements, such as work-from-home
and satellite offices near borders, to reduce commute times for cross-border commuters. Studying the societal (e.g., in-
equalities between residents and cross-border workers due to tax and social security hurdles), spatial (impacts on daily
mobility, land use, and air pollution), and economic (effects on productivity) implications of teleworking is essential
for understanding how people perceive remote work and its broader effects. This would enable a more comprehensive
perspective on how telework can transform mobility and land use patterns. For example, the survey data collected
in the ongoing WinWin4WorkLife project (WinWin4WorkLife Consortium, 2025) can provide valuable insights into
perceptions of telework and its influence on location choice and mobility behaviour. Additionally, examining how
telework affects workplace relocation would add complexity to the analysis of its impact on daily travel and residen-
tial preferences. Investigating the spatial-temporal rebound effects of telework, such as the fragmentation of activities
and changes in travel patterns, represents another promising research avenue. Such analysis would help policymakers
and practitioners better anticipate potential unintended consequences of telework, facilitating more effective urban
planning and promoting sustainable city development (Ratnasari and Van Acker, 2024).

The calibration of integrated transport and land use models remains an important research challenge (Kii et al.,
2019). Typically, calibration is performed by an expert modeller who iteratively adjusts a set of parameters to match
observed data from the study area as closely as possible. This process is often conducted manually, with minimal au-
tomation, requiring repeated parameter adjustments. Exploring non-manual calibration methods capable of simultane-
ously adjusting multiple parameters, along with developing robust estimation procedures, could significantly advance
these integrated models. However, the data-intensive nature of disaggregate estimation approaches should be carefully
considered when pursuing such developments. Additionally, the risk of over-parameterisation and overfitting warrants
attention. Implementing a model selection scheme that balances model complexity with goodness of fit can help miti-
gate these risks and improve the likelihood of achieving accurate and reliable predictions (Capelle et al., 2019).

Creating harmonised databases that combine transport, demographic, and land use information, and supplement-
ing these with cross-border travel surveys, would significantly strengthen integrated studies at cross-national scales.
For instance, the MMUST+ project (Modèle multimodal et scénarios de mobilité transfrontalier (MMUST+), 2025),
collects cross-border travel data that provides valuable insights into the links between residential patterns and daily
mobility. Furthermore, improving the effectiveness of modelling and predictive tools requires a deeper understanding
of the factors that could encourage behavioural change. Stated preference surveys can provide behaviourally credible
insights into how individuals might adjust their mobility patterns in response to new service offerings, infrastructure
developments, or modifications to existing systems. Finally, future research could compare model results with more
disaggregate formulations to evaluate the extent to which greater detail may alter aggregated outcomes and policy
implications.

53



Acknowledgments
We would like to thank the team at the Luxembourg Institute of Socio-Economic Research (LISER), specially Antoine
Paccoud, Frédéric Docquier, and Philippe Gerber for data acquisition and project initiative.

References
Acheampong, R. A. and Silva, E. A. (2015). Land use–transport interaction modeling: A review of the literature and

future research directions, J. Transp. Land Use 8(3): 11–38. DOI: 10.5198/jtlu.2015.806.

Administration du Cadastre et de la Topographie (n.d.). Limites administratives du Grand-Duché de Luxembourg.

Aljoufie, M., Zuidgeest, M., Brussel, M., van Vliet, J. and van Maarseveen, M. (2013). A cellular automata-based
land use and transport interaction model applied to Jeddah, Saudi Arabia, Landsc. Urban Plan. 112(1): 89–99. DOI:
10.1016/j.landurbplan.2013.01.003.

Alonso, W. (1964). Location and land use: Toward a general theory of land rent, Harvard university press, Cambridge,
U.K. DOI: 10.4159/harvard.9780674730854.c8.

Anas, A. (1994). METROSIM: A unified economic model of transportation and land-use, Williamsville, NY Alex Anas
Assoc. .

Anas, A. and Liu, Y. (2007). A regional economy, land use, and transportation model (RELU-TRAN©): Formulation,
algorithm design, and testing, J. Reg. Sci. 47(3): 415–455. DOI: 10.1111/j.1467-9787.2007.00515.x.

Axhausen, K., Horni, A. and Nagel, K. (2016). The Multi-Agent Transport Simulation MATSim, Ubiquity Press. DOI:
10.5334/baw.

Baraklianos, I., Bouzouina, L., Bonnel, P. and Aissaoui, H. (2020). Does the accessibility measure influence the
results of residential location choice modelling?, Transportation (Amst). 47(3): 1147–1176. DOI: 10.1007/s11116-
018-9964-6.

Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics, Syst. Dyn. Rev. 12(3): 183–210.
DOI: 10.1002/(sici)1099-1727(199623)12:3<183::aid-sdr103>3.0.co;2-4.

Batty, M. (1971). Modelling cities as dynamic systems, Nature 231: 425–428.

Ben-Akiva, M. and Bowman, J. L. (1998). Integration of an activity-based model system and a residential location
model, Urban Stud. 35(7): 1131–1153. DOI: 10.1080/0042098984529.

Bhat, C. R. and Guo, J. Y. (2007). A comprehensive analysis of built environment characteristics on house-
hold residential choice and auto ownership levels, Transp. Res. Part B Methodol. 41(5): 506–526. DOI:
10.1016/j.trb.2005.12.005.

Bierlaire, M., de Palma, A., Hurtubia, R. and Waddell, P. (2015). Integrated transport and land use modeling for
sustainable cities, EPFL Press, Lausanne, Switzerland.

Black, J. (2018). Urban Transport Planning, Routledge, London.

Bravo, M., Briceño, L., Cominetti, R., Cortés, C. E. and Martínez, F. (2010). An integrated behavioral model of the
land-use and transport systems with network congestion and location externalities, Transp. Res. Part B Methodol.
44(4): 584–596. DOI: 10.1016/j.trb.2009.08.002.

California Department of Transportation (2022). Cal-B / C Parameter Guide, Technical report, California Department
of Transportation.

Capelle, T., Sturm, P., Vidard, A. and Morton, B. J. (2019). Calibration of the Tranus land use module: Optimisation-
based algorithms, their validation, and parameter selection by statistical model selection, Comput. Environ. Urban
Syst. 77: 101146. DOI: 10.1016/j.compenvurbsys.2017.04.009.

54

https://doi.org/10.5198/jtlu.2015.806
https://doi.org/10.1016/j.landurbplan.2013.01.003
https://doi.org/10.1016/j.landurbplan.2013.01.003
https://doi.org/10.4159/harvard.9780674730854.c8
https://doi.org/10.1111/j.1467-9787.2007.00515.x
https://doi.org/10.5334/baw
https://doi.org/10.5334/baw
https://doi.org/10.1007/s11116-018-9964-6
https://doi.org/10.1007/s11116-018-9964-6
https://doi.org/10.1002/(sici)1099-1727(199623)12:3<183::aid-sdr103>3.0.co;2-4
https://doi.org/10.1080/0042098984529
https://doi.org/10.1016/j.trb.2005.12.005
https://doi.org/10.1016/j.trb.2005.12.005
https://doi.org/10.1016/j.trb.2009.08.002
https://doi.org/10.1016/j.compenvurbsys.2017.04.009


Chang, J. S. and Mackett, R. L. (2006). A bi-level model of the relationship between transport and residential location,
Transp. Res. Part B Methodol. 40(2): 123–146. DOI: 10.1016/j.trb.2005.02.002.

Chauhan, R. S., Riis, C., Adhikari, S., Derrible, S., Zheleva, E., Choudhury, C. F. and Pereira, F. C. (2024). Determin-
ing causality in travel mode choice, Travel Behav. Soc. 36(100789). DOI: 10.1016/j.tbs.2024.100789.

Chen, H., Chen, B., Zhang, L. and Li, H. X. (2021). Vulnerability modeling, assessment, and improvement
in urban metro systems: A probabilistic system dynamics approach, Sustain. Cities Soc. 75: 103329. DOI:
10.1016/j.scs.2021.103329.

Coppola, P. and Nuzzolo, A. (2011). Changing accessibility, dwelling price and the spatial distribution of socio-
economic activities, Res. Transp. Econ. 31(1): 63–71. DOI: 10.1016/j.retrec.2010.11.009.

Dautel, V., Docquier, F., Paccoud, A. and Verheyden, B. (2024). The economic Impact of cross-border workers in
Luxembourg: Labor market dynamics, housing market developments, and technological externalities.

de la Barra, T. (1989). Integrated land use and transport modelling: Decision chains and hierarchies, Cambridge
University Press, Cambridge, UK:. DOI: 10.1016/0191-2607(90)90039-9.

de Palma, A., Motamedi, K., Picard, N. and Waddell, P. (2005). A model of residential location choice with endoge-
nous housing prices and traffic for the Paris region, Eur. Transp. / Trasp. Eur. 31: 67–82.

Department for transport, directorate for mobility planning (2018). Modu 2.0 - Sustainable Mobility Strategy, Techni-
cal report, Department of Transport, Directorate for Mobility Planning Based.

Domencich, T. A. and McFadden, D. (1975). Urban travel demand: A behavioral analysis.

Echeñique, M., Crowther, D. and Lindsay, W. K. (1969). A spatial model of urban stock and activity, Reg. Stud.
3: 281–312.

Echenique, M. H., Flowerdew, A. D., Hunt, J. D., Mayo, T. R., Skidmore, I. J. and Simmonds, D. C. (1990).
The Meplan models of bilbao, Leeds and Dortmund: Foreign summaries, Transp. Rev. 10(4): 309–322. DOI:
10.1080/01441649008716764.

Escolano-Utrilla, S., López-Escolano, C. and Salvador-Oliván, J. A. (2024). Size and spatial and functional structure
of aggregate daily mobility networks in functional urban areas: Integrating adjacent spaces at several scales, Cities
145(104731). DOI: 10.1016/j.cities.2023.104731.

Fabolude, G., Knoble, C., Vu, A. and Yu, D. (2025). Smart cities, smart systems: A comprehensive review of
system dynamics model applications in urban studies in the big data era, Geogr. Sustain. 6(1): 100246. DOI:
10.1016/j.geosus.2024.10.002.

Feldman, O. and Simmonds, D. (2005). Land-use modelling with DELTA: Update and experience, Proc. Ninth Int.
Conf. Comput. Urban Plan. Urban Manag.

Fontoura, W. B., Chaves, G. d. L. D. and Ribeiro, G. M. (2019). The Brazilian urban mobility policy: The
impact in São Paulo transport system using system dynamics, Transp. Policy 73(April 2017): 51–61. DOI:
10.1016/j.tranpol.2018.09.014.

Forrester, J. W. (1961). Industrial Dynamics, MIT Press, Cambridge, Massachusetts.

Forrester, J. W. (1970). Urban dynamics, Ind. Manag. Rev. 11(3).

Gerber, P., Caruso, G., Cornelis, E. and Médard de Chardon, C. (2018). A multi-scale fine-grained luti model to
simulate land-use scenarios in Luxembourg, J. Transp. Land Use 11(1): 255–272. DOI: 10.5198/jtlu.2018.1187.

Goldner, W. (1971). The Lowry model heritage, J. Am. Plan. Assoc. 37(2): 100–110. DOI:
10.1080/01944367108977364.

Haghani, A., Sang, Y. L. and Joon, H. B. (2003a). A system dynamics approach to land use transportation system
performance modeling, Part 1: Methodology, J. Adv. Transp. 37(1): 1–82.

55

https://doi.org/10.1016/j.trb.2005.02.002
https://doi.org/10.1016/j.tbs.2024.100789
https://doi.org/10.1016/j.scs.2021.103329
https://doi.org/10.1016/j.scs.2021.103329
https://doi.org/10.1016/j.retrec.2010.11.009
https://doi.org/10.1016/0191-2607(90)90039-9
https://doi.org/10.1080/01441649008716764
https://doi.org/10.1080/01441649008716764
https://doi.org/10.1016/j.cities.2023.104731
https://doi.org/10.1016/j.geosus.2024.10.002
https://doi.org/10.1016/j.geosus.2024.10.002
https://doi.org/10.1016/j.tranpol.2018.09.014
https://doi.org/10.1016/j.tranpol.2018.09.014
https://doi.org/10.5198/jtlu.2018.1187
https://doi.org/10.1080/01944367108977364
https://doi.org/10.1080/01944367108977364


Haghani, A., Sang, Y. L. and Joon, H. B. (2003b). A system dynamics approach to land use transportation system
performance modeling, Part 2: Application, J. Adv. Transp. 37(1): 1–82.

Haque, M. B., Choudhury, C., Hess, S. and dit Sourd, R. C. (2019). Modelling residential mobility decision and its
impact on car ownership and travel mode, Travel Behav. Soc. 17: 104–119. DOI: 10.1016/j.tbs.2019.07.005.

Hyman, G. (1969). The calibration of trip distribution models, Environ. Plan. 1(1): 105–112. DOI: 10.1068/a010105.

Ibeas, Á., Cordera, R., Dell’Olio, L. and Coppola, P. (2013). Modelling the spatial interactions between workplace
and residential location, Transp. Res. Part A Policy Pract. 49: 110–122. DOI: 10.1016/j.tra.2013.01.008.

International Energy Agency (2021). Fuel economy in the European Union, Technical report, International Energy
Agency.

Johansen, B. G., Hansen, W. and Tennoy, A. (2015). Evaluation of models and methods for analyzing the interac-
tion between land-use , infrastructure and traffic demand in urban areas, Technical report, Institute of Transport
Economics Norwegian Centre for Transport Research.

Kaufmann, V. and Jemelin, C. (2003). Coordination of land-use planning and transportation: How much room to
manoeuvre?, Int. Soc. Sci. J. 55(176): 295–305. DOI: 10.1111/j.1468-2451.2003.05502009.x.

Khosravi, S., Haghshenas, H. and Salehi, V. (2020). Macro-Scale Evaluation of Urban Transportation Demand
Management Policies in CBD by Using System Dynamics Case Study: Isfahan CBD, Transp. Res. Procedia
48(2018): 2671–2689. DOI: 10.1016/j.trpro.2020.08.246.

Kii, M., Moeckel, R. and Thill, J. C. (2019). Land use, transport, and environment interactions: WCTR
2016 contributions and future research directions, Comput. Environ. Urban Syst. 77: 101335. DOI:
10.1016/j.compenvurbsys.2019.04.002.

Lau, K. H. and Kam, B. H. (2005). A cellular automata model for urban land-use simulation, Environ. Plan. B Plan.
Des. 32(2): 247–263. DOI: 10.1068/b31110.

Le, H., Gurry, F. and Lennox, J. (2023). An application of land use, transport, and economy interaction model, Res.
Transp. Econ. 99: 101294. DOI: 10.1016/j.retrec.2023.101294.

Lee, B. H. and Waddell, P. (2010). Residential mobility and location choice: A nested logit model with sampling of
alternatives, Transportation (Amst). 37(4): 587–601. DOI: 10.1007/s11116-010-9270-4.

Lennox, J. (2023). Spatial economic dynamics in transport project appraisal, Econ. Model. 127(August): 106464.
DOI: 10.1016/j.econmod.2023.106464.

Lerman, S. (1976). Location, housing, automobile ownership, and mode to work: a joint choice mode, Transp. Res.
Rec. pp. 6–11.

Lopane, F. D., Kalantzi, E., Milton, R. and Batty, M. (2023). A land-use transport-interaction framework for large
scale strategic urban modeling, Comput. Environ. Urban Syst. 104. DOI: 10.1016/j.compenvurbsys.2023.102007.

Lowry, I. (1964). A model of metropolis, Technical report, Santa Monica Rand Corporation, Santa Monica, CA.

Mackett, R. (1983). The Leeds integrated land-use transport model (LILT), Technical report, Institute for Transport
Studies, University of Leeds, Leeds, UK.

Markus Maibach, Peter;, M. and Sutter, D. (2006). Analysis of operating cost in the EU and the US. Annex 1 to
COMPETE Final Report, Technical report, European Commission, Karlsruhe, Germany.

Martínez, F. J. and Henríquez, R. (2007). A random bidding and supply land use equilibrium model, Transp. Res. Part
B Methodol. 41(6): 632–651. DOI: 10.1016/j.trb.2006.08.003.

McFadden, D. (1974). The measurement of urban travel demand, J. Public Econ. 3(4): 303–328. DOI: 10.1016/0047-
2727(74)90003-6.

56

https://doi.org/10.1016/j.tbs.2019.07.005
https://doi.org/10.1068/a010105
https://doi.org/10.1016/j.tra.2013.01.008
https://doi.org/10.1111/j.1468-2451.2003.05502009.x
https://doi.org/10.1016/j.trpro.2020.08.246
https://doi.org/10.1016/j.compenvurbsys.2019.04.002
https://doi.org/10.1016/j.compenvurbsys.2019.04.002
https://doi.org/10.1068/b31110
https://doi.org/10.1016/j.retrec.2023.101294
https://doi.org/10.1007/s11116-010-9270-4
https://doi.org/10.1016/j.econmod.2023.106464
https://doi.org/10.1016/j.compenvurbsys.2023.102007
https://doi.org/10.1016/j.trb.2006.08.003
https://doi.org/10.1016/0047-2727(74)90003-6
https://doi.org/10.1016/0047-2727(74)90003-6


Miller, E. J. (2020). Measuring Accessibility: Methods & Issues, Int. Transp. Forum Discuss. Pap.

Ministère de l’Aménagement du Territoire (2023). Programme directeur d’amenagement du territoire (PDAT), Tech-
nical report, le Gouvernement du Grand-Duché de Luxembourg, Luxembourg.

Ministere du Developpment durable et des Infrastructures (2017). Luxmobil 2017: Enquête sur la mobilité des rési-
dents au Luxembourg, Technical report, Département de la mobilité et des transport.

Ministry of Housing and Spatial Planning (2025). Housing Observatory.

Ministry of Mobility and Public Works (MMTP), Department of Mobility and Transport, D. o. M. P. (2022). PNM 2035
- National Mobility Plan, Ministry of Mobility and Public Works Department of Mobility and Transport Directorate
of Mobility Planning.

MMUST (2022). Grande enquête de mobilité - Résultats des préférences révélées, Technical report, Projet MMUST
(Modéliser les Mobilités Urbaines et Sociales Transfrontalières).

Mobilitéit (2025). Public transport of Luxembourg. DOI: https://www.mobiliteit.lu/en/tickets-page/national-tickets/.

Modèle multimodal et scénarios de mobilité transfrontalier (MMUST+) (2025).

Moeckel, R., Chou, A. T., Garcia, C. L. and Okrah, M. B. (2018). Trends in integrated land-use/transport modeling:
An evaluation of the state of the art, J. Transp. Land Use 11(1): 463–476. DOI: 10.5198/jtlu.2018.1205.

Moeckel, R., Schwarze, B., Spiekermann, K. and Wegener, M. (2007). Simulating interactions between land use,
transport and environment, Proc. 11th World Conf. Transp. Res., Berkeley, CA: University of California at Berkeley.

Mokhtarian, P. L. and Cao, X. (2008). Examining the impacts of residential self-selection on travel behavior: A focus
on methodologies, Transp. Res. Part B Methodol. 42(3): 204–228. DOI: 10.1016/j.trb.2007.07.006.

Niedzielski, M. A. and Eric Boschmann, E. (2014). Travel time and distance as relative accessibility in the journey to
work, Ann. Assoc. Am. Geogr. 104(6): 1156–1182. DOI: 10.1080/00045608.2014.958398.

Observatoire du développement territorial (2025). L’emploi des acifs occupés au Luxembourg, Technical Report 3,
Ministère du Logement et de l’Aménagement du territoire.

Odysse Muree (2024). Sectoral Profile - Transport, Technical report.

Ortuzar, J. d. D. and Willumsen, L. G. (2011). Modelling Transport, 4 edn, Wiley, Chichester, UK.

Pfaffenbichler, P. (2003). The strategic, dynamic and integrated urban land use and transport model MARS (Metropoli-
tan Activity Relocation Simulator), PhD thesis, TU Wien.

Pfaffenbichler, P., Emberger, G. and Shepherd, S. (2008). The integrated dynamic land use and transport model
MARS, Networks Spat. Econ. 8(2-3): 183–200. DOI: 10.1007/s11067-007-9050-7.

Pfaffenbichler, P., Harrison, G., Shepherd, S., Gühnemann, A., Jittrapirom, P. and Gomez Vilchez, J. (2024). In the
loop: The application of system dynamics in transport, Transp. Res. Arena, Dublin, Ireland. DOI: 10.5281/zen-
odo.11056813.

Pinjari, A. R., Bhat, C. R. and Hensher, D. A. (2009). Residential self-selection effects in an activity time-use behavior
model, Transp. Res. Part B Methodol. 43(7): 729–748. DOI: 10.1016/j.trb.2009.02.002.

Pinto, N., Antunes, A. P. and Roca, J. (2021). A cellular automata model for integrated simulation of land use and
transport interactions, ISPRS Int. J. Geo-Information 10(3). DOI: 10.3390/ijgi10030149.

Putman, S. H. (1983). Integrated urban models, Policy Anal. Transp. L. use 10.

Ratnasari, A. F. and Van Acker, V. (2024). TELECITY - Investigating rebound effects of telework and its implications
on cities.

Rhinocarhire.com (2025). Fuel prices in Luxembourg.

57

https://doi.org/https://www.mobiliteit.lu/en/tickets-page/national-tickets/
https://doi.org/10.5198/jtlu.2018.1205
https://doi.org/10.1016/j.trb.2007.07.006
https://doi.org/10.1080/00045608.2014.958398
https://doi.org/10.1007/s11067-007-9050-7
https://doi.org/10.5281/zenodo.11056813
https://doi.org/10.5281/zenodo.11056813
https://doi.org/10.1016/j.trb.2009.02.002
https://doi.org/10.3390/ijgi10030149


RTL Today (2023a). Speed limit soon reduced to 90km/h during rush hour?

RTL Today (2023b). When is peak rush hour in Luxembourg City?

Salvini, P. and Miller, E. J. (2005). ILUTE: An operational prototype of a comprehensive microsimulation model of
urban systems, Networks Spat. Econ. 5(2) 5(2): 217–234.

Schultheiss, M. E., Pattaroni, L. and Kaufmann, V. (2024). Planning urban proximities: An empirical analysis of how
residential preferences conflict with the urban morphologies and residential practices, Cities 152(105215). DOI:
10.1016/j.cities.2024.105215.

Shen, Q., Chen, Q., sin Tang, B., Yeung, S., Hu, Y. and Cheung, G. (2009). A system dynamics model for the
sustainable land use planning and development, Habitat Int. 33(1): 15–25. DOI: 10.1016/j.habitatint.2008.02.004.

Shepherd, S. P. (2014). A review of system dynamics models applied in transportation, Transp. B 2(2): 83–105. DOI:
10.1080/21680566.2014.916236.

Simmonds, D. (2016). Transport modelling, microsimulation and other issues in land-use/economic/transport mod-
elling practice., Symp. Integr. Land-Use Transp. Model., Raitenhaslach, Germany.

Simmonds, D. C. (1999). The Delta land use modeling package, Environ. Plan. B Plan. Des. 26: 665–684.

Simmonds, D., Waddell, P. and Wegener, M. (2013). Equilibrium versus dynamics in urban modelling, Environ. Plan.
B Plan. Des. 40(6): 1051–1070. DOI: 10.1068/b38208.

Sivakumar, A. (2007). Modelling transport: A Synthesis of transport modelling methodologies, Technical report,
Imperial College of London.

Statec (2017). Projections macroéconomiques et démographiques de long terme: 2017-2060, Technical report, Institut
national de la statistique et et des études économiques (STATEC).

Statista Research Department (2025). Luxembourg: Monthly unleaded gasoline prices.

Sterman, J. D. (2000). Systems thinking and modeling for a complex world, Irwin McGraw-Hill, Boston, Boston:
McGraw-Hill.

Swanson, J. and Gleave, S. D. (2008). Transport and the urban economy: The urban dynamic model J, Innovation
2: 28–32.

Timmermans, H. (2006). Modelling land use and transportation dynamics: Methodological issues, state-of-art, and
applications in developing countries, Technical report, Urban Planning Group, Eindhoven University of Technology,
The Netherlands.

Tscharaktschiew, S. and Hirte, G. (2012). Should subsidies to urban passenger transport be increased? A spa-
tial CGE analysis for a German metropolitan area, Transp. Res. Part A Policy Pract. 46(2): 285–309. DOI:
10.1016/j.tra.2011.09.006.

Ummah, M. S. (2019). Organizing e-mobility in cities - chances and risks, Sustain. 11(1): 1–14.

van Wee, B. (2015). Toward a new generation of land use transport interaction models, J. Transp. Land Use 8(3): 1–10.

Vega, A. and Reynolds-Feighan, A. (2009). A methodological framework for the study of residential location and
travel-to-work mode choice under central and suburban employment destination patterns, Transp. Res. Part A Policy
Pract. 43(4): 401–419. DOI: 10.1016/j.tra.2008.11.011.

Ventana Systems (2025). Vensim Personal Learning Edition (PLE).

Ville de Luxembourg (2025). Affordable housing.

Von Neumann, J. (1968). The general and logical theory of automata, Syst. Res. Behav. Sci., Cambridge: MIT Press.

58

https://doi.org/10.1016/j.cities.2024.105215
https://doi.org/10.1016/j.cities.2024.105215
https://doi.org/10.1016/j.habitatint.2008.02.004
https://doi.org/10.1080/21680566.2014.916236
https://doi.org/10.1080/21680566.2014.916236
https://doi.org/10.1068/b38208
https://doi.org/10.1016/j.tra.2011.09.006
https://doi.org/10.1016/j.tra.2011.09.006
https://doi.org/10.1016/j.tra.2008.11.011


Waddell, P. (2002). Urbansim: Modeling urban development for land use, transportation, and environmental planning,
J. Am. Plan. Assoc. 68(3): 297–314. DOI: 10.1080/01944360208976274.

Waddell, P. (2014). Integrated land use and transportation planning and modelling: Addressing challenges in research
and practice, Transp. Model. Urban Plan. Pract., Routledge, p. 22.

Walczak, A. and Mathae, T. (2018). Statistics on cross-border workers in the greater region, Technical report.

Walker, R. and Wakeland, W. (2011). Calibration of complex system dynamics models: A practioner’s report, Techni-
cal report.

Wegener, M. (2021). Land-use transport interaction models, Handb. Reg. Sci., Springer, Berlin, Heidelberg.

White, M. J. (1988). Location choice and commuting behavior in cities with decentralized employment, J. Urban
Econ. 24(2): 129–152. DOI: 10.1016/0094-1190(88)90035-6.

Wikipedia contributors (2025). Transport in Luxembourg.

WinWin4WorkLife Consortium (2025). WinWin4WorkLife.

Xie, Y. and Batty, M. (2004). Integrated urban evolutionary modeling, GeoDynamics 44(0): 273–294. DOI:
10.1201/9781420038101-24.

Yang, L., Zheng, G. and Zhu, X. (2013). Cross-nested logit model for the joint choice of residential location, travel
mode, and departure time, Habitat Int. 38: 157–166. DOI: 10.1016/j.habitatint.2012.06.002.

Yu, Y., He, J., Tang, W. and Li, C. (2018). Modeling Urban collaborative growth dynamics using a multiscale sim-
ulation model for theWuhan urban agglomeration area, China, ISPRS Int. J. Geo-Information 7(5): 1–13. DOI:
10.3390/ijgi7050176.

Zhang, Z. and Li, J. (2022). Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the
production-living-ecological perspective, Land use policy 119: 106219. DOI: 10.1016/j.landusepol.2022.106219.

Zhao, L. and Peng, Z. R. (2012). LandSys: An agent-based Cellular Automata model of land use change developed
for transportation analysis, J. Transp. Geogr. 25: 35–49. DOI: 10.1016/j.jtrangeo.2012.07.006.

59

https://doi.org/10.1080/01944360208976274
https://doi.org/10.1016/0094-1190(88)90035-6
https://doi.org/10.1201/9781420038101-24
https://doi.org/10.1201/9781420038101-24
https://doi.org/10.1016/j.habitatint.2012.06.002
https://doi.org/10.3390/ijgi7050176
https://doi.org/10.3390/ijgi7050176
https://doi.org/10.1016/j.landusepol.2022.106219
https://doi.org/10.1016/j.jtrangeo.2012.07.006

	Introduction
	Motivation
	Goals and objectives

	Relevant literature
	Contributions
	Methodology
	Causal loop diagrams
	Model boundary
	Transport module
	Travel demand model
	Travel infrastructure model

	Land use module
	Residential relocation sub-model
	Residential development sub-model


	The case of Luxembourg
	Case study area
	Data and key assumptions
	Model parameters and calibration
	Results and analysis: Base scenario and model assessment
	Policy and scenario analysis
	Construction of affordable housing
	High speed tram between Luxembourg City and Esch-sur-Alzette


	Conclusion

