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Abstract

Activity-based travel models that represent both household and individual decision-making involve intricate
behavioural interactions and rely on complex simulation tools. As a result, calibrating their parameters presents
significant methodological challenges. In this paper, we propose a novel maximum likelihood estimation
procedure that explicitly accounts for choice sets defined at the household level. We apply the method to data
from the UK National Travel Survey. Beyond illustrating and validating the approach, our results demonstrate
that models calibrated at the household level produce daily schedule distributions that more closely reflect
observed data than those based solely on individual-level modelling.

Keywords: Activity-based modelling, Intra-household interactions, Choice-set generation, ABM calibration,
Discrete choice models, Daily scheduling.
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1 Introduction
The scheduling process is a fundamental element of activity-based demand modelling. The predominant ap-
proach for scheduling within Activity-based models (ABMs) used in both research and practice is to consider
isolated individual agents, whose choices are independent of other decision-makers. This approach neglects
the influence of household interactions in the scheduling process, which may lead to biased simulation of
activity-travel schedules, leading to inappropriate policy actions and investments as the schedule of household
members are mutually dependent. Capturing interpersonal dependencies between individuals belonging to the
same household enhances consistency of predicted choices and behaviour.

Individuals do not plan their day in isolation from other members of the household. Real-world decision-
making involves considering the activities and schedules of other household members and sometimes other
individuals in their social network. Various interactions, time arrangements, and constraints affect the activ-
ity schedules of individuals. Intra-household interactions significantly shape daily activity schedules through
mechanisms such as: (i) synchronising schedules to enable joint activities, for example family movie nights,
(ii) coordinating travel, for instance, escorting children or sharing a ride, and (iii) sharing responsibilities and
allocating resources, such as household vehicle usage. However, most ABMs overlook the household decision-
making perspectives. Hence, models based solely on individual choices must be revisited and enhanced to take
into account intra-household interactions.

There are two major research streams within the scope of ABMs: (i) rule-based or computational process
models (e.g., Arentze and Timmermans 2004), and (ii) econometric models (e.g., Nurul Habib 2018). Econo-
metric models assume that individuals choose their activity schedules to maximise their utility. Within these
models, activity scheduling and travel behaviour are explained and predicted through discrete choices, modelled
either sequentially or jointly, and estimated using econometric methods such as advanced discrete choice models
(Bowman and M. E. Ben-Akiva 2001) or micro-simulation approaches (Bhat 2005). Constraints are a critical
component in explaining activity-travel behaviour. To produce meaningful behavioural outputs, it is important
that such models incorporate the various constraints individuals face—whether temporal, spatial, institutional,
or resource-based—which influence not only the set of available actions but also the dynamics and feasibility of
activity execution (Rezvany, Michel Bierlaire, and Hillel 2023; Pougala, Hillel, and Michel Bierlaire 2022; Auld
and Mohammadian 2011; Arentze, Ettema, and Timmermans 2010). Using discrete choice models implies the
need for calibration of maximum likelihood estimators of the parameters of the utility functions. Estimating
parameters remains a key challenge in ABMs.

Consistent estimation of parameters requires complete enumeration of the alternatives within the choice set.
This necessitates behavioural data for hypothetical or unobserved scenarios in addition to the chosen alternative
(revealed preference). Such data are generally unobservable and not available from conventional data sources
like travel diary surveys or time-use datasets. Moreover, deriving choice probabilities and likelihood functions
requires the modeller to assume a universal choice set that is finite and enumerable. In reality, the full choice
set, encompassing all possible activities and their spatio-temporal sequences, is combinatorially large and prac-
tically impossible to enumerate, while individuals are indeed only aware of a limited subset. Consequently, it
is common practice to estimate parameters using a sampled choice set of alternatives (Guevara and Moshe E.
Ben-Akiva 2013). Thus, defining a representative choice set for household activity scheduling is essential for
operationalising household random utility models. Identifying and operationalising appropriate techniques for
generating consistent and representative sampled choice sets remains a significant challenge.

For ABM parameter estimation, using discrete-choice modelling is not straightforward because the assump-
tion of independent and identically distributed (i.i.d.) errors often does not hold, as the schedule alternatives
within a choice set may share overlaps in certain components despite their general distinction. Furthermore, the
presence of constraints further complicates the problem, making closed-form probability derivations unattain-
able. Simultaneous simulation of different scheduling choice dimensions, including: (i) activity participation,
(ii) activity location, (iii) activity schedule, (iv) activity duration, (v) activity participation mode (solo/joint),
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and (vi) transport mode; enhances the behavioural realism of the model and enables capturing trade-offs and in-
teractions. However, this simultaneity increases the complexity of parameter estimation, as properly accounting
for correlations between choice dimensions and alternatives within a tractable modelling framework is chal-
lenging. Sequential models simplify the parameter estimation process by decomposing it into multiple stages,
considering a predefined or arbitrarily constructed choice set, but at the expense of flexibility and behavioural
realism (Bowman and M. E. Ben-Akiva 2001).

In order to simulate the daily activity schedules of individuals within a household, the numerous and complex
interactions among household members should be explicitly accounted for. In earlier research, we propose an
econometric ABM framework for household activity scheduling, contributing to the state-of-the-art in activity-
based modelling by explicitly modelling multiple interaction dimensions within the same framework (Rezvany,
Michel Bierlaire, and Hillel 2023). In this approach, the scheduling problem is formulated as a mixed-integer
utility optimisation problem, where the intra-household interactions are captured through constraints and the
objective function. The objective is to maximise the household utility, subject to a set of schedule continu-
ity constraints and household-level constraints, such as (i) allocation of the resources to household members,
(ii) sharing household maintenance responsibilities, (iii) joint participation of household members in activities,
and (iv) escorting. Another merit of this scheduling model is its simultaneous simulation of different daily
scheduling choice dimensions such as activity participation, location choice, scheduling, duration, participation
mode (solo/joint), and transport mode, thus effectively capturing the trade-offs between different choice dimen-
sions. This scheduling framework simulates the activity schedules of individuals from a group decision-making
point-of-view rather than treating individuals as isolated.

We identify two research questions necessary to operationalise household ABMs: (i) How can the choice
set be formulated such that it represents the household scheduling problem? (ii) How to formulate a tractable
model specification to estimate the parameters of the household ABMs?

In this paper, we address these research questions by focusing on generation of a consistent choice set
and estimating meaningful and significant parameters within household-level activity-based scheduling. In this
context, the choice set comprises multiple alternatives, each representing an ensemble of daily activity schedules
for all household members. Employing a choice set generation technique based on a Metropolis Hastings (MH)
sampling algorithm can be a smart move to efficiently explore the solution space and strategically sample alter-
natives suitable for econometric calibration of the activity-based model. The generated sample should include
plausible alternatives that are competitive with the observed choice and have high enough utility to be realis-
tically considered by the decision-maker. Due to the complexities introduced by intra-household interactions,
such as additional choice dimensions, timing constraints, and joint decision-making mechanisms, these aspects
must be explicitly incorporated into both the choice set generation process and the subsequent parameter esti-
mation to maintain the consistency. Such integration ensures the consistency and realism of household schedules.

We propose a choice set generation framework for household activity scheduling, producing ensembles of
schedules with consistent alternatives for all household members. This paper builds on two recent contributions
to the field of activity-based modelling: (i) an ABM designed to capture joint scheduling behaviour of households
(Rezvany, Michel Bierlaire, and Hillel 2023), and (ii) a maximum likelihood estimation approach tailored for
individual-level ABMs (Pougala, Hillel, and Michel Bierlaire 2023). We bridge these advances by formulating
an estimation framework that extends the latter to accommodate the complex, high-dimensional choice sets
that arise from household interactions and scheduling constraints. As such, the proposed framework is broadly
applicable to ABMs involving structured and constrained decision spaces, beyond the household setting.

Key considerations for household choice set generation are carefully noted and taken into account. Dedicated
operators for household-level problem are implemented, including operators that modify whether an activity
is performed jointly with other household members or alone. Additionally, the utility function and constraints
are explicitly formulated to accommodate the intra-household interactions. Using the generated choice set, we
present an estimation procedure to calibrate parameters of the utility-based household scheduling model. The
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framework is applied to a case study based on the UK National Travel Survey (NTS) dataset. The results are
then discussed and analysed, demonstrating how the household-level model enhances behavioural realism and
achieves closer alignment with observed empirical patterns.

It should be noted that interpersonal interactions beyond the household are referred to as social interactions
and are out of the scope of this study. Furthermore, we explicitly focus on short-term interactions in our frame-
work. Therefore, we assume long-term household decisions such as household car ownership, partnerships,
professional occupation status, and home and work locations are exogenous and given.

The remainder of this manuscript is structured as follows. We give a review of the literature in Section 2. In
Section 3 the methodology for estimation of model parameters and the generation of choice sets at the household
level is explained. Section 4 introduces the case study and provides evidence from observed household data. The
choice set generation and estimation methodology is applied to a real-world case study in Section 5. Section 6
presents and analyses the schedule simulation results. Finally we conclude with a discussion on household-level
versus individual-level choice set generation models (Section 7.1), followed by outlining directions for future
research (Section 7.2).

2 Relevant literature
ABMs consider the demand for travel to be driven by participation in spatially and temporally distributed ac-
tivities (Bowman and M. E. Ben-Akiva 2001; Chapin 1974; Hagerstrand 1970). By including why trips are
derived, ABMs aim to replicate real-world decisions with more behavioural realism compared to the traditional
trip-based models focusing on individual trips. This approach has been of interest to modellers and analysts
in different domains such as transportation and energy research (Hou, Pawlak, and Sivakumar 2025; Rezvany,
Hillel, and Michel Bierlaire 2021; Nurul Habib 2018; Subbiah 2013; Bhat 2005). Individuals do not plan
their day in isolation from other household members. The household group decision-making in activity-travel
behaviour have mostly been explored either at the top-level of activity generation (Arentze and Timmermans
2009; Bradley and Vovsha 2005), time allocation (Zhang and Fujiwara 2006), or sequential household-level
activity pattern generation Bhat et al. 2013. Most models lack simultaneous representation of activity generation,
timing, sequence, and schedules, though realistically these should be jointly modelled to generate household
activity-travel schedules.

Timmermans and Zhang 2009 review household activity-travel models and emphasise that ABMs should
incorporate intra-household interactions, group decision-making processes, contextual factors, and move be-
yond purely sequential to simultaneous representations of interdependent choice dimensions. The family of
Household activity pattern problem (HAPP) models introduced by W. Recker 1995 formulates the household
activity scheduling problem as a simultaneous decision process using a Mixed integer linear programming
(MILP) framework, drawing inspiration from vehicle routing models; however, their prescriptive nature poses
challenges for statistical estimation and empirical calibration from observed behaviour. In Rezvany, Michel
Bierlaire, and Hillel 2023, we propose an operational utility-based scheduling framework that explicitly captures
multiple intra-household interactions within a single ABM using a simultaneous approach. The model explicitly
accommodates complex interactions among household members such as the allocation of private vehicle to
household members, escort duties, joint participation in activities, and sharing rides.

One challenge in the utility-based ABMs is parameter estimation and model calibration. This is specifi-
cally complex for models which consider all choice dimensions simultaneously, rather than sequential models.
Research on household-level activity-based modelling with a specific focus on parameter estimation remains
relatively scarce. Parameter estimation can be broadly approached in two ways: using fixed arbitrary parameter
values (e.g., Charypar and Nagel 2005) or employing empirical estimation procedures based on data. Estimating
parameter based on data remains intricate, as the traditional surveys such as travel diaries are limited to only
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revealed preferences. The choice set of alternatives is typically latent or unobservable to the analyst. Defining
a choice set representative of activity-travel patterns in household activity scheduling problem is necessary for
operationalising household-level random utility models.

There are various examples of choice set generation in route-choice modelling literature (Prato and Bekhor
2007; Bekhor, Moshe E. Ben-Akiva, and Ramming 2006; Richardson 1982). The choice set formation models
can be broadly categorised into two groups (Pagliara and Timmermans 2009): (i) deterministic, and (ii) stochas-
tic. In deterministic method, a subset of choices is pre-specified for each individual based on the analyst’s
discretion obtained from decision rules reflecting the domain knowledge. This is often accomplished by either
restricting the choice set to include only the alternatives within a pre-specified distance or travel time from each
individual’s trip origin (Scott and He 2012; Termansen, McClean, and Skov-Petersen 2004), or including all
destinations that are chosen by other surveyed individuals residing in proximity to the given individual (Miller
and O”Kelly 1983). There exist a large variety of deterministic methods for generating alternative routes in
networks such as the k-shortest path (Robert B.Dial 1971), link elimination (Pagliara and Timmermans 2009),
link penalty (Barra, Perez, and Anez 1993), and labelling (Moshe Ben-Akiva et al. 1984). Deterministic choice
set generation methods are straightforward to implement but rely heavily on analysts’ assumptions, potentially
leading to biased choice sets. Stochastic approaches such as simulation methods (Flötteröd and Michel Bierlaire
2013; Frejinger, M. Bierlaire, and M. Ben-Akiva 2009; Bovy 2009; Bovy and Fiorenzo-Catalano 2007) intro-
duce randomness into the generation process to better reflect travelers’ heterogeneity and uncertainty in route
perception (Nielsen 2000).

Choice set generation techniques from route choice modelling have been adopted and applied in ABMs
(e.g., Danalet 2015). Additionally, the use of MH algorithms for sampling alternatives in activity-based contexts
has been explored in the literature (Pougala, Hillel, and Michel Bierlaire 2023). Typically, the individual-level
scheduling process is defined as a discrete choice problem, where parameters are estimated using Maximum
Likelihood Estimation. Recent literature has investigated parameter estimation procedures for household-level
ABMs. We conduct a comprehensive search across the three largest online publication databases - namely
Google Scholar, Web of Science and Scopus - with keywords “household choice set", “household scheduling
calibration", and “household ABMs estimation", to identify studies that address estimation procedures especially
for household ABMs. Key papers studying calibration methods for household ABMs are selected and discussed
in the remainder of this section.

Roorda, Miller, and Kruchten 2006 proposes a Genetic Algorithm (GA)-based procedure for estimating the
parameters of a household tour-based mode choice model developed for the Greater Toronto Area, known as
Travel Activity Scheduler for Household Agents (TASHA). The Maximum log-likelihood estimation is performed
using Monte Carlo simulation, while the search for the optimal parameter set that maximises the log-likelihood
function employs a GA procedure. Although TASHA represnts a successful first attempt at operationalising a
model based on a group decision-making paradigm, it remains a sequential rule-based microsimulation model.

Recent advances have progress toward estimation of HAPP models (W. Recker 1995). W. Recker, Duan,
and Wang 2008 proposes a GA-based procedure to tune model parameters such that the Levenshtein distance of
strings from observed pattern and strings generated by HAPP is minimised. An inverse optimisation technique is
proposed by Chow and Will W. Recker 2012 to estimate HAPP. Regue, Allahviranloo, and Will Recker 2015 use
goal programming to calibrate activity-scheduling priority parameters for different household clusters in HAPP.
Although these calibration approaches improve overall model performance, the reliance on comparing simulated
and observed patterns limits their capacity to provide insights into non-chosen activity patterns. Xu, Kang, and
Chen 2018 develop a choice set generation technique for HAPP grounded in Random Utility Theory, employing
the clustering approach developed by Allahviranloo, Regue, and Will Recker 2014. They identify representative
patterns from observed activity-travel patterns. A GA is then utilised to sample a pattern from each non-chosen
representative cluster, optimising information gain by minimising the D-error of the final sample. Subsequently,
goal programming adjusts these sampled alternatives to respect individuals’ spatial and temporal constraints,
ensuring the feasibility of the generated choice set. This procedure offers behavioural realism grounded in utility
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theory, however, it introduces bias and endogeneity by favoring high-probability alternatives, leading to potential
overfitting and reduced predictive power.

Kim and Parent 2016 develop a spatial multivariate Tobit mode, estimated using Bayesian methods, enabling
individuals to account for other household members’ willingness to travel when selecting potential destinations.
This study offers valuable insights into the impact of intra-household interactions on individual travel decisions.
However, the approach does not explicitly incorporate the scheduling and sequencing of activities, limiting its
direct applicability to parameter estimation in detailed household-level activity scheduling models.

In contrast to explicit choice set formation methods, implicit approaches that capture choice set availability
directly within choice models have also been proposed in the literature. Paleti 2015 propose an implicit choice
set generation model that approximates the Manski model (Manski 1977) to understand latent choice set in
household auto ownership decisions. Their approach maintain linear complexity relative to the choice set size.
However, implicit methods often increase computational complexity, making estimation procedures computa-
tionally demanding. Additionally, without explicitly defined choice sets, interpreting results and validating the
realism of generated alternatives can become challenging.

Shakeel, Adnan, and Bellemans 2022 model the generation of potential joint leisure activities among house-
hold members using a latent class model. Their work specifically focuses on the generation process before
the negotiation within household members related to scheduling decisions. They establish the linkage between
household and individual attributes affecting joint-activity generation. The latent class model addresses the
Independence of Irrelevant Alternatives (IIA) limitation inherent to Multi-nomial logit models by capturing
individual heterogeneity through a discrete set of latent classes. Moreover, because it does not require distribu-
tional assumptions for parameter estimation — as would be the case with a mixture of logit model — it remains
relatively straightforward to estimate. Nevertheless, further research is recommended, particularly in exploring
the generation of joint activities, estimating travel parties involved in joint activity, and integrating this approach
within operational ABMs.

Although the aforementioned studies provide ample insights into operationalisation of ABMs and intra-
household interactions in travel demand modelling, there remains a gap in developing an operational estimation
framework for household-level ABMs with simultaneous simulation of choice dimensions. Such a framework
should explicitly generate household-level choice sets that ensure consistency across alternatives by accounting
for intra-household interactions, while also employing random utility-based parameter estimation with added
behavioural value.

3 Methodology
We introduce an estimation framework for utility-based household scheduling models in which key choice di-
mensions — such as participation, start time, duration, participation mode, and transport mode — are simulated
simultaneously. The framework consists of two main components: (i) a household-level choice set generator, and
(ii) a parameter estimation procedure based on discrete choice modelling. The choice-set generator constructs a
set of schedule alternatives that individuals within a household may consider when planning their daily activities.
It ensures the internal consistency of alternatives across household members by explicitly accounting for intra-
household constraints and time arrangements. The choice set generator outputs consistent schedule alternatives
ensured through explicit consideration of intra-household interaction constraints. To explore the combinatorial
space of feasible household schedules, the generator employs a Metropolis–Hastings (MH) sampling algorithm,
following the approach introduced by Pougala, Hillel, and Michel Bierlaire 2023. In the estimation component,
the household scheduling process is formulated as a discrete choice problem. Model parameters are estimated
by maximising the likelihood function defined over the sampled choice sets.

In the remainder of this section, we first introduce the key definitions for household scheduling problem
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(Section 3.1), provide a synopsis of the household activity scheduling simulation model (Section 3.2), describe
the parameter estimation procedure (Section 3.3), and finally give a detailed description of the household-level
choice set generation framework (Section 3.4).

3.1 Scheduling problem definitions
Consider individual n(h), living in household h, consisting of Nh individuals, such that n(h) ∈ {1, ...,Nh}.
For simplicity of notation, we omit the superscript (h) in n(h). Each individual n schedules their activities
over a time period T (e.g., 24 hours) by considering participating in activities a(n)i distributed in space and
time. For convenience of the notation, we drop the superscript (n) in a(n)i , except where necessary for clarity.
Each activity ai in the considered activity set An, is an action taking place at location ℓai

with a start time
xai

and duration τai
. Each individual also decides whether to participate in the activity jointly with (an)other

individual(s) or alone, captured by a binary variable called activity participation mode pai
, which is 1 if the

activity is performed with (an)other member(s) and 0 if solo. Where consecutive actions ai and aj are at
different locations ℓai

and ℓaj
, activity ai would be followed by a trip with transport modemai

- in other words,
each activity is associated with the proceeding trip.

The schedule Sn of individual n is a sequence of activities over a time horizon T . The household schedule
Sh is defined as the set of individual schedules (Sn)n∈Nh

for all members n of household h, coordinated over
the time horizon T . The actual chosen schedule of individual n is the individual’s realised schedule Sn. The
set of schedules realised by all members of household h, is the household’s realised schedule Sh. The realised
schedules are a subset of feasible schedules.

In the household model, the joint participation of household members in activities and joint travels is cap-
tured, which in turn introduces the concept of household resources. Each household has limited resources r.
For example, consider a household who owns Nr cars, which can be used by individuals to travel to participate
in activities. In case of joint travel, multiple individuals can use the resource at the same time, with the number
of users represented by the resource occupancy Oer . The maximum number of individuals that can share a
resource is defined by the resource capacityCr. Each resource has an associated schedule consisting of resource
events er. A household resource does not make independent decisions; it is solely used by, and dependent on,
the decision-making individuals. The resource event schedule is constrained by the schedules of the household
members and is governed by associated constraints.

A summary of the notation introduced in the scheduling problem definition are presented in Table 1.

We treat the household scheduling as a utility maximisation problem for the household solved as an Mixed
integer linear programming (MILP) optimisation problem subject to constraints and decision variables (Section
3.2). Model parameters are estimated from historic data (Section 3.3), through a choice-set generation procedure
(Section 3.4).

3.2 Utility-based household activity scheduling model
Household activity scheduling is modelled as a utility optimisation problem. It is formulated as a mixed-integer
optimisation framework grounded in random utility theory, jointly considering multiple scheduling decisions.
The schedule of each individual is represented as a sequence of activities over a time horizon T , resulting from
the individual’s choices such as activity participation, activity duration, activity sequence, transportation mode,
and whether to do the activity with (an)other household member(s). Each individual schedule Sn is associated
with a utility function U(Sn), which captures the utility of the schedule for each individual considering the pref-
erences of the individual as well as household-related interactions, such as utility/disutility from joint activities
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Table 1: Notation in problem definition and decision variables

Notation Name Description
n(h) ∈ Nh Individual Index of an individual belonging to household h con-

sisting of the set of individuals Nh of size Nh.
h ∈ H Household Index of a household from the set of all households H.
a
(n)
i ∈ An Activity Activity a(n)i that can be performed by individual n,

from individual-specific considered set of activitiesAn.
T Time horizon The time period over which the schedules are generated.
ℓai
∈ Lai

Activity location Location for activity ai from set of possible locations
Lai

.
mai

∈Mn Transportation mode The mode of travel from the location of the current
activity, ℓai

, to the location of the following activity,
ℓaj

, chosen from discrete and finite individual-specific
list of considered transport modes Mn.

xai
∈ [0, T ] Activity start time A continuous variable representing the start time of

activity ai.
τai
∈ [0, T ] Activity duration A continuous variable representing the duration of ac-

tivity ai.
pai
∈ {0, 1} Activity participation mode Equals to 1 if activity ai is performed jointly with

(an)other individual(s), and 0 if performed solo.
Sn ∈ Fn Individual schedule An ordered list of activities for individual n covering a

time horizon T , from feasible set of schedules Fn.
Sh ∈ Fh Household schedule An ordered set (S1, ..,SNh

) of schedules for all house-
hold members from feasible set of schedules Fh.

Sn, Sh Realised schedules The actual schedule/set of schedules realised by an in-
dividual or household.

r ∈ Rh Resource index Index of a household resource used by its members,from
the set of household resources Rh of size N(h)

r . Re-
sources have no independent decision making capabil-
ities and are purely dependent on the decision-making
individuals.

Oer ∈ {0, . . . ,Cr} Resource occupancy The number of individuals using resource r at the same
time, where Cr is the resource capacity.

er ∈ Er Resource event Event er that can be scheduled for resource r, from the
associated resource event set Er.
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or escorting other household members. The household schedule comprises the schedules of all its individual
members. The household schedule Sh is associated with a household utility function U(Sh), capturing collec-
tive household decision-making, which reflects trade-offs between individual utilities. The scheduling model is
defined subject to a set of constraints that ensures the validity of individual schedules and captures inter-personal
interactions between household members.

The goal of the decision-making individuals is to maximise the utility of the entire household. Thus, the
objective function in household scheduling is defined as Equation 1:

max U(Sh) (1)

U(Sh) =

n=Nh∑
n=1

wn U(Sn) (2)

where U(Sh) denotes the household utility function. U(Sn) is the utility of the schedule Sn for individual
n in household h. U(Sn) can be either positive, negative, or zero. wn is the individual priority parameter,
which captures the relative “power" of each individual in the household-oriented decisions. Nh is the number
of individuals in household h. Equation 2 is written for one specific household, but in parameter estimation, the
maximum likelihood loops over all households in the dataset, h ∈ H.

The utility function U(Sn), captures the utility of the schedule for each individual n in the household.
Possible interaction aspects are captured in the utility function of individuals. We use the same form of utility
form as Pougala, Hillel, and Michel Bierlaire 2022, with added terms incorporated to capture possible interaction
aspects in the utility function. U(Sn) is made up of a generic utility, Ugen

Sn
, linked to the entire schedule of the

individual and utility components linked to the performed activities, Uai
. The generic utility, Ugen

Sn
, captures

schedule-level preferences not directly linked with any specific activity, such as a dislike for overly busy days or
a preference for including at least one out-of-home activity. Uai

is specified as the sum of components capturing
the individual’s activity and travel behaviour (e.g., time sensitivity), as well as capturing possible interaction
aspects within the utility function. The general form of U(Sn) is defined as follows:

U(Sn) = Ugen
Sn

+
∑
ai∈An

Uai

= Ugen
Sn

+
∑
ai∈An

Upartic
ai

+ Ustart
ai

+ Uduration
ai

+
∑
aj∈An

(Utravel
ai,aj

)

+ ϵSn
(3)

Ustart
ai

captures the perceived penalty of deviation in start time from the desired start time (x∗ai
). Uduration

ai
captures

the perceived penalty of deviation in duration of activity ai from the preferred duration (τ∗ai
), which can be

either single values or time intervals. Utravel
ai,aj

is a utility term associated with the trip from ℓai
to ℓaj

, including
the penalty associated with travel time and other travel variables such as travel cost. The utility terms also
include a random error term ϵSn

, capturing the unobserved variables. The error terms are assumed to be i.i.d.
and Extreme Value distributed, with a scale parameter µ fixed to 1 for identification purposes. Upartic

ai
is a utility

term purely associated with participation in activity ai, irrespective of its timing and associated trips. Possible
interaction terms such as joint activity participation and escorting are considered in Upartic

ai
as Equation 4. It is

notable that more complex forms of the utility function can be also utilised.

Upartic
ai

= Uconst
ai

+ Ujoint
ai

+ Uescort
ai

(4)

where:

• Upartic
ai

: a utility term, which is purely associated with participation in activity ai, irrespective of any
schedule deviations and travel behaviour.
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• Uconst
ai

: an activity specific constant utility term capturing the inherent preference for participation in
activity ai.

• Ujoint
ai

: a utility term for joint engagement, accounting for the (dis)utility of participating in activity ai
jointly with other household member(s).

• Uescort
ai

: a utility term associated with (dis)utility of doing an escorting task.

The household scheduling problem is subject to a set of constraints that ensure the validity of schedules with
respect to both individual-level and household-level restrictions. Individual-level feasibility constraints ensure
the continuity of schedules by ensuring:

1. Time budget constraint; the simulated schedules should fit within the individual’s time budget and cannot
exceed it,

2. Sequence constraints; each activity must start only after the completion of the trip from the preceding
activity,

3. Consistent transport modes in tours,

4. Feasible time windows; activities should be scheduled within their feasible time windows, such as the
store opening hours for shopping activities.

The inter-personal interactions within a household are captured through a set of household constraints as follows:

ωai
+mVai

⩽ NhV + 1 ∀ai ∈ An,∀n ∈ Nh (5)

zere′
r
+ ze′

rer ⩽ 1 ∀er, e ′r ∈ Er, er ̸= e ′r (6)

(
zere′

r
− 1

)
T ⩽ xer + τer − xe′

r
⩽

(
1 − zere′

r

)
T ∀er , e ′r ∈ Er (7)

∑
er∈Er

τer
Oer

= T (8)

Oer ⩽ Cr ∀er ∈ Er (9)

ωer = ωai
∀er ∈ Er ∩An,∀ai ∈ An ∩ Er,∀n ∈ {Adults} (10)

xer = xai
+ τai

∀er ∈ Er ∩An,∀ai ∈ An ∩ Er, ℓai
∈ {Home},∀n ∈ {Adults} (11)

τer =
∑
aj∈An

(
zaiaj

ρ(ℓai
, ℓaj

, Driving)
)
∀er ∈ Er ∩An, ∀ai ∈ An ∩ Er, ℓai

∈ {Home}, ∀n ∈ {Adults} (12)

xer = xai
∀er ∈ Er ∩An,∀ai ∈ An ∩ Er, ℓai

̸∈ {Home},∀n ∈ {Adults} (13)

τer = τai
+

∑
aj∈An

(
zaiaj

ρ(ℓai
, ℓaj

, Driving)
)

∀ er ∈ Er ∩An, ai ∈ An ∩ Er, ℓai
̸∈ {Home}, n ∈ {Adults} (14)
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ωan
i
= ωan′

i
∀ai ∈ An ∩An

′
,pan

i
= pan′

i
= 1,∀n, n ′ ∈ Nh (15)

xan
i
= xan′

i
∀ai ∈ An ∩An

′
,pan

i
= pan′

i
= 1,∀n, n ′ ∈ Nh (16)

τan
i
= τan′

i
∀ai ∈ An ∩An

′
,pan

i
= pan′

i
= 1,∀n, n ′ ∈ Nh (17)

∑
n∈Adults

ωan
i
= ω

a
Passenger
i

∀ai ∈ APassenger ∩AAdults, λ
a

Passenger
i

= λan
i
= 1 (18)

∑
n∈Adults

xan
i
= x

a
Passenger
i

∀ai ∈ APassenger ∩AAdults, λ
a

Passenger
i

= λan
i
= 1 (19)

∑
n∈Adults

τan
i
= τ

a
Passenger
i

∀ai ∈ APassenger ∩AAdults, λ
a

Passenger
i

= λan
i
= 1,χ

a
Passenger
i

= 0 (20)

∑
n∈Adults

∑
an

j ∈An

(
zan

j a
n
i
ℓan

j

)
=

∑
a

Passenger
j ∈APassenger

(
z
a

Passenger
j a

Passenger
i

ℓ
a

Passenger
j

)
∀ai ∈ APassenger ∩AAdults, λ

a
Passenger
i

= λan
i
= 1, χ

a
Passenger
i

= 0
(21)

∑
n∈Adults

∑
an

j ∈An

(
zan

i a
n
j
ℓan

j

)
=

∑
a

Passenger
j ∈APassenger

(
z
a

Passenger
i a

Passenger
j

ℓ
a

Passenger
j

)
∀ai ∈ APassenger ∩AAdults, λ

a
Passenger
i

= λan
i
= 1, χ

a
Passenger
i

= 0
(22)

∑
n∈Adults

τan
i
= ϑ ω

a
Passenger
i

∀ai ∈ APassenger ∩AAdults, λ
a

Passenger
i

= λan
i
= 1,χ

a
Passenger
i

= 1 (23)

∑
n∈Adults

∑
an

j ∈An

(
zan

i a
n
j
ℓan

j

)
=

∑
a

Passenger
j ∈APassenger

(
z
a

Passenger
i a

Passenger
j

ℓ
a

Passenger
j

)
∀ai ∈ APassenger ∩AAdults, λ

a
Passenger
i

= λan
i
= 1, χ

a
Passenger
i

= 1
(24)

∑
n∈Adults

τan
i
= ϑ ω

a
Passenger
i

∀ai ∈ APassenger ∩AAdults, λ
a

Passenger
i

= λan
i
= 1,χ

a
Passenger
i

= 2 (25)

∑
n∈Adults

∑
an

j ∈An

(
zan

j a
n
i
ℓan

j

)
=

∑
a

Passenger
j ∈APassenger

(
z
a

Passenger
j a

Passenger
i

ℓ
a

Passenger
j

)
∀ai ∈ APassenger ∩AAdults, λ

a
Passenger
i

= λan
i
= 1, χ

a
Passenger
i

= 2
(26)

Equation 5 is household private vehicle ownership constraints, such that if a household owns no private
vehicles, no member can choose one as a transport mode. mVai

is an indicator variable that is 1 if a private mode
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is chosen for activity ai and 0 otherwise. NhV is number of household private cars.

Equations 6 - 14 define the allocation of resources to household members. Household resources refer to
shared assets that are used by household members, exemplified by cars in this study, but can be generalised
to other resources (e.g., home office space) in future applications. For each resource r, an event schedule is
considered. Each resource r has a capacity Cr that limits the maximum number of individuals that can use it
at the same time. Number of users using the car at the same time is denoted by Oer as resource occupancy.
Moreover, the moving resources need a driver to move them. Therefore, their schedule is constrained to that
of the individuals in the household and additional physical constraints exist for the non-static resources. This
is a general approach applicable to any household resource. Equations (6-8 ensure event schedule validity for
resource r. Equation 9 is resource capacity constraint ensuring that at each resource event, the occupancy of each
resource Oer do not exceed its capacity Cr. Equations 10 -14 enforce physical constraints on private vehicle
resources such that an event can be scheduled for them only if it is accompanied by an adult individual throughout
the tour, enforcing consistency of the resource event schedule with the adult individuals in the household.

Equations 15-17 are joint activity participation and ride-share to joint activities constraints. The joint activity
participation is considered as a constraint; if there is a joint activity, both members must participate, or the joint
activity is canceled (15). Furthermore, the consistency of space (embeded in the chosen activity) and time for
all participating members are ensured (16-17).

Equations 18 - 26 define escort activities within household members. Escort is considered as a trip
chauffeured by one of the adults in the household with a private vehicle. Escorting by multiple household heads
is not included in the presented specification, but can be adopted within the framework. Both types of escort
where the core adult picks up/drops off the passenger from/to the activity location (pick-up and drop-off), and
where the adult accompanies the passenger throughout the entire tour (escort and stay) are considered. Each
escort activity is associated with an indicator variable indicating its type, χan

i
. χan

i
is 0 for escort and stay, 1

for the pick-up, and 2 for the drop-off escort type. λan
i

is a binary variable escort indicator such that for each
activity a(n)i , which specifies whether activity a(n)i is/needs escort or not. λan

i
is defined as follows:

• for individuals needing escort: λan
i

specifies whether individual n needs to be escorted for activity a(n)i

(1), or not (0), and

• for individuals providing escort: λan
i

specifies whether activity a(n)i performed by individual n is an
escort (1), or not (0).

Variable ϑ is the stop time duration needed to pick-up or drop-off the passenger (e.g., 5 min). Equations 21, 22,
24, and26 ensure location consistency between the passenger and the adult escorting individual.

The framework takes as input the household composition, scheduling preferences, activity flexibilities,
household resources and their associated events sets, as well as, a considered activity set including their associ-
ated locations, transport modes, and participation modes for each individual in the household. They are utilised
to define a distribution over possible schedules from which random realisations can be generated. Due to the
stochastic nature of the utility function presented in Equation 3, the model generates empirical instances of the
distribution. A simulation technique is used to generate several draws from the distributions of the random terms,
and then solve the optimisation problem explicitly for each realisation. The outcome of the schedule simulation
model is a realisation from the distributions of valid schedules, presenting the schedules of the individuals in
the same household under both individual- and household-level constraints and preferences.

A comprehensive explanation of the household scheduling simulation model can be found in (Rezvany,
Michel Bierlaire, and Hillel 2023). The key additional notation used in the household utility scheduling frame-
work are summarised in Table 2.
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Table 2: Notation for household scheduling framework

Notation Name Description
U(Sn), U(Sh) Schedule utilities Latent (unobserved) utility of participating in schedule

Sn/Sh for individual n/household h, respectively.
x∗ai

, τ∗ai
Desired start times and dura-
tions

A continuous indicator representing the desired start
time/duration for activity a(n)i for individual n.

ρ(ℓai
, ℓaj

,mai
) Travel time The travel time between the locations ℓai

and ℓaj
with

modemai
.

zaiaj
∈ {0, 1} Activity succession Equals to 1 if activity aj is scheduled immediately after

activity ai, and 0 otherwise.
ωai

∈ {0, 1} Activity participation Equals to 1 if individual n participates in activity ai,
and 0 otherwise.

χan
i
∈ {0, 1, 2} Escort type indicator Equals to 0 if escort and stay, 1 if pick-up, and 2 if

drop-off.
λan

i
∈ {0, 1} Escort indicator Equals to 1 if activity ani needs/is escort, and 0 other-

wise.
ϑ ∈ [0, T ] Stop time duration Stop time duration needed to pick-up or drop-off the

passenger.
wn Individual priority parameter Relative weight capturing the priority that is placed

on the schedule utility of each individual in household
decision making.

3.3 Parameter estimation
The household scheduling process is defined as a discrete choice problem. Each alternative is a household daily
schedule, containing a set of full daily schedules of all household members. Each alternative is associated with a
utility, capturing the household utility. The parameters of utility-based scheduling model can be estimated with
maximum likelihood estimation on a choice set. The likelihood function is evaluated for each alternative of the
choice set. The parameters are derived such that the likelihood function is maximised.

The household members select their daily activity schedules from a choice set containing sets of alternative
schedules for all household members, Ch. We consider a daily schedule of household, Sh, to be a discrete
alternative, characterised by a set of constraints defining feasible schedules. The feasibility constraints ensure
the soundness of the alternative schedule both in terms of schedule continuity such as time budget, activity
participation, timing consistency, transport mode consistency, as well as the constraints that appear due to
interpersonal dependencies within household members such as schedule synchronisations for joint activities and
travels. The full universal choice set for the household, Ch, comprised of all possible combinations of activity
scheduling choices for all household members, is combinatorial and cannot be enumerated. Thus, we consider
a finite subset of the universal choice set, C̃h ⊂ Ch, containing a sample of alternative schedules for household
h. The sampled choice set C̃h contains alternative household schedules Sh ∈ C̃h, where each alternative is a
set of feasible full daily schedules for all individuals in the household. We show how to generate the sampled
choice set in Section 3.4.

As the evaluation is carried out on a sample of the full universal choice set, the likelihood function is
corrected with probability of sampling the choice set given the chosen alternatives (Moshe E Ben-Akiva and
Lerman 1985). C̃h is the sampled choice set for household h. Thus, the probability that household h chooses
alternative schedule S̄h ∈ C̃h, associated with a deterministic utility VS̄h

, is defined as follows:

PS̄h
= P(S̄h|C̃h) =

exp [µVS̄h
+ lnP(C̃h|S̄h)]∑

Sh∈C̃h
exp [µVSh

+ lnP(C̃h|Sh)]
(27)
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C̃h is the sampled choice set for household h, which contains sets of schedules for all individuals in the
household. VSh

is the deterministic utility of the total household for alternative household schedule Sh. µ is a
scale parameter. The alternative-specific correction term accounts for sampling biases, as defined by Moshe E
Ben-Akiva and Lerman 1985:

P(C̃h|Sh) =
1

p(Sh)

∏
Sh∈C̃h

 ∑
Sh∈C̃h

p(Sh)

J+1−J∗

(28)

where C̃h is the household choice set of size J+ 1 with J∗ unique alternatives for household h. Unique alterna-
tives are identified based on the combination of schedules of all household members. Sh represents alternative
sampled from the target distribution of the MH algorithm with probability p(Sh). The target distribution depends
on the generation protocol for the sample. For each household and each alternative in their respective choice
sets, the sample correction term is evaluated to be added to the utility function.

As the sampled choice set contains household socio-demographic characteristics, the utility function can
include socio-demographic characteristics, capturing their effect on household scheduling decisions.

A summary of key new notation introduced in parameter estimation is presented in Table 3.

Table 3: Notation used in parameter estimation

Notation Name Description
Ch Household choice set Universal choice set for household h, which is the com-

plete set of all possible alternatives, each being a set of
household member schedules.

C̃h Sampled household choice set Sampled choice set for household h.
VSn

,VSh
Deterministic schedule utilities Deterministic utility component of schedule Sn/Sh for

individual n/household h, respectively.
µ Scale parameter A strictly positive scale parameter.

3.4 Household-level choice set generation
In our approach, in order to estimate the parameters of the household scheduling model, we require a relatively
small sample of alternatives for each observed choice. Each alternative is a set of feasible joint schedules of all
members of the household. However, in order for the estimation procedure to effectively capture how households
and individuals make trade-offs, it is crucial that the sampled alternatives are competitive with the observed
(chosen) one. Thus, the generated schedules should be plausible alternatives — those that could reasonably
have been chosen and therefore are likely to have high utility. To achieve this, the method proceeds as follows:
(i) We postulate initial values for the unknown parameters based on prior knowledge, existing literature, or
engineering intuition. (ii) Using these parameter values, we sample alternatives with a probability proportional
to exp (U(Sh)), where U(Sh) denotes the utility of alternative schedule Sh for household h. This sampling is
performed using the Metropolis-Hastings algorithm. This strategy ensures that the alternative schedules in the
sample are not only representative but also relevant for inferring preferences from observed choices.

Intra-household interactions influence how household members schedule their day, introducing additional
choice dimensions, temporal and spatial arrangements, constraints, and group decision-making mechanisms.
These factors should be incorporated into the generation of the activity schedule choice set to ensure that the
alternatives are compliant with intra-household constraints and arrangement. Since the estimation of ABMs
parameters are carried out by enumerating the alternatives in the choice set, using a choice set composed of
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valid household schedules enhances the behavioural realism of the resulting estimates.

The Metropolis-Hastings sampling approach enables estimation of utility parameters without enumerating
the full choice set—which is infeasible due to dimensionality, while maintaining tractable probabilities to com-
pute the sample correction for the likelihood function. Building on the strategic MH sampling algorithm of
Pougala, Hillel, and Michel Bierlaire 2023, we generate an ensemble of relevant schedules for the household
model, to estimate significant and meaningful parameters. The choice set generation is modelled as a Markov
process. The Metropolis-Hastings algorithm performs a random walk over the state space accepting each
candidate state with an acceptance probability that guides the chain toward high-probability regions (Hastings
1970). The state space in the context of household ABMs is defined as the set of all feasible joint schedules
of all members of the household. This sampling algorithm enables efficient exploration without requiring full
enumeration.

Each iteration of the random walk consists of two main steps: generating a candidate point (Section 3.4.1)
using operators (Section 3.4.2), and then accepting or rejecting it (Section 3.4.3).

3.4.1 Generation of a candidate state

In the household-level choice-set generation technique, at each step of the random walk, alternative sched-
ules for all individuals within a household are generated in parallel. This approach ensures compatibility
among the schedules of household members in the generated alternatives and preserves the relation between
individuals and their households. During the random walk process, the household state at step t, denoted
as Sth, represents the household schedule comprised of a set of feasible schedules of its individual mem-
bers, Sth =

(
St1, . . . ,Stn, . . . ,StNh

)
. The state of each individual n in household h, Stn, is the individual’s

activity schedule defined within the time budget T (e.g., 24 hours), discretised in time blocks of duration
δ ∈ [δmin, T − δmin], where δmin is the minimum block duration. The discretisation defines the scale of the
potential modifications for operators.

The MH for the household problem is decomposed as follows. At each step of the random walk, the new
household candidate state S∗h is generated by applying a heuristic operators ψ to each individual member’s
schedule, producing a neighbouring joint household schedule S∗h =

(
S∗1 , . . . ,S∗n, . . . ,S∗Nh

)
. The operators are

chosen from a list of operators ψ ∈ Ψ defined by the modeller to modify aspects of the current schedule to
generate a neighbouring candidate state. Operators can be different for each household member, producing a
complex joint proposal. A set of validity constraints should be checked for the generated states to ensure that
the choice set only contains feasible schedules in terms of household-level interaction and schedule continuity
constraints as defined in Section 3.2.

For each household, the generation algorithm is initialised with a random household schedule S0
h (e.g., an

ensemble of reported schedules from all household members) as the starting point. One individual, denoted as
nref,h, is selected as the reference member for household h. The procedure for selecting the reference individual
is determined by the modeller and can follow a random or rule-based approach, for example, prioritising indi-
viduals based on employment status. At each step of the random walk, the schedules of all household members
are checked for consistency with that of the reference individual - such as alignment in time and location for joint
activities - to ensure intra-household schedule synchronisation. In other words, the candidate schedule of the
reference individual serves as the benchmark for validating the consistency of schedules of household members
at each random walk iteration.

At each step of the random walk, the solution space of the reference individual is first explored by applying
a randomly selected operator (ψ ∈ Ψ) to the current state of the reference individual (St

nref,h ), while ensuring the
continuity of the resulting schedule. If the generated state for the reference individual is infeasible with respect
to individual-level constraints, the process is repeated until a feasible candidate state is obtained for the reference
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individual (S∗
nref,h ). Once a valid candidate state is generated for the reference individual, the combinatorial

solution space of other household members is explored by applying randomly selected operators to the current
states of the each individual, ensuring the resulting schedules are validated for continuity and consistency with
the reference individual. For example, if the reference individual schedules a joint leisure activity at the cinema
with another household member from 17:00 to 19:00, a corresponding joint leisure activity with the same
temporal and spatial characteristics must be added to the schedule of the other individual household member(s).
If a generated state for any individual is found to violate either individual constraints or consistency with the
reference individual, the process is repeated until a feasible candidate state (S∗n) is produced for all individual
members. The set of the proposed states of all household members gives us the proposed new joint household
state S∗h =

(
S∗1 , . . . ,S∗n, . . . ,S∗Nh

)
. Figure 1 illustrates a visual scheme of the procedure for household-level

choice set generation at each iteration of the random walk.

Figure 1: Scheme of household-level choice set generation procedure at each iteration of the random walk.

3.4.2 Operators

Operatorsψ ∈ Ψ are heuristics that modify aspects of the current individual schedule to generate a neighbouring
candidate state that differs from the current individual state in one or more dimensions. This dimension may cor-
respond to temporal adjustments, changes in location, modifications in activity participation or companionship
during the activity, ensuring that the candidate state remains feasible while exploring the local neighbourhood
of the current state. Each household member schedule Stn is characterised by one or more anchor nodes ν
marking the start of blocks, where each block represents the temporal extent of an operator-induced change.
Each operator ψ is selected with a probability Pψ determined by the modeller. These operators should ensure
irreducibility and reversibility of the Markov chain by allowing transitions to any feasible state and enabling
backtracking. A set of validity constraints should be checked for the generated states to ensure that the choice
set only contains feasible schedules in terms of schedule continuity and intra-household constraints.

Different operators can be created according to the modeller’s needs and specifications. We consider a set
of operators described in Pougala, Hillel, and Michel Bierlaire 2023, which account for the scheduling aspects
of each household member, along with additional operator(s) specifically designed for the household context.

• Anchor (ψanchor); inserts an anchor node ν into the schedule without altering the activity sequence, but
shifts the position where other operators may apply modifications.

• Assign (ψassign); changes the activity type in a time block.
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• Swap (ψswap); randomly swaps the activities of two adjacent blocks.

• Inflate/Deflate (ψinf/def); modifies durations of activities. It enables a shift in the schedule by randomly
increasing (i.e., adding a block of length δ) or decreasing (i.e., removing a block of length δ) the duration
of an activity.

• Location (ψloc); modifies the location of a randomly selected activity.

• Mode (ψmode); modifies the travel mode of outbound trip of a randomly selected activity.

• Block (ψblock); changes temporal resolution by changing the length of time discretisation blocks, δ,
allowing changes in the scale of potential modifications of other operators.

Dedicated operators are implemented for the household context. For instance, we define an operator that changes
whether an activity is performed jointly with other member(s) of the household or alone. This operator is called
participation mode operator, ψpartic_mode. When the participation mode of an activity is modified, the algorithm
checks for schedule synchronisation among household members. The corresponding activity is added to the
schedule of the accompanying member(s) with identical timing, location, and participation mode. To ensure
schedule validity, the resulting schedules must start and end at home, and the participation mode of home activity
cannot be changed. Thus, the chosen block to apply the change, cannot exceed the time budget by more than
the minimum time at home, 2δ. The transition probability associated with this change is defined as the product
of three components: the probability of selecting the participation mode operator, the probability of choosing
a valid time block, and the probability of selecting one of the possible participation modes. The participation
mode is selected according to a probability distribution (Pπ), which is assumed to be exogenous to the choice
set generation process. This transition probability can be expressed as follows:

q(St+1
n |Stn) = q(S

t
n|S

t+1
n ) =

{
Ppartic_modePπ

T−2δ
Tδ

, if bi /∈ {bo,bT }
0, otherwise

(29)

where Stn and St+1
n are the schedule states of individual n belonging to household h, at step t and t + 1,

respectively.

A combination of two or more distinct operators can be also utilised through a meta-operator ψmeta, where
the transition probabilities of the change are the combined forward and backward probabilities of the selected
operators.

3.4.3 Acceptance of candidate point

The MH algorithm iteratively samples from the set of feasible household schedule Sh ∈ Fh. At each iteration
t, a new candidate schedule S∗h is proposed from a proposal distribution q(S∗h | Sth), where Sth is the current
household schedule state. The acceptance of a candidate household state in the Metropolis-Hastings algorithm
is governed by the acceptance probability, which compares the proposed schedule S∗h with the current schedule
Sth, considering both their likelihoods and the proposal distributions. Formally, the acceptance probability
α(Sth,S∗h) for moving from the current household state Sth to the proposed state S∗h is given by:

α(Sth,S∗h) = min
(

1,
p(S∗h)q(S

t
h|S

∗
h)

p(Sth)q(S
∗
h|S

t
h)

)
(30)

where p (Sth) is the target sampling probability which is proportional to household utility function. Inspired
by Danalet and Michel Bierlaire 2015, for each household state Sth, the target weight is defined as p (Sth) =
exp (Û(Sth)). Û(Sth) is the household utility function whose parameters are postulated based on the literature,
prior knowledge, or engineering intuition. To compute the total utility for the household, the utility of individual
household individuals should be combined, depending on the nature of the group decision-making strategy.

Û(Sh) = f(Û(S1), . . . , Û(Sn), . . . , Û(SNh
)) (31)
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For example, in Additive-type household, the household utility is defined as the weighted sum of the utility that
each individual in the household as Equation 2.

q (S∗h | Sth) is the joint proposal distribution for candidate household states to go from one schedule state to
the candidate state. The proposal distribution is obtained from the applied operator(s). As the state of household
members are conditional on those of the reference member, the joint proposal distribution for the household is:

q
(
S∗h | Sth

)
= q

(
S∗nref,h | Stnref,h

) ∏
n ̸=nref,h

q
(
S∗n | Stn,S∗nref,h

)
(32)

As the proposals for non-reference members depend on the reference state proposal, the joint transition distribu-
tion is a conditional factorisation reflecting the dependence induced by synchronising schedules on the reference
member. q (Sth | S∗h) is the reverse proposal from a reverse application of the operators. The reverse proposal is
determined based on: (i) the reverse of the operator applied, where the reverse proposal would involve undoing
applied operators to each individual member to return to the previous schedule, and (ii) proposal dependence,
where if the operators are dependent or there is coordination between schedules, the reverse proposal must
respect this coordination to ensure that Sth is a valid household schedule. Given the setup of the household
model with a reference person, the full reverse proposal distribution is as follows, ensuring that the transitions
of the entire household’s state are handled coherently and consistently, while respecting the interdependencies
among the individual schedules:

q
(
Sth | S∗h

)
= q

(
Stnref,h | S∗nref,h

) ∏
n ̸=nref,h

q
(
Stn | S∗n,Stnref,h

)
(33)

The candidate point is accepted based on a predefined acceptance/rejection rule, where the candidate sched-
ule state is accepted as the state of the next step with probability α(Sth,S∗h), and otherwise the state of the next
step is remained as Sth. The acceptance probability in the Metropolis-Hastings algorithm ensures convergence
to the target distribution, by maintaining detailed balance such that it controls how the chain moves through the
state space in such a way that the stationary distribution of the chain matches the target distribution.

The output of the generator is an ensemble comprising sets of schedules for all individuals within each
household. The procedure for household choice set formation is summarised in Algorithm 1. Importantly,
socio-demographic characteristics of individuals and their households — such as household structure, employ-
ment status, and car ownership — are preserved throughout the choice set generation process. These attributes
are explicitly captured and embedded within the generated alternatives in the choice set. This feature prevents
information loss and enables investigating more behavioural implications explaining the choice of schedules
through estimating model specifications with socio-demographic variables.

3.4.4 Implementation notes

The choice set generator framework takes as input the composition of households, selected schedules of individ-
uals in each household, number of alternatives to generate for each household (Nalt), and the configuration of the
MH algorithm. This includes the number of iterations for the random walk (Niter), number of initial samples to
discard as a burn-in period to reduce the effect of initial conditions (Nburn), number of samples to skip between
accepted samples to reduce autocorrelation (thinning) (Nskip), the set of heuristic operators used during the
random walk (Ψ), probability distribution of selecting each operator (Pψ), and the distribution of target weights.
These inputs are used to generate a choice set for each household, consistingNalt alternative household schedules,
along with the list of accepted operators, and the corresponding probabilities of the generated alternatives.

A subset of accepted schedules after a burn-in phase, Nburn, forms the household choice set C̃h for each
household h. This MH-based choice set generation technique enables a tractable and behaviourally meaningful
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Algorithm 1 Household-level choice-set generation for ABMs with MH

t← 0, initialise household state with random household schedule Sth ← S0
h

▷ A household is comprised ofNh individuals, with each individual having a schedule state Stn at iteration t.
Initialise household utility function with postulated parameters Û(Sth)
for t = 0, 1, 2, . . . do

Choose individual nref,h as reference
for n = nref,h do

Choose operator ψ ∈ Ψ with probability Pψ
S∗
nref,h ,q(S∗

nref,h |S
t
nref,h),q(Stnref,h |S

∗
nref,h)← ApplyChange(ψ,St

nref,h)
function ApplyChange(ψ, Stn)

return new state S ′
n, transition probability q(S ′

n|S
t
n), backward probability q(Stn|S ′

n)
end function
Check S∗

nref,h feasibility in terms of continuity (no gaps in time or space)
for n ∈ Nh \ {nref,h} do

repeat
Choose operator ψ with probability Pψ
S∗n,q(S∗n|Stn),q(Stn|S∗n)← ApplyChange(ψ,Stn)

until S∗n is feasible and compliant with S∗
nref,h

return new state S∗n, transition probability q(S∗n|Stn), backward probability q(Stn|S∗n)
end for

end for
Compute target weight p(S∗h) = exp (Û(S∗h))

Compute acceptance probability α(Sth,S∗h) = min
(

1, p(S
∗
h)q(St

h|S∗
h)

p(St
h)q(S∗

h|St
h)

)
=

min
(

1,
p(S∗

h)q(St

nref,h |S∗
nref,h)

∏
n ̸=nref,h q(St

n|S∗
n,St

nref,h)
p(St

h)q(S∗
nref,h |St

nref,h)
∏

n ̸=nref,h q(S∗
n|St

n,S∗
nref,h)

)
With probability α(Sth,S∗h), set St+1

h ← S∗h; else St+1
h ← Sth

end for
return C̃h: Ensemble containing sets of schedules for all Nh individuals in household h.

estimation of utility parameters in household ABMs, where enumeration is infeasible and realistic schedule
variation is essential for capturing trade-offs across multiple dimensions.

The key new notation introduced in the household choice set generation are summarised in Table 4.

4 Case study and evidence
To demonstrate the applicability of our proposed framework, we conduct a case study using a real-world dataset.
In this section, we introduce the data used in empirical investigation and present illustrative evidence of intra-
household interactions observed in the data.

Data from the 2018 UK NTS (Department for Transport 2024) is used to apply the estimation framework
to a real-world case study. The NTS is a rolling annual household survey of personal travel by residents of
England travelling within the UK. It contains information on socio-economic characteristics of individuals and
their household, collected through face-to-face interviews, as well as detailed daily trips collected through a
travel diary over multiple days (up to 7 days). The 2018 survey data contains 13’944 individuals, belonging to
5’896 households, with a total of 70’341 reported daily travel diaries.

This is the first step in addressing a complex problem, approached through a mathematically rigorous frame-
work. In this paper we focus on a sample of the dataset, applying our approach on two-adult-member households.
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Table 4: Notation for household choice set generation

Notation Name Description
Stn Individual state State (schedule) of individual n in household h at step

t.
S∗n Neighbouring individual state A schedule that can be reached in one step by applying

an operator to the current schedule of individual nh.
Sth Household state State of household h at step t, which is the household

schedule comprised of a cluster of schedules of its in-
dividual members;

[
St1, . . . ,StNh

]
.

S∗h Neighbouring household state A household state (cluster of schedules of household
individuals) that can be reached in one step by applying
operators to the current state of its individual members.

ψ ∈ Ψ Operator A heuristic that modifies specific aspects of the schedule
(i.e., time, space, participation, or activity participation
mode (solo, joint)). Ψ is the set of possible operators.

nref,h Reference individual index Index for the reference individual in household h, cho-
sen as the benchmark in household choice set genera-
tion to compare the schedule of other individuals in the
household for compliancy with household constraints.

Noperators Number of operators Number of implemented operators to modify the sched-
ules.

Pψ Operator selection probability Probability to select operator ψ.
δ Time block Each schedule is discretised into blocks of duration δ.
Niter Number of iterations Number of random walk iterations in the Metropolis-

Hastings algorithm.
Nburn Number of initial burns Number of initial samples to discard (burn-in period)

to reduce the effect of initial conditions in Metropolis-
Hastings algorithm.

Nskip Number of skips Number of samples to skip between accepted sam-
ples to reduce autocorrelation (thinning) in Metropolis-
Hastings algorithm.

Nalt Number of alternatives Number of alternatives in the generated choice set.
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This concept can be extended to households with three or more members, but this is not implemented here.
Figure 2 presents the distribution of household size and structure in the 2018 UK NTS dataset. Two-person
households represent the majority, accounting for 39% of all households and 54% of multi-member households.
Among two-person households, the majority (95%) are composed of two adults.

Figure 2: Distribution of household size and structure in the 2018 UK NTS dataset

We clean the sampled data to ensure that all individuals within the surveyed households have reported their
travel diaries for the corresponding days. The data is processed to convert trip diaries into daily activity schedules.
Data points with missing information are excluded. For this case study, we use a cleaned sample of 3’834 indi-
viduals from the 2018 survey, belonging to 1’917 two-adult households, with no missing variables. The sample
includes 13’604 daily diaries, providing multiple observations per individual and household across multiple days.

Activities are grouped into six categories: Home, Work, Education, Leisure, Shopping, and Personal busi-
ness (e.g., eating/drinking, using services such as medical appointments). The mode of start times and durations
for each activity, computed from the distribution observed among two-adult households, are used as indicators of
desired start and duration times in the model. These values are tailored for individuals based on their employment
status (Full-time, Part-time, Not working) and are derived from the surveyed data. Table 5 summarises these
scheduling preferences. The scheduling preferences are assumed to be homogeneous across individuals with the
same employment type.

Table 5: Scheduling preferences tailored to employment status

Activity Full-time Part-time Not-working
Start time Duration Start time Duration Start time Duration

Work 09:00 08:30 09:00 04:00 10:00 00:05
Education 10:10 00:30 10:15 00:45 11:20 01:00

Leisure_solo 18:00 01:55 10:15 01:50 10:00 02:00
Leisure_joint 18:30 02:00 11:10 02:00 11:30 01:58

Shopping 11:00 00:30 14:30 00:30 11:15 00:30
Personal business 09:00 00:50 09:50 00:55 10:30 01:00
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4.1 Identification of joint trips and activities
In order to identify joint trips in the NTS dataset, a set of rules inspired by Ho and Mulley 2013 is defined to
extract individuals within the same household who travel together.

Joint trips can be either fully- or partially- joint. A fully joint trip is one in which all participants travel to-
gether from origin to destination, whereas a partially joint trip includes only certain segments where participants
travel together, with individuals joining or separating at intermediate locations. The criteria for identifying a
fully-joint trip are as follows: (i) the individuals belong to the same household; (ii) the trip occurs on the same
day for all individuals; (iii) the trip start time is identical; (iv) the duration of the trip is identical; (v) the purpose
of the trip is the same; (vi) the members involved in joint trip travel in the same mode; (vii) the origin of the trip is
identical; and (viii) the destination of the trip is identical. Trips made for the purpose of escorting another house-
hold member are not classified as joint trips but are instead treated as escort trips. Escort trips refer to instances
where an individual merely accompanies another person. Therefore, sharing the same travel purpose and thus
activity is not implied. The same identification mechanism used for joint trips can be applied to derive escort trips.

Activity participation modes (solo/joint) are extracted from the data, using a set of rules designed to identify
joint participation within households. As with trips, joint activities can be considered either fully- or partially-
joint. A fully joint activity is performed together by all participants from start to finish, whereas a partially joint
activity involves only partial overlap, with individuals joining or leaving at different times. The identification
procedure for joint activities follows a similar approach to that used for joint trips. An activity is considered
fully-joint with another household member if the following conditions are met: (i) the purpose of the activi-
ties are the same; (ii) the start time and duration of the activities are identical; (iii) the activities occur at the
same location; (iv) the individuals belong to the same household; and (v) the activities take place on the same day.

Figure 3 presents the distribution of activity participation modes across different activity types, segmented
by whether the activity was performed alone, jointly with another household member but travelled alone, or
jointly with joint travel. Based on the 2018 UK NTS diaries for two-adult households, 59% of out-of-home
activities are performed jointly with another household member, illustrating an example of intra-household
interactions. Leisure accounts for the biggest proportion (44%) in joint out-of-home activities, with 51% of all
leisure activities performed jointly. However, only 8% of trips to joint activities are made jointly. This suggests
that while leisure is highly social, people often travel separately to meet for these activities. Overall, joint trips
represent a small share compared to trips made individually to joint activities, implying that coordination in
shared travel is relatively rare even when the activity is shared. These differences highlight how the social nature
of an activity influences both participation and travel behaviour.

Interestingly, as observed from the analysis of data, 60% of education activities are done jointly with another
household member, which may appear counterintuitive. According to the data, this is primarily driven by retired
individuals attending informal or extracurricular classes together, such as painting, dance, or music lessons. In
addition, it is partly explained by students living together in shared flats and pursuing the same degree. As
expected, work activities are almost exclusively performed alone, reflecting the individualised nature of work
routines. Moreover, activities done alone rarely involve joint trips, as travelling jointly for an activity that is
done alone is uncommon.

While education and shopping activities also exhibit high rates of joint participation, leisure stands out
both in its relative proportion and in its overall contribution to joint activities. As shown in Figure 3, leisure
constitutes the largest volume of jointly performed activities across all activity types. Because incorporating
joint participation specifications significantly increases model complexity, we focus solely on leisure activities.
To reflect this behavioural significance, the estimation and scheduling framework, explicitly allows leisure to be
scheduled as a joint or solo activity. This ensures that the model captures the flexibility observed in real-world
leisure participation.
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Figure 3: Distribution of activity types, segmented by trip and activity participation mode (solo vs. joint), based
on the reported diaries of two-adult households in the 2018 UK NTS dataset.

5 Model estimation
We apply our proposed framework to the data sample from the NTS described in Section 4. We begin by
generating a choice set for each household in the sample using the household-level choice set generation method
described in Section 3.4. These generated choice sets are then used to estimate the utility parameters of the
household scheduling model for the sample.

5.1 Generated choice set
First, the sample data is split into two groups: 80% for the training set and 20% for the test set. The training
set is used for choice set generation and parameter estimation, while the test set is reserved for out-of-sample
validation, where schedules are simulated using the household-level scheduling model.

For each household, a choice set consisting of 10 alternatives, including the observed household activity
schedule, is generated. The experimental set up of the random walk is as follows: (i) The ensemble of observed
schedules of household members is used as the initial state of the random walk. (ii) A set of 7 operators
(Partic_mode, Block, Assign, Anchor, Swap, Inflate/Deflate, and MetaOperator that combines the actions of
two or more operators) are implemented to modify the schedules to generate new states in the random walk.
Each operator has equal probability of being chosen, denoted as Pψ. The target distribution of the random
walk is proportional to the exponential of household utility function (Equation 2), with parameters postulated
based on literature. (iii) Each alternative in the random generated choice set is constructed by sequentially
assigning random activities, modes, participation modes, locations, and durations within the daily time budget,
with start times adjusted according to travel and activity sequences. (iv) All household members participate in
the household joint decision-making process with the same weight (wn = 1/Nh).

We run Niter = 2000 iterations of the algorithm on the train sample. The initial Nwarm-up iterations serve as
a warm-up period to stabilise the distribution from which the choice set is sampled. The accepted schedules are
sampled after a warm-up period of Nwarm-up = 50 iterations.
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5.2 Parameter estimation: Model specifications and results
Using the generated choice set, the household scheduling model is estimated on the training sample. For iden-
tification purposes, “Home" is used as reference. Home is interpreted as absence of activity in this study due
to absence of information on in-home activities in the dataset, which can be relaxed with richer data containing
in-home activities such as time-use surveys. The magnitudes and signs of the other constants are relative to
the baseline behaviour which is staying at home. As precise location information is not available in the data,
travel parameters are not estimated. Estimating such parameters would require detailed location and network
data to compute travel attributes for both chosen and unchosen alternatives. Therefore, the estimation focuses
exclusively on activity scheduling parameters.

The models are estimated with PandasBiogeme (Michel Bierlaire 2020). Since the choice set includes
multiple observations per household, a panel specification has been considered. Given the panel structure of
the sampled choice set, serial correlation is expected, as error terms associated with observations from the same
household are likely to share unobserved factors. To account for this, a panel effect is incorporated into the
model estimation.

Different model specifications are tested, varying in the structure of the utility function. We present three
specifications: a model including only activity- and scheduling-specific attributes (Section 5.2.1), and two
models extended with socio-demographic characteristics (Section 5.2.2 and 5.2.3). As a benchmark, we present
model estimations based on individual-level model in Section 5.2.4.

5.2.1 Model 1: household utility with activity-specific parameters

In this specification, the attributes used in the model are related to the activity-specific constants and parameters,
as well as scheduling deviation penalties. For each alternative, the household utility function is defined as
Equation 2. In this case-studywn is set to 1/Nh for all individuals in the household, indicating identical relative
influence for household members.

For each individual n, the utility function for each schedule alternative is defined as follows:

U(Sn) =
∑

an
i ∈An

Uan
i

(34)

where U(Sn) is the utility associated with schedule alternative Sn for individual n. U(Sn) is made up of utility
components linked to the performed activities (Uan

i
). The activity-specific utility function for each activity ani

of individual n is defined as follows:
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where γai
is the activity-specific constants, θearly

ai
and θlate

ai
are start time penalty parameters for deviations from

preference, θshort
ai

and θlong
ai

are duration penalty parameters for deviations from preference. xan
i

is start time of
activity ani . x∗an

i
is preferred start time for activity ani . τan

i
and τ∗an

i
are duration and preferred duration of

activity ani , respectively. θjnt
ai

is joint activity participation parameter for activity ai, capturing the (dis)utility
of joint activity engagement. pan

i
is the participation mode of activity ani , which is 1 if the individual performs

the activity jointly with other member(s), and 0 otherwise. ϵn is an error term capturing unobserved variables
for individual n.

Table 6 summarises the estimation results for model with activity-specific parameters on the train sample.
Home activity is set as a reference, thus magnitudes and signs of coefficients are relative to the home baseline.
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Table 6: Estimation results for model with activity-specific parameters on train sample

Name Value Rob. Std err Rob. t-test Rob. p-value

Education:constant 6.99 0.642 10.9 0
Education:early -0.988 0.48 -2.06 0.0396
Education:late -0.553 0.135 -4.1 4.06e-05
Education:long -0.933 0.242 -3.86 0.000114
Education:short -6.57 3.02 -2.17 0.0299
Leisure:constant 5.73 0.584 9.8 0
Leisure:early -0.318 0.0261 -12.2 0
Leisure:joint_partic 0.866 0.15 5.78 7.65e-09
Leisure:late -0.644 0.052 -12.4 0
Leisure:long -0.493 0.0287 -17.2 0
Leisure:short -1.05 0.164 -6.43 1.28e-10
Personal business:constant 5.08 0.471 10.8 0
Personal business:early -0.553 0.0472 -11.7 0
Personal business:late -0.595 0.0553 -10.8 0
Personal business:long -0.434 0.0403 -10.8 0
Personal business:short -0.782 1.16 -0.672 0.502
Shopping:constant 8.39 0.595 14.1 0
Shopping:early -0.41 0.0268 -15.3 0
Shopping:late -0.41 0.0388 -10.6 0
Shopping:long -0.842 0.0775 -10.9 0
Shopping:short -3.32 0.939 -3.54 0.000401
Work:constant 17 1.42 12 0
Work:early -0.661 0.186 -3.56 0.000374
Work:late -0.789 0.179 -4.4 1.07e-05
Work:long -1.04 0.176 -5.88 3.98e-09
Work:short -0.513 0.143 -3.6 0.000322

Summary of statistics
Number of estimated parameters = 26
L(0) = - 35834.54
L(β̂) = -978.0281
AIC = 2008.056
BIC = 2208.243

The estimated parameters are behaviourally sensible. The activity-specific constants are all positive, indicating
a baseline preference for doing an out-of-home activity rather than staying at home, all else being equal. Work
activities bring the most utility per time unit followed by Shopping, Education, Leisure, and Personal business.

Most parameter estimates are significant at 95% confidence level. The penalty parameters have a negative
sign, indicating a decrease in utility when activities deviate from preferred times or durations. Joint participation
in leisure activities has a significant positive coefficient, underscoring the social value of joint leisure. We can
observe from the estimation results that the parameter associated with shorter personal business activities is
not statistically significant. This may be due to the small number of such instances in the choice set, leading
to limited variation and reduced estimation precision. Additionally, the flexible nature of personal business
activities may make them less likely to involve trade-offs in scheduling.

Shorter durations for shopping are penalised approximately four times more than long durations, suggesting
a strong disutility associated with unmet shopping needs. These significant negative estimates likely reflect
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the importance of fulfilling both individual and household requirements, which impacts overall satisfaction and
well-being. The improvement in log-likelihood relative to the null log-likelihood indicates that the estimated
parameters offer a significantly better fit to the observed choices. Overall, the model demonstrates consistent
parameter signs and high statistical significance, supporting its behavioural realism.

5.2.2 Model 2: interaction between household car ownership and activity participation modes

The previous model includes only variables that describe attributes of the alternatives (schedules), assuming a
homogeneous population in which all individuals share the same taste parameters. However, it is reasonable to
expect that individuals have different preferences. In the context of choice models, this implies that the value
of the parameters may vary depending on the socio-economic characteristics of the decision-makers. Since
socio-economic characteristics do not vary across alternatives, their role in the model is to account for taste
heterogeneity. We now investigate the presence of such heterogeneity in the population.

We now introduce a model specification that captures taste heterogeneity in the utility of joint activity partic-
ipation based on household car ownership. Car ownership is treated as a categorical variable with three mutually
exclusive categories: (i) households with “No car" (reference category), (ii) households with “One car", and
(iii) households with “Two or more cars". To account for differences in preferences toward joint participation
across these groups, interaction terms between joint participation and car ownership dummies are included in
the utility function for each activity. The utility specification for each activity ani is as follows:
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is a binary indicator equal to 1 if activity ani is jointly performed; δ1car
n and δ2+ cars

n are dummy
variables indicating whether the household to which the individual belongs, owns one car, or two or more
cars, respectively. The parameter θjnt,0
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capture the incremental effects for one-car and two-or-more-car households, respectively.

The estimated parameters are summarised in Table 7. Most parameter estimates are significant at 95%
confidence level. The main joint participation coefficient for leisure activities is positive and highly significant,
confirming the social utility of shared leisure. Joint participation in activities can be motivated by considerations
such as (i) efficiency; which can be gained from time and/or money savings, (ii) altruism, which is a selfless
regard in which an individual gains utility by benefiting someone other than oneself, and (iii) companionship.
The interaction effects reveal notable heterogeneity based on household car ownership. The interaction terms
reveal heterogeneity based on household car ownership: households with one car exhibit an additional positive
and significant utility for joint participation, while those with two or more cars show a negative and significant
interaction effect, suggesting lower marginal utility from joint leisure as mobility becomes more independent.
This can be explained as access to multiple vehicles enables members to maintain independent schedules and
reduces the need for coordinated activity participation.

All penalty parameters remain negative and significant, indicating disutility for deviating from preferred
activity schedules. The short-duration parameter for personal business remains insignificant, possibly due to
data sparsity in that category.

To assess whether the inclusion of interaction terms between joint participation and household car ownership
improves model fit, we perform a likelihood ratio test comparing with Model 1 (Section 5.2.1). Comparing
to Model 1, the results show that there is an improvement in the final log likelihood (from −978.0281 to
−953.4198). Using a likelihood ratio test (with a test statistics of 49.22 > χ2

0.95,2 = 5.991), we can conclude that
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interaction terms significantly improve model fit at the 5% significance level. Household car ownership plays
an important role in moderating preferences for joint activity participation.

Table 7: Estimation results for Model 2, with interaction between number of cars and joint activity participation
on train sample

Name Value Rob. Std Err Rob. t-test Rob. p-value

Education:constant 6.37 0.729 8.74 0
Education:early -1.1 0.632 -1.74 0.0824
Education:late -0.39 0.131 -2.98 0.00287
Education:long -0.761 0.267 -2.85 0.00433
Education:short -4.95 3.64 -1.36 0.174
Leisure:constant 5.64 0.642 8.79 0
Leisure:early -0.346 0.0249 -13.9 0
Leisure:joint_partic 1.64 0.186 8.79 0
Leisure:joint_partic_SingleCar 0.855 0.307 2.78 0.00537
Leisure:joint_partic_TwoOrMoreCar -0.98 0.164 -5.96 2.49e-09
Leisure:late -0.664 0.057 -11.6 0
Leisure:long -0.496 0.0308 -16.1 0
Leisure:short -0.971 0.177 -5.5 3.88e-08
Personal business:constant 5.19 0.522 9.94 0
Personal business:early -0.574 0.0516 -11.1 0
Personal business:late -0.619 0.0607 -10.2 0
Personal business:long -0.457 0.0459 -9.95 0
Personal business:short -0.821 1.21 -0.68 0.496
Shopping:constant 8.75 0.736 11.9 0
Shopping:early -0.429 0.0302 -14.2 0
Shopping:late -0.461 0.049 -9.4 0
Shopping:long -0.871 0.081 -10.7 0
Shopping:short -2.97 1.07 -2.78 0.00543
Work:constant 17.8 1.49 12 0
Work:early -0.603 0.192 -3.13 0.00174
Work:late -0.745 0.193 -3.86 0.000112
Work:long -1.04 0.196 -5.28 1.32e-07
Work:short -0.508 0.154 -3.3 0.000963

Summary of statistics
Number of estimated parameters = 28
L(0) = -35834.54
L(β̂) = -953.4198
AIC = 1962.84
BIC = 2178.425
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5.2.3 Model 3: employment type and household car ownership interactions

To capture behavioural heterogeneity, the model is extended in two ways. First, we segment the activity-specific
constants based on the individual’s employment type. Employment type is treated as a categorical variable with
three mutually exclusive categories: (i) Full-time (reference category), (ii) Part-time, and (iii) Not working. This
segmentation allows the baseline utility of activities to vary across different employment status. Second, we
include interaction terms between joint participation and household car ownership to reflect the role of mobility
resources in participating in joint activities.

The utility specification for each activity ani is as follows:
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Where δPart
n and δNoWork

n are dummy variables for employment type: Part-time and Not working. Full-time
serves as the reference category. γFull

ai
, γPart
ai

, and γNoWork
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are activity-specific constants for each employment
group. δ1car

n and δ2+cars
n are dummy variables for household car ownership. θjnt,0
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participation for households without a car. θjnt,1
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represent incremental effects for households with one
car and two or more cars, respectively.

Table 8 present the estimation results. The results highlight significant behavioural heterogeneity across
both employment type and household car ownership. Individuals who are not working exhibit substantially
higher baseline utilities for activities such as education, leisure, and personal business, reflecting their greater
scheduling flexibility. The strong and significant positive coefficient for joint participation confirms the social
incentive for joint leisure, while the large negative interaction with having two or more cars suggests that access
to multiple vehicles reduces the likelihood or value of coordinating joint activities. Most scheduling penalty
parameters remain negative and significant, reinforcing the disutility of deviating from preferred start times and
durations.

To assess whether the inclusion of employment-type segmentation improves model fit, we perform a like-
lihood ratio test comparing it with Model 2 (Section 5.2.2). Comparing to Model 2, the results show an
improvement in the final log-likelihood (from −953.4198 to −881.9286). Using a likelihood ratio test (with a
test statistic of 142.98 > χ2

0.95,10 = 18.31), we conclude that the inclusion of employment-based segmentation
significantly improves model fit at the 5% significance level. This suggests that employment status meaningfully
influences baseline preferences for activity participation.

Among the estimation specifications, this model provides the best statistical fit to the data, as confirmed by
likelihood ratio tests as well as the lowest AIC and BIC values, and is therefore selected for application in the
household schedule simulations presented in the next section.
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Table 8: Estimation results for Model 3, with segmentation based on employment type and considering interaction
between number of cars and joint activity participation on train sample

Name Value Rob. Std err Rob. t-test Rob. p-value

Education:constant 6.22 1.02 6.09 1.16e-09
Education:constant_NOT_WORKING 10.3 1.17 8.78 0
Education:constant_PART_TIME 1.32 0.984 1.35 0.178
Education:early -1.23 0.511 -2.42 0.0157
Education:late -0.686 0.222 -3.09 0.002
Education:long -0.688 0.0997 -6.89 5.43e-12
Education:short -6.75 2.14 -3.15 0.00161
Leisure:constant 4.07 0.574 7.09 1.29e-12
Leisure:constant_NOT_WORKING 7.73 0.532 14.5 0
Leisure:constant_PART_TIME 11.5 3.38 3.39 0.000687
Leisure:early -0.381 0.0302 -12.6 0
Leisure:joint_partic 3.76 0.235 16 0
Leisure:joint_partic_SingleCar -0.296 0.423 -0.7 0.484
Leisure:joint_partic_TwoOrMoreCar -2.87 0.327 -8.79 0
Leisure:late -0.724 0.0696 -10.4 0
Leisure:long -0.477 0.0273 -17.5 0
Leisure:short -0.564 0.159 -3.54 0.0004
Personal business:constant 3.57 0.486 7.35 1.97e-13
Personal business:constant_NOT_WORKING 8.44 0.589 14.3 0
Personal business:constant_PART_TIME 5.71 0.838 6.81 9.49e-12
Personal business:early -0.494 0.0339 -14.6 0
Personal business:late -0.419 0.0323 -13 0
Personal business:long -0.404 0.0366 -11 0
Personal business:short -11.1 1.18 -9.39 0
Shopping:constant 10.7 0.636 16.9 0
Shopping:constant_NOT_WORKING 5.82 0.663 8.78 0
Shopping:constant_PART_TIME -1.24 0.935 -1.33 0.185
Shopping:early -0.476 0.0514 -9.26 0
Shopping:late -0.425 0.0323 -13.2 0
Shopping:long -0.838 0.0665 -12.6 0
Shopping:short -1.35 1.18 -1.15 0.252
Work:constant 40.5 5.84 6.94 3.98e-12
Work:constant_NOT_WORKING -2.65 1.34e-12 -1.98e+12 0
Work:constant_PART_TIME -0.876 8.78e-08 -9.97e+06 0
Work:early -3.42 1.24 -2.75 0.00589
Work:late -2.21 0.579 -3.81 0.000138
Work:long -2.43 0.228 -10.6 0
Work:short -1.31 0.183 -7.13 1.02e-12

Summary of statistics
Number of estimated parameters = 38
L(0) = -35834.54
L(β̂) = -881.9286
AIC = 1839.857
BIC = 2132.437
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5.2.4 Benchmark model

As a benchmark, we estimate model parameters based on individual-level model without accounting for house-
hold interactions or constraints. The estimated parameters for individual-level model are presented in Table 9.

Table 9: Estimation results for individual-level model on train sample

Name Value Rob. Std err Rob. t-test Rob. p-value
Education:constant 4.67 0.210 22.2 0
Education:early -0.504 0.0341 -14.8 0
Education:late -0.721 0.0472 -15.3 0
Education:long -0.846 0.0821 -10.3 0
Education:short -4.25 0.648 -6.56 5.28e-11
Leisure:constant 4.56 0.162 28.1 0
Leisure:early -0.224 0.0187 -11.9 0
Leisure:late -0.958 0.0588 -16.3 0
Leisure:long -0.378 0.0186 -20.4 0
Leisure:short -4.62 0.317 -14.6 0
Personal business:constant 3.30 0.165 20.0 0
Personal business:early -1.05 0.0679 -15.4 0
Personal business:late -0.329 0.0311 -10.6 0
Personal business:long -0.487 0.0324 -15.0 0
Personal business:short -5.44 1.79 -3.04 0.00235
Shopping:constant 4.51 0.181 25.0 0
Shopping:early -0.882 0.0487 -18.1 0
Shopping:late -0.554 0.0433 -12.8 0
Shopping:long -0.544 0.0309 -17.6 0
Shopping:short -12.8 1.73 -7.41 1.27e-13
Work:constant 5.98 0.174 34.4 0
Work:early -0.923 0.0359 -25.7 0
Work:late -0.613 0.0509 -12.0 0
Work:long -0.840 0.0363 -23.2 0
Work:short -0.699 0.0312 -22.4 0

Summary of statistics
Number of estimated parameters = 25
L(0) = -16901.05
L(β̂) = -3138.885
AIC = 6327.77
BIC = 6501.469
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6 Simulation and results
Using the estimated parameters discussed in Section 5, household schedules are simulated for a sample drawn
from the test dataset. The schedule simulation and results are presented in this section.

We simulate daily schedules for 260 individuals belonging to 130 households in the test sample. For each
household in the sample, 20 realisations are drawn from the underlying schedule distribution. We present two
simulation result examples: (i) Schedule simulation with household-level scheduling model, considering the
intra-household interactions. (ii) Schedule simulation with individual-level scheduling model, not considering
the intra-household interactions.

For the household scheduling model, the estimated parameters from Model 3 (Section 5.2.3) are used for
schedule simulation. For the individual-level scheduling simulation, the estimated parameters reported as bench-
mark model (in Section 5.2.4) are used.

In this section, we illustrate the individual- and household- model results by comparing their schedule dis-
tributions and distributions of start times and durations results with the observed distribution from the dataset
as well as an analysis of descriptive statistics between the results of the model at an aggregate level (Section
6.1). We then showcase the addition that the household model brings at the disaggregate level and considering
intra-household interactions with an example in Section 6.2

6.1 Aggregated simulation results
First, we compare daily averages of out-of-home activity duration and proportion of scheduled activity duration.
Tables 10 and 11 compare household and individual simulation model outputs with observed data in terms of the
average duration of out-of-home activities and the overall share of time spent on various activity types among
260 individuals in the test set. The household model replicates observed activity durations more closely than
the individual model, particularly for work and leisure. The individual model tends to overestimate leisure,
shopping, personal business, and education durations, leading to an overestimation of total out-of-home time.
Table 11 further confirms that the household model provides a better match to the empirical distribution of
activity time shares.

Table 10: Average duration of out-of-home activities among 260 individuals in test sample.

Activity Data Individual model Household model
Work 07:15 06:57 07:20
Education 00:40 00:55 00:31
Leisure 02:13 03:13 02:07
Personal business 00:53 01:15 01:28
Shopping 01:27 01:49 01:31
Total out-of-home 12:30 14:08 12:58

We then visualise and compare the time of day participation of scheduled activities between the household
model, individual model, and data. Figure 4 presents the distribution of scheduled activities in the course of
a day, in the sampled test data (Figure 4a), and resulting from the simulator framework using individual-level
model (Figure 4b), and the household-level algorithm (Figure 4c) on the sampled test data. The distributions
are for schedules including at least one activity out of home. The height of each bar represents the proportion
of the sample that is participating in each activity at a given moment of time.
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Table 11: Proportion of scheduled activities (based on duration of activities) among 260 individuals in test
sample.

Activity Data Individual model Household model
Work 10.60% 8.26% 9.63%
Education 0.51% 0.65% 0.64%
Leisure 5.01% 6.13% 5.30%
Personal business 0.92% 0.95% 0.88%
Shopping 1.44% 1.53% 1.40%
Home 81.52% 82.48% 82.15%

The household model provides a better fit to the observed time-of-day patterns. It more accurately captures
the morning and afternoon peaks of out-of-home activities, including the sharper decline in activity partici-
pation after 18h. The isolated individual model tends to spread activities more uniformly throughout the day,
overestimating leisure and shopping during late hours. The household model better aligns with the timing and
intensity of activity transitions, particularly the early return to home, suggesting it more effectively captures the
coordinated and constrained nature of real-world household scheduling behaviour.

We compare the distributions of simulated start times and durations, for each activity across the observed
data, the individual model, and the household model. Figure 5 and Figure 6 present the distribution of start
times and durations, respectively. In each subfigure, the Kolmogorov-Smirnov (KS) statistic compared to the
observed data is included, quantifying the difference between simulated and empirical distributions. Across both
start times and durations, the household model generally produces distributions that more closely align with the
empirical data, reflected in lower KS statistics in most cases. This highlights that accounting for intra-household
interactions can improve the model’s ability to replicate observed temporal activity patterns more closely.

Figure 7 compares the joint distributions of activity start times and durations across the observed data, the
household model, and the individual model. The household model outperforms the individual model, particularly
in activities that involve shared timing or regular routines — such as being at home together, going to work, or
engaging in leisure activities. Activities like personal business and leisure remain challenging for both model.
This suggests that these activities are harder to predict or simulate well, possibly due to more variability in when
or how they are scheduled.
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(a) Data

(b) Individual model

(c) Household model

Figure 4: Time of day activity participation, across 260 individuals in test sample
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(a) Work (b) Education

(c) Leisure (d) Shopping

(e) Personal business (f) Home

Figure 5: Simulated start times, per model and activity, across 260 individuals in test sample.
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(a) Work (b) Education

(c) Leisure (d) Shopping

(e) Personal business (f) Home

Figure 6: Simulated durations, per model and activity, across 260 individuals in test sample.
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Figure 7: Joint density plots of start time and duration per model and activity, across 260 individuals in test sample.
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6.2 Disaggregated simulation results
The explicit and simultaneous simulation of interactions and scheduling choice dimensions, ensure consistency
of choices between individuals in the household. In this section, we illustrate, through an example, the synchro-
nisation of household members’ schedules generated using the household framework model.

Consider an example of a two-person household with one car on a weekend. Figure 8 presents an ar-
bitrarily selected realisation from the distribution of generated schedules using household-level model. The
corresponding location sequence for the car and household members is shown as location plot in the same
figure. This example showcases the advantage of the household simulation model in ensuring consistency across
disaggregated results. Interactions within the household — such as car allocation among members, joint activity
participation, and shared rides—are captured in the simulation outcomes. Examining the generated location
sequence for the car (Figure 8c) alongside the simulated location sequences of the household members reveals
that the location and mode choices of the household members are consistent with the availability and allocation
of the household car.

The household model ensures compatibility of schedules for individuals in multi-member households by
accounting for complex behaviours and interactions among household members. We compare descriptive statis-
tics derived from the observed data with those obtained from household schedule simulations, which explicitly
capture intra-household interactions and the synchronisation required for joint participation. In Table 12, the
columns grouped under “Activity” present the proportion of leisure activity durations performed solo versus
jointly with another household member, comparing the observed data with the simulated results from the house-
hold model. The columns grouped under “Trip” show the proportion of joint trips undertaken for leisure purposes
across the observed data and the simulated results. The household model generates the participation modes
for leisure activities with good alignment to the observed data, though it slightly overestimates joint activity
participation and underestimates joint trips. Incorporating household-level interactions enables the model to
capture social coordination in leisure activities. This highlights the behavioural relevance of modelling joint
decisions explicitly in the household model.

Table 12: Proportion of joint activity and trip for Leisure among 260 individuals in test sample.

Activity Trip
Data Household model Data Household model

Solo 39.53% 33.34% 92.48% 93.34%
Joint 60.47% 66.66% 7.52% 6.66%

Figure 9 presents the distribution of start times and durations for solo and joint leisure activities, across
260 individuals in test sample. Overall, the household model effectively reproduces the underlying temporal
distributions for solo and joint leisure activities. For solo leisure activities, the model captures the uni-modal
pattern of start times centered around late morning and the sharp decline in durations beyond two hours. Figure
9b shows how the model is able to capture the multi-modal nature of the start time distribution for joint leisure
activities. This multimodality occurs as, when performing leisure activities jointly, individuals have to deal with
constraints for multiple participants. We speculate that the model identifies two common scheduling solutions
avoiding standard work and education hours for joint leisure participation; either early morning before work or
evening after work. In practice, society tends to favour evening leisure activities over early morning. However,
as there is no explicit penalty representing this preference in the model, this results in early morning activities
that do not happen in reality.
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(a) Generated schedule and location sequence for household member 1

(b) Generated schedule and location sequence for household member 2

(c) Generated location sequence for the car

Figure 8: Generated schedules and location sequences of household members and the car in the example of
family of 2
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(a) Distribution of start time for solo leisure activity (b) Distribution of start time for joint leisure activity

(c) Distribution of duration for solo leisure activity (d) Distribution of duration for joint leisure activity

Figure 9: Distribution of start time and duration for solo and joint leisure activities, across 260 individuals in
test sample.
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7 Discussion and conclusions

7.1 Household-level vs individual-level choice set generation
In this section, we compare and discuss the household-level with individual-level choice set formation technique.
Within-household interactions lead to additional complexities in the household scheduling. In the household-
level choice-set generation technique, these aspects can be broadly classified as: (i) additional choice dimensions;
activity participation mode; whether an individual participates in an activity solo or jointly with another
household member, (ii) time arrangements; schedule synchronisation between participating individuals in joint
activities, (iii) constraints; such as resource availability and limitation, (iv) group decision-making mechanism;
moving from schedule utility of isolated individuals to household utility function, reflected in the MH algorithm
through the target distribution and target weight of each candidate state (state = set of schedules of individuals
in a household). Table 13 presents a summary comparison of household-level and individual-level choice set
formation.

Table 13: Summary comparison of household-level vs individual-level choice-set formation

Feature Individual-level Household-level
Initialisation Individual schedule Schedule of all household members
Generation procedure Separate In parallel
Target weight Schedule utility Household utility
Decision variables Specific to activities schedule and location Specific to activities schedule, location and companionship
Constraints Schedule continuity Schedule continuity and household synchronisations
Operators Specific to scheduling dimensions Specific to companionship and scheduling dimensions
Output Ensemble of schedules Ensemble of sets of schedules

Choice-set generation technique for household scheduling, generates an ensemble of schedules with consis-
tent alternatives for all household members, forming choice set of all individuals in a household in parallel. This
ensures inter-agent validity of alternatives in the choice-set, enhancing model realism in capturing household
dynamics. Whereas the relation between individuals and their household is lost in individual-level choice-set
formations, leading to separate choice set formation procedures with no feedback between them.

Analysing the generated choice-set with the household-level algorithm, the frequency of leisure activities
with activity participation type chosen as joint, is identical for both individuals in the household. This informa-
tion is not captured in individual-level choice-set formation technique. The observed compatibility between the
generated schedules in the choice-set, both through observations from randomly selected alternatives and also
aggregated checks on the whole choice set, ensures the soundness of the algorithm logic.

As an empirical investigation of the added value of estimating parameters with the household-level model
compared to the individual-level choice set generation model, we simulate schedules for a sample test data using
parameter estimates from both algorithms, presented in Figure 4. From the results, the household-level model
provide realistic results, closer to the observations in the data.

7.2 Conclusion and future work
This paper addresses two core research questions in household ABMs: (i) how to formulate choice sets that
reflect intra-household dynamics, and (ii) how to estimate behaviourally meaningful parameters for household
ABMs. We propose a framework that integrates household-level constraints and decision-making into choice
set generation, and enables the estimation of a utility-based household scheduling model using a discrete choice
modelling approach. Our household-level choice set generation builds on a MH based sampling algorithm to
generate consistent and interdependent household schedules that capture complex joint behaviours.
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The main characteristics of our household choice-set generation framework can be summarised as: (i) alter-
natives are generated in parallel for all household members to preserve inter-agent dependencies, (ii) we move
from individual utility function to household utility function, (iii) dedicated operators are introduced to modify
choice dimensions specific to household scheduling, (iv) generated schedules are constrained to satisfy both
household-level and individual-level feasibility requirements; (v) the algorithm returns an ensemble containing
clusters of schedules for individuals in household, and (vi) individual and household socio-demographic charac-
teristics are preserved and reported in the generated choice sets, allowing for the inclusion of socio-demographic
variables in model specifications.

The proposed framework is applied to a real-world case study. Utilising the choice set generation technique,
the parameters of a utility-based ABM, the household-level Optimisation-based Activity Scheduling Integrating
Simultaneous choice dimensions (OASIS) are estimated. The estimated scheduling preference parameters are
well-identified and statistically significant, even with a relatively small number of alternatives in the choice set.
Using the estimated parameters, the household schedules are simulated. This paper contributes to the state of
the art in ABMs by explicitly simulating joint activities. The household approach yields more behaviourally
realistic representations of daily activity scheduling, ensuring consistency of scheduling choices between house-
hold members and capturing joint activity synchronisation.

There are further extensions and improvements of the current work, suggesting avenues for future research.
While the present specification captures observed heterogeneity through socio-demographic segmentation, it
assumes homogeneity within each segment. Future research can explore alternative formulations of scheduling
preferences such as incorporating unobserved continuous heterogeneity via random coefficients, or discrete
heterogeneity through latent class models. The computational and implementation costs of different approaches
should be considered. Another interesting extension to the choice set generation algorithm, is capturing
inter-day correlations in scheduling behaviour, enabling multi-day analyses. Moreover, complex travel-related
interaction dimensions within household members such as shared resource constraints (e.g., car availability) can
be investigated in the choice set generation step. Estimating travel-related parameters within this framework
will require access to detailed spatial and network data. Additionally, future research could explore strategies
for determining the optimal number of alternatives to generate during the choice set generation step, balancing
the trade-off between computational efficiency and the accuracy of parameter estimates.
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