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Abstract

Energy and transport demand can both be considered as being derived from an in-
dividual’s activity participation. As such, both energy and transport demand are
inherently linked: completing activities inside the home generates residential energy
demand, where completing activities outside the home generates transportation and
non-residential energy demand. Whilst there are several works in the literature that
focus on either energy or transportation demand, there remain very few studies which
explicitly investigate their interaction. To address this need, in this paper we conduct
in-depth literature review of transportation and energy demand modeling. The review
analyses the methodologies employed within each domain in order to (a) establish
the state-of-research for energy demand modeling and (b) identify the suitable oppor-
tunities for joining these two domains. Drawing on a review of the current papers,
we identify four key areas of practice: (i) activity scheduling, (ii) building energy
demand, (iii) transportation energy demand, and (iv) the integration of components.
Finally, based on the findings from the review, we propose a new framework for joint
building and transportation energy demand modeling at an urban scale.
Keywords: Energy demand framework; Transportation demand; Building energy demand;
Activity-based; Literature review

Glossary
EM Engineering methods.

EVs Electric vehicles.

GDP Gross domestic product.

HVAC Heating, ventilation, and air-conditioning.

LUT Land use-transport.

SEM Structural equation model.

SM Statistical methods.

TUD Time use data.

TUS Time use survey.

UBEM Urban building energy modeling.

USEM Urban-scale energy modeling.

VBA Virtual Basic for Applications.
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1 Introduction
Urban areas consume two-thirds of the global energy, which leads to over 70% of global
greenhouse emissions (IEA. 2008). Governments worldwide have pledged for ambitious
reductions in emissions in the short- to medium-term future. Achieving these targets will
require a much deeper understanding of urban energy demand in order to manage and
reduce consumption.

The energy consumption in cities can be largely categorised within three different
sectors: (i) residential buildings, (ii) non-residential buildings, and (iii) transportation. Of
these three sectors, transportation is now the largest emission producer in many countries
worldwide, including Switzerland (European Commission 2021). The energy consump-
tion across each of these sectors is inherently linked. Understanding urban energy de-
mand as a whole therefore requires the interactions between each of these sectors to be
considered. However, energy demand models used in practice typically only focus on one
element, with separate models for domestic and non-residential buildings energy demand
and transportation demand. There is therefore limited understanding of the interactions
between these sectors.

In the context of urban energy, Urban-scale energy modeling (USEM) has been intro-
duced as an integrating concept for joining energy models at an urban scale. As proposed
by Sola et al. (2018), USEM can be simulated using an integrated platform consisting of
five sub-models: (i) an urban meteorology model, (ii) a building energy supply model,
(iii) a building energy demand model, (iv) a transportation energy model, and (v) an
energy optimization model. One of the main challenges of USEM is studying the inter-
dependencies of urban systems, which requires co-simulating urban system models and
coupling methods (Hong et al. 2020). In this paper, we focus only on the energy demand
elements of the USEM, specifically building energy demand (subdivided into domestic
and non-residential buildings) and transportation.

In the current state of practice in building energy demand, two main approaches have
been used:

1. building envelope models; in which the buildings energy consumption pattern is
simulated directly from aggregate historic energy values (Oneal and Hirst 1980),
and

2. active occupancy models; in which energy demand is modeled based on the number
of active occupants (present and not asleep) in the buildings (Richardson et al. 2010;
McKenna and Thomson 2016),

In this paper, we consider an alternative approach to building energy demand model-
ing, by modeling energy demand as resulting directly from people’s desire to participate
in different activities, either inside or outside the home. This extends the activity-based
modeling paradigm typically applied to investigate transportation demand. The proposed
framework explicitly models the energy demand in the three sectors as explicitly linked
using the activity as the central unit of analysis as follows:

• Activities completed at home; such as cooking, cleaning, and laundry which di-
rectly use appliances resulting in direct domestic energy demand,
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• Baseline domestic energy; lighting, hot water, space heating and cooling, ventila-
tion, and air-conditioning indirectly dependent on in-home activities (from occu-
pancy),

• Out-of-home activities directly generate transport demand in which the transport
energy demand can be either directly dependent on travel demand (private transport)
or indirectly dependent on travel demand (public transport),

• Non-residential energy demand; which is indirectly dependent on out of-home ac-
tivities.

Human activity is the main connecting element between these energy consumptions
in urban systems. Behavior is the key element affecting individuals’ activity scheduling
and thus, energy usage is highly dependent on individuals’ behavior. For example in the
case of residential buildings as one of the main energy consumption sources in urban ar-
eas, energy consumption can vary dramatically from one household to another even in
similar buildings. This reflects the heterogeneity in occupants’ needs, behavior, and pref-
erences (Liu et al. 2019). Occupants’ activity patterns also vary throughout the day and
even days of the week (weekdays and weekends). Therefore, occupants’ activity schedul-
ing which is affected by individuals’ behavior is a key input to domestic energy demand
modeling. Out of home activity participation has already been modeled extensively for
transport demand modeling in form of activity-based transport models in the last decades.
Transportation modelers take advantage of daily activity scheduling of individuals for
agent-based transport modeling in which the demand for travel is assumed to be driven by
the need to complete activities which are distributed in space and time (Kay W. Axhausen
and Gärling 1992). This implies that well-established activity-based transportation mod-
eling tools are available. However, although behavior is the key element joining mobility
and energy use, the human behavior element is frequently neglected in the energy demand
literature (Sovacool et al. 2015) and the current energy demand models are mostly based
on active occupancy concept.

In order to address this gap, we propose an integrated model of disaggregate energy
and transport demand using activity-based approach to model complex individual behav-
iors due to the multiplicity of individual actors, their multi-criteria objectives, and the
multidimensionality of relevant factors. By recreating individual activity schedules in a
day, our research proposes an integrating framework to co-simulate and study the inter-
dependencies of energy demand and transport modeling. This new modeling paradigm,
can be used to directly model both energy demand and transport demand derived from
in-home and out-of-home activity participation.

To this aim, the following are the gaps in knowledge we need to address for our
framework to work, however, they are not the same as the review questions, but can be
used to help form them:

• How to incorporate in-home and out-of-home activity scheduling in a single schedul-
ing model?

• How to derive both direct and indirect domestic energy demand from in-house ac-
tivities?
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• How to derive direct and indirect transportation energy consumption from travel
demand?

• How to derive indirect non-residential energy demand from out-of-home activities?

The literature review aims to answer the following questions:

• What approaches have been used to model transportation and building energy de-
mand?

• What is the relation between building and transportation energy demand?

• How can we link building energy demand modeling to transportation energy de-
mand modeling?

• To what extent, the activity-based modeling has been applied to energy demand
modeling in fields of transportation and building energy modeling?

The remainder of this manuscript is structured as follows. In the following section, a brief
review of the existing literature on activity scheduling of individuals and energy demand
modeling is presented. Section 3 presents the proposed integrated framework. Finally,
the concluding remarks and opportunities for future research are presented in section 4.

In the remainder of this manuscript, the following terminology has been used for
household, building, and domestic/residential energy demand. Household refers to the oc-
cupants living together in a housing unit. Building includes both residential and commer-
cial building stock and refers to the building structure and its contents such as appliances
and other plug loads. Domestic/residential energy demand refers to energy used in res-
idential buildings including lighting, Heating, ventilation, and air-conditioning (HVAC),
and appliances.

2 Literature Review
The aim of this section is to review the current literature on on activity scheduling as well
as transport and energy demand modeling.

Activity-based models have been developed and extensively used over the past 50
years in transportation modeling (Chapin 1974; Hagerstrand 1970; Horni, Nagel, and
Kay W Axhausen 2016; Roorda, Miller, and Nurul Habib 2008; Scherr et al. 2020). Also,
activity-based models have been used in integrated land use-transport models (Miller et
al. 2004; Waddell 2002), which can predict travel and activity patterns of all agents in the
study area at high levels of spatial and temporal resolution, in a behaviorally realistic and
policy sensitive manner. These integrated models present new opportunities for utilizing
an activity-based approach in energy demand modeling (Keirstead, Jennings, and Sivaku-
mar 2012) as there have been limited attempts to model electricity and heat demand using
these approaches (Bustos-Turu et al. 2016). Extending such demand models to all energy
resources is one of the most promising opportunities in the field of urban energy system
modeling (Keirstead, Jennings, and Sivakumar 2012).

Moreover, occupants’ behavior is a substantial source of uncertainty in buildings en-
ergy modeling as it can influence the energy consumption by as much as 100% for a
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given dwelling (Clevenger and Haymaker 2006; Emery and Kippenhan 2006; Masoso
and Grobler 2010; Seryak and Kissock 2000; Yu et al. 2011; Palacios-García et al. 2018).
Therefore, it is crucial to take into account the difference in individuals’ daily behavior to
avoid peaks in energy consumption at unrealistic point in time (Wang et al. 2018).

In spite of the similarities between activity-based transport modeling and building
energy demand modeling, these two problems have not yet been considered together and
there is not an integrated framework.

In this section, we have conducted an extensive review into energy demand modeling.
To identify relevant papers, we search across three primary topics: building energy de-
mand modeling, transportation modeling, and activity-based modeling. We then review
the literature which attempts to bridge these three topics. We first discuss eight review
papers in transportation modeling, building energy modeling, and the current approaches
to integrate these two domains in section 2.1. Then, section 2.2 presents the existing
research on energy demand modeling and is subdivided into two areas; building energy
demand models (section 2.2.1) and transportation energy demand models (section 2.2.2).
In section 2.3, a review on activity-based models and scheduling is provided, followed by
section 2.4 which presents the current literature on integrating transportation and building
energy modeling.

The review methodology of this review paper is such that we have identified the key
papers in this field through an unstructured search by following the references from the
key papers. The review is the exploration of the key themes and not an exhaustive review.

2.1 Summary of eight review papers in the field
In this subsection, eight review papers in transportation and building energy modeling
and the existing attempts to integrate these two domains are discussed. Table 1 provides
a summary of the key findings of these review papers. Then, based on the findings of
these reviews, we provide a high-level scheme of a framework that serves as a guide in
reviewing the papers to reach our ultimate goal (Figure 1).

Kotusevski and Hawick (2009) provide a thorough review of some of the available
traffic simulator software packages discussing their applications, their features and char-
acteristics as well as their short comes. Insights from this paper can be useful for selecting
the most appropriate simulation tool for traffic system simulation and thus mobility energy
demand. In the paper by Mahmud and Town (2016), the authors focus on Electric vehicles
(EVs). They propose a thorough literature review on many of the current simulation tools
for energy requirements of EVs and their impact on power distribution networks. Their
contribution can assist us in selecting appropriate tools when integrating various means
of transportation including EVs, which are becoming more and more popular these days,
in an integrated energy demand modeling framework.

Swan and Ugursal (2009) provide a critical review on various residential sector energy
consumption modeling techniques; top-down and bottom-up approaches. They observe
that bottom-up engineering methods are the most suitable for examining different energy
policies and strategies as they have the capability to determine the impact of new technolo-
gies and discontinuities on building energy demand. Li et al. (2017) provide a more up-
to-date review of the urban buildings’ energy modeling. Compatible with the conclusion
of Swan and Ugursal (2009), they also state that as the bottom-up engineering approach
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Table 1: Summary of existing review papers
Topic Key findings Citation

Traffic simulator softwares Applications, features and short comes of traffic simulator softwares (Kotusevski and Hawick 2009)
Review on modeling and managing impact of EVs on power distribution networks 125 simulation tools identified and 67 summarized, enable researchers select mix of tools to for their objectives. (Mahmud and Town 2016)

Domestic energy modeling techniques Bottom-up approach is suitable for examining energy policies and the impact of discontinuous advances in technology (Swan and Ugursal 2009)
Urban buildings’ energy modeling Bottom-up engineering approach provide detailed information to evaluate impact of new technologies on building energy use (Li et al. 2017)

Residential electricity demand modeling based on TUS data Residential electricity demand is predominantly driven by the timing of occupants’ activities that can be obtained from TUS data (Torriti 2014)
Urban energy consumption Integrated LUT modeling is highly relevant to urban energy systems but overlooked by the literature, activity-based approach is a promising integrating framework for future of USEM (Keirstead, Jennings, and Sivakumar 2012)
Urban energy consumption Activity-based approach can be a feasible solution to overcome the challenge of interconnected urban system modeling in UBEM (Hong et al. 2020)

Classify the existing urban-scale energy systems simulation tools Provide available resources for implementing new co-simulation approaches in USEM and reduce future modeling efforts (Sola et al. 2018)

has a high temporal resolution (daily, hourly, and/or sub-hourly), it can provide detailed
energy consumption information in order to establish a solid foundation for evaluating the
impact of new technologies on buildings’ energy use. Torriti (2014) proposes a focused
literature review on residential electricity demand modeling based on Time use survey
(TUS) data. Among the current approaches for residential electricity demand modeling,
they rely on the assumption that residential electricity demand is predominantly driven by
the timing of occupants’ activities, which can be obtained from TUS data. These reviews,
give us insight on possible data and methods used in time-use studies and building energy
use modeling.

Keirstead, Jennings, and Sivakumar (2012) provide a comprehensive and diverse lit-
erature review on urban energy consumption which is of significant and growing interest.
They claim that in spite of various models with different temporal and spatial scales, there
has not yet been a piece of work that lightens up the full scope of activities in this area.
The authors also point out the integrated Land use-transport (LUT) modeling as a field
which is highly relevant to urban energy systems but overlooked by the literature. More-
over, they highlight that the future of urban energy systems modeling is in the use of an
activity-based approach as an integrating tool. Hong et al. (2020) state that studying the
interconnected urban system modeling is still one of the remaining challenges in Urban
building energy modeling (UBEM). Therefore, tackling the challenges of using activity-
based approach to couple and co-simulate urban system is still a gap which has not yet
been filled by the existing research.

Sola et al. (2018) classify the existing urban-scale energy systems simulation tools
according to their capabilities and the analysis area(s) they cover in the urban energy
system with the goal of providing available resources for implementing new co-simulation
approaches in USEM and reducing future modeling efforts.

Although these reviews point out to the potential of activity-based models as an in-
tegrating framework to co-simulate interdependent urban systems (transport and build-
ing energy demand), no one has done it so far. Therefore, in order to fill this gap, we
have conducted a review on joint mobility and building energy modeling with a focus on
activity-based approach as an integrating framework. Using these ideas from transport,
energy demand, and activity participation, we come up with a framework that lastly gen-
erates buildings energy demand, transportation energy and transportation flows within the
same activity-based model. Figure 1 illustrates the high-level scheme of the framework.
This framework presents the building blocks together with the relationships we need to
review in the literature to overcome the challenge of interconnecting urban system models
using activity-based approach as an integrating tool.
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Figure 1: High-level scheme of the framework

2.2 Existing energy demand models
In this section, a review on the existing energy demand models is presented. The energy
demand models are studied under two groups: building energy demand models (section
2.2.1) and transportation energy demand models (section 2.2.2), which are discussed in
the remainder of this section.

2.2.1 Building energy demand models

Buildings are one of the substantial consumers of energy (Swan and Ugursal 2009); about
40% of global energy use (EIA 2020). By the term buildings, we refer to both residential
and non-residential buildings. In this sub-section, we first review literature on domestic
energy demand and then go over some available research on non-residential buildings
energy modeling.

Buildings’ energy use can be grouped as "active" energy use and "passive" energy
use. People use certain appliances in order to do activities. Therefore, appliance energy
use comes from individuals’ daily activities such as using washing machine and dryer
for doing the laundries. These building energy consumptions are categorized under the
"active" energy consumption group. Passive energy consumption can be classified into
two categories: the first category involves building energy use that does not directly de-
pend on activities but rather depends on occupancy such as space heating, space cooling,
ventilation, water heating, and lighting which control the indoor environment, and the
second category are for the electrical appliances that operate all day without occupant
intervention such as refrigerators and other cold appliances.

There are two general techniques for modeling residential energy demand namely
“top-down” and “bottom-up” models (Swan and Ugursal 2009). Top-down models treat
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the residential sector as an energy sink and use historic aggregate total residential sector
energy consumption together with some other high-level variables in order to compute
the energy consumption of the housing stock as a function of its characteristics (Sola et
al. 2018). The input data for developing these models include aggregate historic energy
values, characteristics of the dwellings, occupants and their behavior, appliances’ charac-
teristics, general climate, and macro-economic indicators such as Gross domestic product
(GDP), unemployment, and inflation (Muratori et al. 2013a). Time series stochastic ap-
proaches such as auto regressive moving average techniques can also be used to forecast
domestic energy demand (Arghira et al. 2012). Although the top-down approach is sim-
pler than the bottom-up approach and requires only widely available aggregate historic
energy data, since it is mainly based on historical data, its predictions into the future is
less appropriate and it cannot model discontinuous advances in technologies (Wang et al.
2018). Moreover, it lacks details regarding the energy consumption of individuals (Sola
et al. 2018).

On the other hand, in the bottom-up models, the model calculates the energy con-
sumption of individuals or groups of households and then extrapolate these results to a
wider urban area by identifying the contribution of each end-use to the aggregate resi-
dential sector energy demand (Muratori et al. 2013a). This aggregation is accomplished
using a weight for each simulated house or group of houses based on its representation of
the sector (Swan and Ugursal 2009). This approach has two advantages: first, it can deter-
mine the total energy consumption of the residential sector without relying on historical
data and second, its high level of detail which allows it to model the effects of technolog-
ical improvements, policy decisions, and energy optimization techniques. The required
input data for developing these models include explicit energy consumption of end-uses,
building characteristics (e.g., size and layout, building materials, and characteristics of
appliances), general climate, occupants’ behavior and appliance usage, lighting use, and
the characteristics of HVAC systems (Muratori et al. 2013a). Although the bottom-up ap-
proach has the aforementioned advantages, it has a great model complexity and requires
more detailed input data compared to the top-down models.

The bottom-up approach can be sub-categorized into Statistical methods (SM) and En-
gineering methods (EM). SM rely on types of regression analysis to attribute the dwelling
energy consumption to end-uses and climate. Once the relationships between end-uses
and energy consumption have been established, the model can be used to estimate the
energy consumption of dwellings representative of the residential stock. While EM ex-
plicitly account for the energy consumption of end-uses based on the building physics,
power ratings, and usage of equipment (Swan and Ugursal 2009). Figure 2 presents a
summary of techniques for building energy demand modeling.

Under the bottom-up engineering technique, there are mainly four approaches to quan-
tify appliance energy consumption in buildings (Yamaguchi and Shimoda 2017; Yam-
aguchi, Prakash, and Simoda 2020); (1) building envelope models (2) occupancy-based,
(3) activity-based, and (4) time-based approach. In the first approach, the behavior of
energy consumption is simulated directly using real sub-metering data to derive diversity
profiles of occupants energy use and then used to deduce buildings’ energy consump-
tion (Seryak and Kissock 2003; Yohanis et al. 2008). This approach ignores occupancy
patterns, activities, and behavior.

In the second approach, the occupants’ presence is modeled using Time use data
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Figure 2: Building energy demand modeling

(TUD) and then converted into the operation of appliances. Therefore, occupant behavior
is a critically important component to replicate the dynamic behavior and intensity of en-
ergy demand (Yamaguchi and Shimoda 2017). Richardson, Thomson, and Infield (2008)
proposed an occupancy-based model for simulating domestic building energy demand.
Their model has been expanded and frequently applied in buildings energy demand mod-
eling (McKenna, Krawczynski, and Thomson 2015; Evins, Orehounig, and Dorer 2016).
They established a discrete-time first-order Markov chain model dealing with the num-
ber of active occupants (being at home and awake) as transition states and developing
transition probabilities, Ni,j/Ni (Ni,j is the number of samples whose state change from
i to j, and Ni is the number of samples at transition state i), at each time step based on
TUD categorised by household size. Therefore, first, a time series of changes in the active
occupancy schedule is determined which is then converted into appliance switch-on prob-
ability. Appliance switch-on probabilities can be used for modeling the first category of
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building energy use: active energy consumption. Their model is developed using Excel
Virtual Basic for Applications (VBA). Richardson et al. (2010) quantified the switch-
on probability using appliance TUD and annual total electricity consumption, defining
switch-on probability as the product of activity probability and a calibration scalar, ad-
justing the total number of switch-on events per year to avoid appliance use overestima-
tion. Richardson et al. (2009) further used their occupancy model as an input to simulate
lighting demand. The model accounts for shared light use, weekday and weekend pattern,
and outdoor irradiance; so, it takes into account seasons. Richardsons’ model is known as
the CREST model. This approach can be applied to the first category of second group of
building energy use: passive energy uses that depend on occupancy.

However, Richardson’s model has the following opportunities to be improved: 1. it
does not account for the heterogeneity between households, 2. variations in the number of
switch-on events per day cannot be replicated, and 3. it is only for electrical and lighting
energy demand. These limitations have been addressed by other researchers. Baetens and
Saelens (2016) improved the model representing heterogeneity between households by
categorising TUD based on occupancy pattern as well as household size. Flett and Kelly
(2017) determine the number of switch-on events in a simulated day based on empirical
data and then allocate them to the timeline based on occupancy. Therefore, they have
addressed the second shortcoming. McKenna and Thomson (2016) extended the CREST
model to integrate thermal demand to electric demand such that they are correlated.

Other authors such as Tanimoto, Hagishima, and Sagara (2008), Widén, Nilsson, and
Wäckelgård (2009), Muratori et al. (2013b), and Subbiah (2013) have adopted occupancy-
based approach as well. However, there are some drawbacks in the existing models using
this approach:

• First, even though they correlate occupancy schedules to appliance use-patterns
and consumption, neither of the existing approaches establish the link between oc-
cupants’ daily living needs and their related energy consumption.

• Second, they do not generate energy demand profiles based on the activities per-
formed in each household and by each household member. Therefore, they do not
have the capability to depict use-situations such as sharing phenomena of appliance
and activities.

• Third, they are not exhaustive in representing the household’s socio-demographic
attributes and the main variable considered in representing households is the num-
ber of active occupants.

• Fourth, the appliance use is modeled independently from other appliances resulting
in unrealistic energy peaks and appliance use sequence.

Consequently, these models cannot assess the energy consumption variability between
different population segments.

To overcome these limitations and enhance the flexibility in modeling households,
activity-based approach explicitly simulate the activities of household members which
are then converted to appliance switch-on occurrences. Widén and Wäckelgård (2010)
and Widén, Molin, and Ellegård (2012) proposed a discrete-time Markov chain model
with a number of activities are defined as transition states, which will be converted to ap-
pliance use. However, their model can not replicate activities’ durations coherently since
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the durations are randomly determined as a result behavior transitions. Wilke et al. (2013)
proposed a discrete-event model in which individuals’ activities are simulated by selecting
an activity to start at the first vacant slot and selecting its duration. They use multinomial
logit models for the activities starting probability and predict their duration by means of
survival analysis. Tanimoto, Hagishima, and Sagara (2008) proposed a discrete-event
model in which activities’ duration are determined based on a time-dependent probability
equal to the ratio of TUD on each activity over the total number of TUD at each time of
day. Moreover, Zaraket (2014) proposed an activity-based model which aims at forecast-
ing occupant-related energy consumption in residential buildings while accounting for
variability in consumption patterns due to heterogeneity in occupants’ socio-economic
and demographic profiles. This model is known as SABEC which stands for Stochas-
tic Activity-Based Energy Consumption. Their model can be applied to active energy
consumption in residential buildings.

The fourth approach for modeling energy consumption in buildings is the time-based
approach. In the time-based approach neither the occupancy nor the activity is simulated.
Instead, time is an indicator of activities and appliance switch-on probabilities. Authors
such as Gruber et al. (2014) and Paatero and Lund (2006) have adopted this approach.

As such in residential buildings, there is a close relationship between occupancy pat-
terns and energy consumption in economic sectors as well. Palacios-García et al. (2018)
propose a stochastic model for the generation of daily occupancy patterns using a Markov
Chain approach in nine economic sectors with a high temporal resolution. They distin-
guish between the type of day and type of working hours. Building occupancy data rather
than activity data is the key input to simulating non-residential buildings’ energy demand.
This occupancy model is a stepping-stone for the estimation of energy demand in the
commercial sector and the assessment of various energy policies.

In summary, considering all the aforementioned approaches in building energy de-
mand modeling, activity-based approach provides a more accurate estimate of energy
demand and has attractive qualities such as the ability to capture complex use situations
(e.g., multi-tasking, interaction/sharing between the members of a household). Also, it
enables predicting resource demand at high spatial and temporal resolutions to the extent
of being able to produce building-by-building resource needs. It has the ability to predict
resource demands along different dimensions while at the same time retaining the depen-
dencies and links between these resource demands. Moreover, this approach enables us
to observe the energy substitution effects between the use of different equipments and
participation in different activities (Ghauche 2010). It also has the ability to capture the
effect of temporal and cultural changes on human behavior which affects energy demand
(Keirstead, Jennings, and Sivakumar 2012; Wilke 2013). A user-focused activity-based
model which correlates occupants’ profiles such as socio-demographics to activities, ap-
pliance ownership, and use trends is a suitable approach for an accurate and realistic
estimation of building energy demand simulation and provides an effective test-bed for
examining various scenarios.

2.2.2 Transportation energy demand models

Transportation modeling has been widely developed in the last decades. This implies that
well-established transportation modeling tools are available. Although their focus is not
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on the modeling of transportation energy consumption, transportation energy demand can
be quantified based on them. The models for simulating transportation energy demand
can be classified in two groups (Sola et al. 2018): (1) vehicle-based models, in which en-
ergy consumption is calculated based on the outputs of a microsimulation transport model
(such as multi-agent simulation and particle system simulation), and (2) macrosimulation
models based on average speed philosophy and aggregate energy consumption data. Fig-
ure 3 presents this classification. In general terms, macroscopic models have low spatial
and temporal resolution, while microsimulation modeling tools provide more accurate
estimates of fuel consumption for a limited network application context. In any of the
cases, this calculation is commonly done in an exogenous manner (as a post-process with
the use of fuel consumption factors/ratios). To date, transportation modeling tools have
been scarcely integrated into wider urban-scale energy models (Sola et al. 2018). The
choice between both approaches will be based on the required level of details, data avail-
ability, computational time, and model accuracy (Sola et al. 2020).

Figure 3: Passenger transportation energy demand modeling

In the microsimulation models, in order to calculate the transportation energy demand,
we should first model travel demand. Travel demand models can be either categorised as
(1) trip-based or (2) activity-based (Yamaguchi, Prakash, and Simoda 2020). Trip-based
modeling has a top-down approach which uses the overall person trips in the studied area,
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disaggregated into trips with different characteristics such as origins, destinations, travel
modes, and routes consisting of four sequential processes: trip generation, trip distribution
modal split, and trip assignment.

While activity-based modeling has a bottom-up approach in which travel demand is
modeled as an aggregation of trips made by individuals. Activity in transportation de-
mand modeling is modeled as a sequence of in-home and out-of-home activities (Sivaku-
mar 2013). In this approach, the decision to travel is considered as a choice among al-
ternatives known as discrete choice set with a set of exhaustive and mutually exclusive
alternatives. Discrete choice models such as multinomial logit, nested logit, and mixed
logit models are used to model the likelihood of choosing an alternative based on cer-
tain input variables (M. Ben-Akiva and Lerman 1985). The influence of various factors
such as socio-demographics and household type, land-use, and travel conditions can be
included in the predicted likelihoods. Hazard-based models can be used for modeling the
time to the next event. The models provided by Mannering, Murakami, and Kim (1994)
for modeling travelers’ home-stay duration, and the duration of shopping activity while
returning from work to home are examples of this approach.

Activity-based approach has been developed and extensively used in transportation
modeling over the past 50 years (Hagerstrand 1970; Chapin 1974; Roorda, Miller, and
Nurul Habib 2008; Horni, Nagel, and Kay W Axhausen 2016; Scherr et al. 2020). Also,
activity-based models have been used in integrated land use-transport models (Waddell
2002; Miller et al. 2004), which can predict travel and activity patterns of all agents in the
study area at high levels of spatial and temporal resolution, in a behaviorally realistic and
policy sensitive manner accounting for the constraints individuals encounter during travel
activities. Activity-based approach has been also used in simulating trip-chains (Pitombo,
Sousa, and Filipe 2009), which if known, will be useful for modeling more accurate
transport energy consumption. Moreover, joint travels with other household members
is another significant factor in modeling travel demand which has been studied in the
literature (K. K. Srinivasan and Athuru 2005; S. Srinivasan and Bhat 2005a; Kato and
Matsumoto 2009).

The advantages of the activity-based approach are as followed (Yamaguchi, Prakash,
and Simoda 2020):

• It captures the link between activities and the need to travel,

• It captures relationships between various activities and dependencies between events,

• High temporal resolution,

• Complex behaviors such as joint travels can be considered,

• Decisions are analysed at the level of the household as opposed to seemingly inde-
pendent individuals, and

• The effect of factors such as socio-demographics, built-environment, and travel
conditions on individuals’ travel decisions can be included.

Therefore, activity-based models are more behaviorally realistic than trip-based mod-
els. Activity scheduling is central to these models. However, whenever this approach

13



has been used, either econometric models (random utility maximization) or empirical
rule-based methods (using decision rules and heuristics) have been used to determine in-
dividuals’ choice of activity schedules, instead of theory-driven behavioral models. These
methods rather do not consider behavior explicitly but implicit to the full process (econo-
metric models) (H. J. P. Timmermans 2003) or cannot be generalized to situations not
observed in the data (rule-based models) (Joh, H. J. P. Timmermans, and Recker 2004).

2.3 Activity-based models and scheduling
Activity scheduling is a key input to the activity-based models. Individuals’ activities
have a strong impact on the energy consumption of a building and are a substantial source
of uncertainty in building energy demand modeling. Daily scheduling of individuals also
influences their travel behavior. This strongly influences the mobility energy demand. As
such, individuals’ behavior, including both in-house and out-of-house activity participa-
tion, is an integral input to energy demand simulation models in urban areas and is a key
factor in understanding energy consumption (Kashif et al. 2013). Therefore, we divide
this section into two sub-sections; we first discuss in-house activity schedule and occu-
pants’ behavior in Section 2.3.1. We then present the literature on out-of-house activity
scheduling and travel behavior in Section 2.3.2.

2.3.1 In-house activity scheduling and occupants’ behavior

In addition to the building physics, building energy consumption is highly dependent on
the behavior of its occupants (Masoso and Grobler 2010; Palacios-García et al. 2018). Ex-
isting literature shows that energy consumption can vary dramatically from one household
to another even in similar buildings, which reflects the heterogeneity in occupants’ needs
and preferences (Liu et al. 2019). Also, occupants’ activity patterns vary throughout the
day and even days of the week (weekdays and weekends). Therefore, occupants’ activity
scheduling is a key input to building energy demand modeling either for individual build-
ing or the whole building sector. It is noteworthy that individuals’ activity data might
not be easily accessible due to personal privacy issues and regulations (Liu et al. 2019).
Therefore, simulating occupants’ activity schedules is a viable way to generate user ac-
tivities. We present some of the existing in-home activity scheduling models available in
the literature.

Wilke et al. (2013) present a stochastic bottom-up modeling approach using a first-
order in-homogeneous Markov process to predict the activities of occupants in a residen-
tial building based on time-dependent activity start probabilities and their corresponding
duration distributions. A general model calibration based on individuals’ behavioral ho-
mogeneity assumption is followed by successive refinements accounting for variations
in the behaviors of sub-populations. It is notable that there is a strong correlation be-
tween households’ attributes and domestic appliances ownership levels, energy rating,
and use pattern. Therefore, socio-economic and demographic attributes that influence
energy consumption trends should be taken into account when considering occupants’
behavior for modeling occupant-related energy consumption. However, the authors have
just accounted for a few socio-economic characteristics recorded in the TUS database
influencing occupants’ activities. Proposing sub-population dependent activity transition
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probabilities in addition to modeling concurrent and correlated activities between house-
hold members are among other opportunities for enhancing this model.

Yamaguchi and Shimoda (2017) propose a stochastic model to predict occupants’ ac-
tivities at home for community-/urban-scale energy demand modeling which is designed
to overcome the two weaknesses of prevalent models; the consideration of interactions
among household members and the enhancement of specificity and consistency in the
generated occupant behavior.

Later, Liu et al. (2019) propose a stochastic model and a data generator which gener-
ates the activity sequences based on a Markov chain technique for residential households
of one and two members. They suggest expanding the model to simulate a household
of more than two members as a future research opportunity. Although their proposed
model can generate an activity sequence of households of one and two members with
high precision, there still is a gap in knowledge for generating activity sequence based on
theoretical behavioral models rather than the rule-based Markov chain technique which
will add a behavioral foundation to the simulated activity patterns. The rule-based mod-
els use hard-coded decision rules to derive feasible solutions. Although this makes them
easier to implement, it limits their generalisation (Pougala, Hillel, and Bierlaire 2021).

In order to address the issues associated with Markov chain technique and capture the
underlying behavior patterns that shape activity schedules, Ramírez-Mendiola, Grünewald,
and Eyre (2019) propose a new approach in the form of a stochastic process with memory
of variable length for modeling residential users activity patterns. They implement a new
methodology for the analysis of empirical TUD with a view to identifying the behavioral
patterns within them.

In summary, the studies that incorporate individuals activity scheduling into energy
models, mainly use a rule-based Markov chain approach, which cannot fully capture the
variability in activity patterns and their underlying behavioral patterns. Moreover, the
current approaches to simulate the activity patterns focus on either time-use in home or
out-of-home activities and not both.

2.3.2 Out-of-house activity scheduling and travel behavior

The demand for travel is assumed to be driven by the need to complete activities which are
distributed in space and time (Kay W. Axhausen and Gärling 1992). When treating the de-
mand for travel as being driven by the need or desire to conduct activities, activity-based
travel demand modeling captures the relationship between activity and travel behavior
(Fu and Juan 2017). Travel behavior provides information such as number of daily trav-
els, distance traveled, and travel mode. The travel behavior of individuals is affected by
their socio-demographics, which also affects their activity participation. According to Lu
and Eric I. Pas (1999), we can explain travel behavior better if activity participation (ac-
tivity scheduling) is included endogenously in the model rather than taking into account
its effect through socio-demographics. To this aim, Lu and Eric I. Pas (1999) propose a
structural equation model relating socio-demographics, activity participation, and travel
behavior in which activity participation and travel behavior are endogenous to the model.
Variables normally included in the existing travel behavior models can be broadly catego-
rized into socio-demographics, household characteristics, travel conditions, and residence
location and land-use accessibility (E. I. Pas 1984). In this sub-section, we point out to
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some of the existing activity-based travel behavior models in the literature together with
their contributions and limitations.

Bowman and M. E. Ben-Akiva (2001) propose an activity-based discrete choice model
system for integrated activity and travel schedule. One of the limitations of their model
is that it lacks in-home activities. This limits the ability of the model to fully capture the
activity basis of travel demand. In the paper by Fu and Juan (2017), the authors present a
comprehensive framework using a Structural equation model (SEM) that accommodates
the complex interactions among activity and travel choice dimensions. Their approach ex-
plicitly reveals the behavioral pattern underlying the activity-travel decisions. However,
they have included only private cars and buses as transportation alternatives due to the
computational complexity in SEM with a higher number of alternatives. More advanced
models should be used to be able to incorporate more discrete alternatives. Moreover,
a combination of personal and household characteristics has been developed and used
in their model rather than incorporating them separately. This limits the information re-
garding the direct effect of specific socio-demographics and household characteristics on
behavioral decisions.

Whilst these models provide detailed disaggregate simulations of people’s travel be-
havior outside the home, there is little to no understanding of in-home activities from
these models. This has two primary limitations: firstly, it is difficult to capture the trade-
offs between in-home and out-of-home activities, which is relevant in the post-Covid era
such as the increase in remote working from home. Secondly, they are of limited value
for studying domestic energy demand, aside from for determining building occupancy.

2.4 Integration of components
Integrated transport and energy modeling can be established using consistent activities
people are engaged inside and outside their homes. Most existing activity-based models
have not been applied to integrated energy analysis between buildings and transportation
as these two domains have been developed independently.

Among the current literature, we have identified three key papers trying to integrate
mobility and home energy profiles in their energy simulation models, which are all for
the very recent years. Kandler (2017) presents a modeling approach for the synthesis of
electrical, thermal, and mobility-related energy profiles of households based on a Ger-
man time-use analysis; MOHEMA; using a probability distribution instead of rule-based
Markov chains for generating activity profiles. Muller, Biedenbach, and Reinhard (2020)
develop an integrated and consistent model with a bottom-up approach with an activ-
ity model based on the Markov-chain process for simulating the electrical and thermal
load profiles of private households and their mobility behavior. Yamaguchi, Prakash, and
Simoda (2020) demonstrate an energy management system modeling approach integrat-
ing house and electric vehicles using consistent data between in-house and out-of-house
activities taking a Japanese dataset as a case study.

We have identified two limitations across these works. First, from a methodologi-
cal point of view, all of these works use empirical rule-based or randomized processes
to determine individual choices and activity scheduling. Therefore, it cannot easily be
generalized to situations not observed in the data. Second, the primary investigation of
these papers is evaluating the effect of electrification of the mobility on the electricity load
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profiles of households and thus, they contain only the modal split to the journeys made
by car. So, to the best of our knowledge, there is no integrated framework to predict the
daily activity schedule of individuals and their mode choice behavior based on behavioral
variations.

2.5 Summary
We have observed in the literature that while the motivation and fundamentals for activity-
based transportation and energy demand models are closely linked, these two domains
have not yet been modeled jointly. Therefore, the ultimate goal of this research is a joint
simulation of transportation and domestic energy demand. To make this ultimate goal
achievable, we have broken down the research into different work packages.

First, a general framework is needed, which provides a holistic perspective of the ele-
ments that should be considered in order to integrate transport and energy demand mod-
eling. Therefore, in this manuscript, we first propose a general framework on integrated
transport and energy simulation. This framework gives an overview on the components
needed to integrate transport and energy as well as the relations between the components.
Section 3 provides the details on this framework. The proposed framework is a guide
throughout our research. We will then focus on a specific component in the next steps of
the research.

3 Proposed Framework
In this section, we present our proposed framework for integrating transport and energy
demand at an urban scale together with its details. Energy demand is derived from ac-
tivity participation and travel between activities. Therefore, right at the centre of this
framework is the activity scheduling module and all the energy demand (including both
in-home and out-of home energy demand) is derived from activities and traveling between
the activities which are distributed in time and space. Individuals’ behavior affect their
activity scheduling. Therefore, accounting for the heterogeneity in individuals’ behavior
give flexibility and viability to the energy demand profiles.

Figure 4 illustrates the outline of the proposed framework. Then, the detailed presen-
tation of each module in the framework is provided in Figures 5 to 8. In Figure 4, the four
modules present different elements of the proposed framework for urban system energy
demand; among which the white modules illustrate different energy consumer layers and
the green module represents the connecting element between these energy consumer lay-
ers: the activity scheduling module. In this section, we will introduce each module within
the framework in detail. In this diagram we have first summarized different methodolo-
gies within the chosen approach in each module together with the one selected for our
framework. In the proposed framework presented in figure 4, the orange arrows represent
intra-level interaction which presents information flow between different modules in the
framework. The purple arrows present the inter-level interactions between different parts
within the same module. The interactions can be in one-way or both-ways. One-way in-
teraction means that the results of one component affects the other component. This also
can be considered as one component feeding the other. A two-way interaction between
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the components show that they both affect each other/ interact with each other. The black
arrows show the information flow between the modules and the USEM platform.

The proposed framework has two dimensions. The first dimension presents the mod-
eling layout. In this dimension, as in every modeling framework, the first step is gathering
data. Then, these data will be used as input to the models. Lastly, the outputs of the mod-
els can be analyzed and used for testing and comparing various policies, strategies, and
decision-making. The second dimension of the framework introduces different energy
consumer sectors in an urban system, which can be categorised into domestic buildings
energy demand, non-domestic buildings energy demand, and transportation energy de-
mand; together with a connecting module between energy layers; activity scheduling.
Therefore, different elements in the second dimension are connected via a common mod-
ule called activity scheduling. Activity scheduling is at the core of the proposed frame-
work, giving input data to all other modules. The outputs of the domestic, non-domestic,
and transportation energy demand modules can be then used to estimate the urban system
energy demand.

First, we go through the connecting module within the energy demand layers: ac-
tivity scheduling. Figure 5 illustrates the activity scheduling module in details. In our
framework, activity scheduling is at the center giving input to the energy consumer layer
modules. This is based on the idea that energy-use comes from actions which are driven
by the desire or need to pursue activities that are temporally and spatially distributed. Ac-
tivity scheduling includes both in-home and out-of-home activities. Out-of-home schedule
includes time passed traveling between consecutive activities which are not at the same
location, as well as the time participating in out-of-home activities. In-house and out-of-
house schedules are interconnected as spending more time on one can restrict the time
budget for the other one. In addition, out-of-home activity schedule has a direct influ-
ence on the travel behavior of individuals as the out-of-house activities directly trigger
travelling.

There are significant interactions between in-home and out-of-home activities (Lu and
Eric I. Pas 1999; S. Srinivasan and Bhat 2005b) and thus, it is important to capture this
trade-off. Daily activities can generally be categorized into three groups: subsistence
(work, school, and business), maintenance (shopping, personal service, professional ser-
vice, and medical care), and recreation (entertainment, religion/civil services, and visit-
ing). As all types of in-home activity duration increase, out-of-home subsistence duration
decreases (Lu and Eric I. Pas 1999). Interestingly, people who spend more time on in-
home subsistence spend less time on out-of-home subsistence, however, individuals who
spend more time on out-of-home subsistence also spend more time on in-home subsis-
tence. This can be explained as the workaholic people tend to bring more work home.
Furthermore, in-home maintenance is positively related to out-of-home maintenance but,
individuals who spend more time on out-home maintenance, are likely to spend less time
on in-home maintenance. Also, there is a strong interaction between out-of-home mainte-
nance and recreation with out-of-home subsistence; the more time spent on out-of-home
subsistence, the less time is spent on these two types of activities. This can be interpreted
as considering the time budget, the workaholic people tend to spend most of their time
on work and have less time to spend other activities. There also is a complex interac-
tion between individuals’ activity and travel choice dimensions (Fu and Juan 2017). For
example, the mode choice for recreation activities are conditional on subsistence activi-
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ties duration. Therefore, considering the interaction between in-home and out-of-home
activities and the complexity in the activity-travel behavior patterns, they should be ad-
dressed within the same scheduling model. This scheduling model will then contribute to
the transport and energy models. As such, this activity scheduling paradigm addresses the
limitation in the existing research concerning the interaction between in- and out-of-home
activities and their corresponding transport and energy demand.

Activity scheduling can be utilized for two applications: energy modeling approaches
and travel behavior modeling approaches. In the former application (energy demand mod-
eling approaches), TUS data is used as an input to the models. On the other hand, in the
travel behavior modeling application, historic trip diary data is used as inputs to activity-
based transport models. Finally, daily scheduling behavior of individuals including both
in-home and out-of-home scheduling, as well as their travel behavior are estimated as the
outputs of this module.

The scheduling module presented in this framework, captures the choice of a valid
schedule for a day made by an individual as a member of a household. It is notewor-
thy to mention that although focusing only on one-day scheduling will ignore day-to-day
correlations (Arentze, Ettema, and H. J. Timmermans 2011), the implementation and val-
idation of single-day models are already complex. Additionally, the required information
to implement multi-day schedule is usually not readily available and requires additional
data collection and fusion of multiple data sources (Aschauer et al. 2019).

Next, we go through the domestic building energy modeling module presented in Fig-
ure 6. In order to translate the activities to energy demand in the buildings, we need
to model how the activities are translated to energy usage. Domestic energy use can be
grouped into active energy consumption (i.e., electricity consumption of appliances which
is directly connected to occupants’ activities) and passive energy consumption (i.e., build-
ing’s baseline energy consumption which does not directly depend on occupants’ activ-
ities). Household and individuals’ characteristics, appliance ownership, and appliance
energy rating influence the active energy consumption. While the external environment,
building characteristics, and domestic HVAC system and energy rating, and lighting sys-
tem are among the influencing factors of passive energy consumption. We should relate
the usage of electrical appliances to the activities in order to determine the active energy
consumption. This can be done using the existing approaches to relate the use of electrical
appliance to the activities performed such as the one proposed by Wilke (2013). Finally,
the output of the domestic building energy modeling module (total energy demand of
domestic buildings in the simulated area) feeds into the USEM platform.

Next, we go through the microsimulation transportation energy demand modeling
module presented in Figure 7. Among the existing approaches for transport modeling,
we have chosen microsimulation in the proposed framework as microsimulation is at a
disaggregated level and provides detailed energy demand profiles of vehicles. Therefore,
the transportation energy demand model can be coupled with building energy demand
models by utilizing the activity scheduling module as a linking element between these two
energy consumption domains. Within the microsimulation transportation energy demand
modeling, we see two predominant approaches: top-down and bottom-up, from which the
latter is chosen for this framework. Activity-based models follow a bottom-up approach
in which travel demand is modeled as an aggregation of trips made by the individuals.
The input to these models is the travel behavior of individuals which is generated by
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the activity scheduling module. This input data is then fed into an agent-based transport
simulator such as MATSIM (Horni, Nagel, and Kay W Axhausen 2016). The output of
this module is the total transportation energy demand in the simulated area, which feeds
into the USEM platform.

As presented in Figure 8, another module in this framework is the non-domestic build-
ing energy demand. In this module, the total energy demand of non-domestic buildings in
the simulated area is estimated using out-of-house activity schedule as an input into the
models of econometric analysis and end-use methods. Then, the output of this module
feeds into the USEM platform.

The proposed framework presents seven key advantages compared to the already ex-
isting ones: (1) it integrates the human behavior to the models by including activity
scheduling in the core so, it can be generalized to complex scheduling and mobility situ-
ations, (2) it captures the trade-offs between in-home and out-of-home activities and thus
their corresponding energy demand, (3) it provides a detailed activity scheduling as an
input to building energy demand simulators rather than using building occupancy profiles
which will address the limitations of occupancy-based models in which behavior of indi-
viduals are lost, (4) it includes transportation energy demand which is most of the time
disregarded in urban energy models (except the LUT models which also do not normally
include engineering arguments and calculations) (Sola et al. 2020), (5) it is based on the
activity-based modeling paradigm which is a significant new opportunity for the devel-
opment of bottom-up urban energy demand models (Sola et al. 2020), (6) it is based on
a bottom-up approach and thus, is suitable for future scenario testings; and (7) it uses
co-simulation approach (instead of integrated approach) which reduces implementation
and modeling effort and increases reliability as a result of using established packages for
each module.
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Figure 4: Urban system energy demand framework

21



Figure 5: Activity participation framework
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Figure 6: Domestic building energy modeling framework
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Figure 7: Non-domestic building energy demand modeling framework
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Figure 8: Microsimulation transportation energy demand modeling framework
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4 Conclusion and Future Work
In this paper, we have reviewed the literature on transport and energy modeling. Through
the review of the available literature, we have identified a lack of unified approach to
simultaneously model transport and energy demand. In spite of a number of different
methodologies to simulate each domain separately, there have not been a joint view on
these two domains. We have identified an approach to co-simulate these two domains
in order to capture their interdependence. Our proposed solution is using activity-based
approach. We have seen that although activity-based models have been extensively used
in transportation modeling, there have been limited attempts to model energy demand
using this approach. This approach will enable us to assess the trade-off between in-home
and out-of-home activities and their subsequent energy demand.

Then we have presented a holistic framework from an activity-based point-of-view
for transport and energy demand modeling. Simultaneously with the literature review, the
architecture and components of the framework have been set accordingly. We have intro-
duced a new modeling framework for energy demand modeling, where the activity is the
central unit of analysis. This framework bridges the traditional energy demand domains
(domestic and non-domestic building) and transportation by incorporating a new element:
activity scheduling. The contribution of this paper is to provide a holistic methodologi-
cal map to joint transport and energy demand modeling, understand their inherent link,
identify the existing approaches for each element, introduce a new modeling paradigm
for integrating them, and identify the gaps in knowledge which should be addressed to get
the framework running.

From the framework we can see that in order to fill the gap in joint modeling of trans-
port and energy demand, first, an activity scheduling model which jointly model time-use
in the home as well as the activities outside the home is needed. The sequential structure
of econometric scheduling models does not represent the true nature of the scheduling
process and makes it difficult to capture complex trade-offs and household interactions.
Moreover, the hard-coded nature of rule-based scheduling models make them unable to
generalise to situations which are significantly different to input data. Furthermore, the
existing scheduling models focus either on in-home or out-of-home activities and not
both.

Driven by the presented framework and gaps, we have identified the first research
question that we should tackle next. The next step in this research is to formulate and
implement a daily schedule model that covers both time-use whilst at home and activi-
ties outside the home. To achieve this, we plan to build on a current ongoing research
at TRANSP-OR, which has developed an optimization-based scheduling model of time-
use for out-of-home (Pougala, Hillel, and Bierlaire 2020a; Pougala, Hillel, and Bier-
laire 2020b), by incorporating time-use for activities in the home (e.g., sleeping, cooking,
showering, etc) as well. This approach treats individuals as maximising their total utility
from completed activities in order to schedule their day, in which the first results show that
this methodology is able to generate stable and reliable schedules for activities completed
outside the home (Pougala, Hillel, and Bierlaire 2020a; Pougala, Hillel, and Bierlaire
2020b). There are a number of phenomena that should be addressed in this scheduling
model such as the interactions between the members of a household, behavioral hetero-
geneity, and different behavioral patterns throughout times of the day and even days of
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the week. The model will be calibrated using detailed TUS data.
In the next steps, we will look for applying the model to the already existing energy

simulation models and assess the effect of various policies, technological changes, and
behavioral changes on energy demand.

It is noteworthy that this research intends to provide a generic framework for inte-
grated transport and energy demand modeling. Therefore, the non-domestic building
block has also been included in the framework to make it generic. However, in this re-
search, transportation and in-house energy demand modeling have been chosen as the
first sub-models to integrate. An in-depth investigation of integrating other sub-models
of USEM such as industrial and commercial buildings’ energy demand to the proposed
framework, can be done in a future research.
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