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Abstract

We propose a new modelling approach for daily activity scheduling which integrates
the different daily scheduling choice dimensions (activity participation, location,
schedule, duration, and transportation mode) into a single optimisation problem. The
fundamental behavioural principle behind our approach is that individuals schedule
their day to maximise their overall derived utility from the activities they complete,
according to their individual needs, constraints and preferences. By combining mul-
tiple choices into a single optimisation problem, our framework is able to capture the
complex trade-offs between scheduling decisions for multiple activities, such as how
spending longer in one activity will reduce the time-availability for other activities
or how the order of activities changes the travel-times. The implemented framework
takes as input a set of considered activities, with associated location and mode-of-
travel, and uses these to produce empirical distributions of individual schedules given
a set of considered activities, from which different daily schedules can be drawn. The
model is illustrated using historic trip diary data from the Swiss Mobility and Trans-
port Microcensus. The results demonstrate the ability of the proposed framework to
generate complex distributions of starting time and duration for different activities
within the tight time constraints.

Keywords: activity-based modeling, daily scheduling behaviour, mobility, mixed-integer
optimization, random utility maximization

1 Introduction
The scheduling of daily activities is a complex process that combines multiple intercon-
nected choices, including deciding which activities to perform in a day, as well as the
timings, location and mode-of-travel for each performed activity. The daily scheduling
process is a critical component of Activity-Based Models (ABMs) of transport demand,
which assume that travel demand can be derived from the needs of individuals to perform
activities (Bowman and Ben-Akiva, 2001). The behavioural realism of activity-based
models is therefore dependent on the accurate modelling of the scheduling process. In this
paper, we introduce a new approach to modelling individual activity scheduling, based on
mixed-integer optimisation.

Real-world daily activity schedules represent more than a sequence of independent ac-
tivities and locations, and are instead the result of unobserved dynamics, reasoning, and
trade-offs. For example, an individual might leave work earlier than usual to be on time
for a concert, or skip a regular exercise session entirely due to a high-workload. Being
“in a rush”, having “plenty of time” or being able to “squeeze in” additional activities in
otherwise packed schedules are universal experiences that indicate the flexibility in daily
scheduling.

There exist many examples of activity-based models (as seen in section 2), and about
as many methods to deal with scheduling trade-offs and their behavioural implications.
Existing approaches can be grouped into two major paradigms: econometric models and
rule-based models. Econometric models postulate that the scheduling of activities can
be explained with econometric processes such as random utility maximisation. They do
not explicitly model behaviour but rather consider it a consequence of the utility maximi-
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sation. The different choice dimensions are often modelled sequentially (e.g. Bowman
and Ben-Akiva (2001), Hilgert et al. (2017), Bradley and Bowman (2008)). On the other
hand, rule-based or computational process models use decision rules to derive feasible so-
lutions. This makes them easier to implement in practice. But these rules are hard-coded
and often arbitrary, which limits their generalisation.

Both approaches tend to come short of fully integrating a dynamic behaviour within a
framework that is flexible enough to be interpreted in a wider context. This can be prob-
lematic when models are applied to help decision makers enforce efficient and targeted
measures. As made evident by the recent global pandemic and the consequent strategies
to manage the spread of the virus, this task requires a deep understanding of the motives
behind the mobility choices of a person, how they interact with their environment (phys-
ical, social and cultural) and how they react to events or perturbation that might more or
less significantly constrain their field of possibilities.

The approach introduced in this paper presents three key advantages compared to existing
scheduling models in the field: (i) all choice dimensions (activity participation, activity
location, activity schedule, activity duration, and transportation mode choice to travel to
the next activity) are modelled simultaneously; (ii) the model produces an empirical dis-
tribution of individual schedules that can be investigated with simulation; and (iii) the
framework is built on first behavioural principles and can be generalised to complex mo-
bility situations.

The rest of the paper is laid out as follows: Section 2 presents a brief review of the
literature, with an emphasis on utility-based models and simulators. The framework is
detailed in Section 3, with an overview of the key components of the model and the
simulation methodology. We illustrate the flexibility, operationality and realism of the
framework on the Swiss Mobility and Transport Microcensus (MTMC) in Section 4. We
then conclude with a discussion on current and future challenges.

2 Relevant literature
Activity-based models originally emerged in the 1970s as a response to the shortcomings
of the traditional 4-step models (Vovsha et al., 2005, Castiglione et al., 2014), namely:
(i) trips are the unit of analysis and are assumed independent, meaning that correlations
between different trips made by the same individual are not accounted for properly within
the model; (ii) models tend to suffer from biases due to unrealistic aggregations in time,
space, and within the population; and (iii) space and time constraints are usually not
included.

The early works of Hägerstraand (1970) and Chapin (1974) established the fundamen-
tal assumption of activity-based models that the need to do activities drives the travel
demand in space and time. Consequently, mobility is modelled as a multidimensional
system rather than a set of discrete observations. Unlike traditional trip-based models,
ABM focus on overall behavioural patterns: decisions are analysed at the level of the
household as opposed to seemingly independent individuals, and dependencies between
events are taken into account (Timmermans, 2003, Pas, 1985). Specifically, modellers
are interested in the link between activities and travel, often considered within a given
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timeframe. Typically, a single day is used as the unit of analysis. The resulting goal of
studies in the literature is therefore to replicate as accurately as possible the interactions
and considerations involved in the development of a daily schedule by an individual. Sev-
eral authors have pointed that focusing only on one-day scheduling ignores day-to-day
correlations and dynamics (e.g. Arentze et al. (2011)). However, proper implementation
and validation of single-day models remains complex. In addition, the information re-
quired to go beyond single-day travel patterns is usually not readily available, and might
require additional data collection and processing steps, including fusion of multiple data
sources (e.g. Aschauer et al. (2019))

While the scheduling process is central to the activity-based research, there is no clear
consensus on the representation and modelling of the daily scheduling process in utility-
based frameworks. Typically, individuals are assumed to schedule activities by maximis-
ing the utility they can expect to gain. The timeframe is often introduced as a time budget
that constrains the overall time expenditure. The earliest functional utility-based models
is the logit model for household daily travel patterns developed by Adler and Ben-Akiva
(1979), which assumes that households choose from a set of possible daily patterns, and
uses a logit model to compute the choice probabilities for each alternative. This was fol-
lowed by the disaggregate travel demand model developed by Bowman and Ben-Akiva
(2001) that models a series of sequential decisions to generate an activity pattern and
tours for the day. These decisions are, in order, the choice of activity pattern (staying at
home or travelling), the primary tour time of day, the primary tour destination and mode,
and finally the secondary tours times of day, destination and modes. The choice activity
pattern is modelled using a nested logit model, the tour times of day are generated using
a logit model, and the destination and mode with a logit model with alternative sampling.
A set of rules is used to define a hierarchy among activities (primary vs. secondary). The
models developed by Adler and Ben-Akiva, Bowman and Ben-Akiva are travel-centric:
while both assume an interdependence among choices, they mostly focus on trip charac-
teristics (e.g. tour frequency, number of stops, mode choice...). Behavioural mechanisms
explaining the actual choice of activities and their sequence are examined less closely. In
the context of these models, activity schedules and emerging behaviour are implicit and
rather consequential to the predicted travel decisions. In addition, the discrete choices re-
sulting in the final activity-travel pattern are treated sequentially. This allows for simple,
clearly defined modelling assumptions, but limits the ability of the framework to capture
trade-offs that individuals could make between different choice dimensions. Nonetheless,
sequential estimation remains popular in the literature, especially for microsimulators
(e.g. Recker et al. (1986), Pendyala et al. (2005), Smith et al. (1995), Ettema et al. (2000),
Axhausen et al. (2016))

More recent works have focused on joint estimation of mobility choices, with a more ex-
plicit integration of emerging behaviour in the scheduling process. For instance, Nurul
Habib and Miller (2009) use an utility-based approach to model the generation of activi-
ties (i.e. which activities are considered in the first place). In this case, the utility function
is defined for an agenda (a set of activities to be scheduled), aiming to capture the trade-
off between planned and unplanned activities. The choice probabilities are estimated with
the Kuhn-Tucker optimality conditions in place of discrete choice models. The resulting
agenda is then used as input for a discrete-continuous scheduling model that predicts se-
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quentially the choice of activity (discrete choice) and the time expenditure for the chosen
activity (continuous choice) (Nurul Habib, 2011). The discrete-continuous representation
of activity schedules has been investigated extensively by Bhat et al. (2004) (see also Bhat
(2005, 2018)). In their Multiple Discrete-Continuous Extreme Value (MDCEV) model,
the scheduling process is modelled as a combination of a discrete choice (activity par-
ticipation) and continuous choice (activity duration). Behaviour is explicitly considered
with a non-linear utility function and satiation effects (decreasing marginal utility). The
discrete-continuous approaches are a flexible solution to simultaneously consider multi-
ple choice dimensions. However, they become limited when it comes to integrate time-of-
day decisions, which are heavily influenced by external factors (e.g. shop opening times,
working hours, commitments, etc.).

Joint estimation of multiple choice dimensions, including time-of-day, has been explored
in other works. Ettema and Timmermans (2003) formulate an error-component discrete
choice model to jointly estimate duration, time-of-day preference and effect of schedule
delays on the utility function of the alternatives. They consider that individuals maximise
the sum of the utility gained from travelling and from performing the activities, the lat-
ter composed of three elements: a time-of-day dependent utility, a duration utility, and
a schedule delay utility dependent on the start time. Their model is thus able to accom-
modate more explicitly the discontinuities in utility introduced by the presence of these
external constraints and preferences. However, the mainly focuses on time allocation for
a given set of activities, and schedule dynamics linked to activity participation (e.g. drop-
ping an activity if the timings are not convenient for the individual) cannot easily be taken
into account.

Furthermore, time trade-offs between activities are not clearly defined in the aforemen-
tioned works. It is common in the econometric representation of activity-based models to
treat time as one would goods, in terms of consumption, meaning that a marginal change
in time is defined as a derivative of the utility function. English (2020) argues that this rep-
resentation is problematic, as the marginal change in time cannot be interpreted as such.
It depends on both the time change and the time replaced. In the context of activity-based
models, the impact of an change in time on the utility depends

The framework presented in this paper follows the modelling philosophy presented by
Ettema et al. (2000) by considering schedule deviations and simultaneously estimating
choices of timing, duration, and trip characteristics (mode, location). Similarly, our
framework is founded on first behavioural principles, which allows for flexible and gen-
eralisable modelling. We aim to provide a holistic point of view: by explicitly including
the choice of activity participation, activity sequence, location and transport mode in the
optimisation problem, we allow for a complete integration and interactions of schedule-
related choice dimensions. In addition, we put a specific emphasis on timing preferences
to capture and interpret scheduling trade-offs.

3 Modelling framework
The framework presented in this paper captures the choice of a valid schedule for a given
time horizon (typically, a day) made by a single individual, called the agent. The central
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theory behind our approach is that individuals schedule their day to maximise their over-
all derived utility from the activities they complete, according to their individual needs,
constraints and preferences. We therefore define a general utility function which captures
the derived utility from an individual completing a considered activity, according to (i) the
preference towards participating in that the type of activity, (ii) the desired and scheduled
duration of the activity, (iii) the desired and scheduled start-time of the activity, (iv) the
flexibility of the individual towards schedule deviation in start-time (early/late) and dura-
tion (long/short) for the activity, and (v) the required travel-time to arrive at the activity
location from the previous location. We then define a mixed-integer optimisation problem
for each individual which maximises the sum of the utilities of each completed activity
in a schedule over a fixed time budget. This optimisation problem can therefore capture
the trade-offs between scheduling decisions for multiple activities, such as how spend-
ing longer in one activity will reduce the time-availability for other activities or how the
order of activities changes the travel-times. The overall framework takes as input a set
of considered activities, with associated location and mode-of-travel, and uses this to de-
fine a distribution over possible schedules, from which likely scheduling choices can be
stochastically drawn.

In this section, we introduce the modelling elements of the proposed framework. For the
sake of clarity of the notations, no index is associated with the agent in the following
analysis.

Time can be either continuous or discrete. The time horizon starts at t = 0 and finishes
at t = T . Space is characterised by a discrete and finite list of L locations, indexed by
`. The location ` = 0 is called “home”, and is assumed to be the location of the agent at
time t = 0 and time t = T .

The agent considersM transportation modes, indexed bym. The travel time between two
locations `o and `d using mode m is denoted ρ(`o, `d,m) and is exogenous. If `d cannot
be reached from `o using modem, then ρ(`o, `d,m) = +∞.

The agent considers a set ofA activities, indexed by a. Each activity a is associated with:

• a list La of possible locations where the activity could be performed,

• an indicator µa that is 1 if the activity is mandatory and 0 if it is optional,

• a time interval when the agent prefers to start the activity1: [x−a , x
+
a ], where x−a ≤ x+a ,

• a minimum duration τmin
a ,

• a range of desired durations [τ−a , τ
+
a ], where τmin

a ≤ τ−a ≤ τ+a ,

We define a binary indicator δas which equals 1 if activity a can be performed at loca-
tion `, and 0 otherwise. Each relevant pair activity/location is associated with a feasible
time interval [γ−

a`, γ
+
a`]. It stipulates that the activity can take place only during that time

interval. For example, shopping can typically only happen during the opening hours of the

1Note that the assumption that the preferences in starting time and duration are captured by a unique
time interval mathematically convenient, but may not be realistic. For instance, a student may prefer to sit
an exam either early in he morning, or late in the afternoon. In that case, it would be modelled using two
different activities.
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selected shop. Note that the agent may consider a location for an activity even if there is
no overlap between [γ−

a`, γ
+
a`] and [x−a , x

+
a ]. While the former represents a hard constraint,

the latter represents a preference.

3.1 Valid schedules
Given the above information, the agent considers valid schedules. A schedule is the out-
come of the agent’s decisions with respect to activity participation, activity location, ac-
tivity scheduling and transportation mode choice. More specifically, a schedule S is a
sequence of S activities (a0, . . . , aS), starting with a dummy activity a0 called “dawn”,
and finishing with a dummy activity aS called “dusk”, both of which take place at home.
Each activity a is associated with an actual location `a, an actual starting time xa and
an actual duration τa. With the exception of the last activity “dusk”, a trip is performed
immediately after each scheduled activity a, using an actual mode of transportation ma.
Note that, if the next activity takes place at the same location, the duration of the trip is
simply zero.

A schedule is valid if

• it spans the whole time horizon, that is if

τdawn + τdusk +

S−1∑
s=1

(
τa + ρ(`as , `as+1

,mas)
)
= T, (1)

• all mandatory activities are included,

• each activity starts when the trip following the previous activity is finished, that is

xas+1
= xas + τas + ρ(`as , `as+1

,mas),∀s = 0, . . . , S− 1, (2)

• the duration of each activity is valid, that is if

τa ≥ τmin
a . (3)

3.2 Preferences
The agent is assumed to be rational, and to select the preferred schedule among all pos-
sible valid schedules. The preferences of the agent are captured by a utility function US

2

associated with each schedule S .

From the point of view of the analyst, the main challenge is that the choice set cannot
be enumerated, due to the combinatorial structure of the set of valid schedules. We pro-
pose to address this challenge by performing an explicit enumeration for decisions related
to activity location and transportation mode; and an implicit enumeration for decisions
related to activity participation and activity scheduling.

For each activity considered by the agent, we explicitly enumerate all possible combi-
nations of the locations and modes associated with it. Each of these combinations is

2We use U to define random utilities, and V to define deterministic utilities.
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considered as a separate activity in the model. Therefore, each activity a considered by
the agent is modelled by the analyst using MLa mutually exclusive activities, each asso-
ciated with a unique location `a and a unique mode of transportationma. In addition, we
impose the constraint that at most one of these duplicate activities can be selected in a
given schedule. This explicit enumeration leads to K groups Gk of activities that are mu-
tually exclusive. We can therefore simplify some notations. The feasible time interval of
activity a can be denoted [γ−

a , γ
+
a ] without ambiguity, as well as the travel time between

two activities:
ρab = ρ(`a, `b,ma). (4)

The implicit enumeration consists of solving the scheduling problem considered by the
agent using a standard optimisation algorithm, that identifies the optimal solution without
complete enumeration.

Before describing the scheduling problem, we introduce the model of the utility US as-
sociated by the agent with the schedule. We define it as the sum of a generic utility U
associated with the whole schedule and, for each activity, (i) the utility U1s associated
with the participation of the activity as, irrespective of its starting time and duration;
(ii) the utility V2s associated with a starting time different from the preferred one; (iii) the
utility V3s associated with a duration different from the preferred one; (iv) the utility U4s
associated with the trip towards the next activity, irrespective of the travel time; and (v) the
utility V5s associated with the travel time to the next activity:

US = U+

S−1∑
s=0

(U1s + V
2
s + V

3
s +U

4
s + V

5
s ). (5)

Note that no utility is associated with the dummy activity “dusk”. We also assume that

U10 = V
2
0 = V

3
0 = 0. (6)

Indeed, as only differences of utility matter, the two dummy activities serve as reference
and their utility is set to zero.

This specification provides a great deal of flexibility. There are no specific assumptions
about U1s and U4s, except that they must be independent on starting time and duration
decisions. They can either be treated as random variables or not, and can involve any
variable. The generic utility U captures aspects of the schedule that are not associated
with a specific activity. For instance, the agent may prefer that all shopping activities
take place in the afternoon, or may dislike days with too many activities. We discuss the
assumptions associated with the generic utility below.

The term V2s is defined as

V2s = θ
e
as,k

max(0, x−as − xas) + θ
`
as,k

max(0, xas − x
+
as
), (7)

where θeas,k ≤ 0 and θ`as,k ≤ 0 are unknown parameters to be estimated from data. The
first (resp. second) term captures the disutility of starting the activity earlier (resp. later)
than the preferred starting time, as illustrated in Figure 1. Note that the amplitude of the
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xas

Vxs

x−as x+as

0

Figure 1: Utility associated with deviations from the preferred starting time of an activity

penalty, captured by the parameters θ, may vary across groups of activities. The index k
captures the level of flexibility with respect to the scheduling of the activity.

The term V3s is similarly defined:

V3s = β
e
as,k

max(0, τ−as,k − τas) + β
`
as,k

max(0, τas − τ
+
as
), (8)

where βeas,k ≤ 0 and β`as,k ≤ 0 are unknown parameters to be estimated from data.

The term V5s is the disutility of travel time:

V5s = θtρas,as+1
, (9)

where θt is an unknown parameter to be estimated from data, and ρas,as+1
is the travel

time to the next location.

3.3 Choice
The agent is assumed to select the valid schedule with the highest utility. She there-
fore solves an optimisation problem to maximise the utility function under the validity
constraints. However, from the point of view of the analyst, the utility function (5) is
captured by a random variable, and the model associates a choice probability with each
valid schedule. In order to deal with this uncertainty, we propose a simulation approach,
where the optimisation problem is explicitly solved for several realisations of the random
utility. The resulting schedule is a realisation from the choice model. The advantage of
this approach is that each generated schedule is valid by design, explicitly capturing the
trade-offs made by the agent.

For each activity a, we first generate realisations of U1, that we denote by V1a. For each
pair (a, b) of locations, we also generate realisation of U4, that we denote by V4ab. We
characterise the decision of the agent using the following decision variables:

• ωa: binary variable that is 1 if activity a is selected in the schedule, and 0 otherwise,
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• zab: binary variable that is 1 if activity b is scheduled immediately after activity a,
where a 6= b,

• xa: starting time of activity a,

• τa: duration of activity a,

and we denote the corresponding vectors by ω, z, x, τ. We consider a realisation of the
generic utility U, denoted by V(ω, z, x, τ), to emphasise that it depends on the decision
variables.

The objective function is derived from (5):

max
ω,z,x,τ

V(ω, z, x, τ) +

A∑
a=0

ωa(V
1
a + V

2
a + V

3
a) +

A∑
a=0

A∑
b=0

zab(V
4
ab + V

5
ab). (10)

Note that the term
∑A

b=0 zabV
5
ab corresponds to V5s in (9). The constraints are∑

a

∑
b

(τa + zabρab) = T, (11)

ωdawn = ωdusk = 1, (12)

τa ≥ ωaτ
min
a , ∀a ∈ A, (13)

τa ≤ ωaT, ∀a ∈ A, (14)
zab + zba ≤ 1, ∀a, b ∈ A, i 6= b, (15)

za,dawn = zdusk,a = 0, ∀a ∈ A, (16)∑
a

zab = ωb, ∀b ∈ A, b 6= dawn, (17)∑
b

zab = ωa, ∀a ∈ A,a 6= dusk, (18)

(zab − 1)T ≤ xa + τa + zabρab − xb, ∀a, b ∈ A, i 6= b, (19)
(1− zab)T ≥ xa + τa + zabρab − xb, ∀a, b ∈ A, i 6= b, (20)∑
a∈Gk

ωa, ≤ 1 k = 1, . . . , K, (21)

xa ≥ γ−
a , ∀a ∈ A, (22)

xa + τa ≤ γ+
a , ∀a ∈ A. (23)

Equation (11) constrains the total time assigned to the activities in the schedule (sums
of durations and travel times) to be equal to the time budget. Equation (12) ensures that
each schedule begins and ends with the dummy activities dawn and dusk. Equations (13)
and (14) enforce consistency with the activity duration by requiring the activity to have a
duration greater or equal than the minimal duration (3) and for the activity to have zero
duration if it does not take place. Equations (15)-(19) constrain the sequence of the activ-
ities: (15) ensures that two activities a and b can only follow each other once (thus can
only be scheduled once). As it is defined for distinct activities only, it also ensures that
an activity cannot follow itself. Equations (16)-(18) state that each activity has only one
predecessor (excluding the first activity), and each activity only one successor (excluding
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the last activity). Equation (19) enforces time consistency between two consecutive ac-
tivities (with travel time ρab). Equation (21) ensures that only one activity within a group
of duplicates G is selected. Finally, (22) and (23) are time-window constraints.

Note that all the constraints in this formulation are linear in the decision variables. There-
fore, if the objective function is also expressed as a linear function of the constraints,
we obtain a linear integer optimisation problem3, that can be solved by standard mathe-
matical programming algorithms (e.g. branch-and-bound, branch-and-cut, constraint pro-
gramming, etc.).

Hence, we add the assumption that the generic utility V(ω, z, x, τ) must be specified as a
linear function of the decision variables. This assumption is common in the mathematical
programming literature, and is not overly restrictive.

4 Empirical investigation
In order to illustrate the optimisation-based simulation concept introduced in Section 3,
we rely on a real dataset to generate the inputs. The objective is to show that, given sets of
possible activities, locations, modes and timing preferences, the model is able to generate
realisations of chosen daily schedules.

The MTMC is a Swiss nationwide survey gathering insights on the mobility behaviours
of local residents (Office fédéral de la statistique and Office fédéral du développement
Territorial, 2017). Respondents provide their socio-economic characteristics (e.g. age,
gender, income) and those of the other members of their household. Information on their
daily mobility habits and detailed records of their trips during a reference period (1 day)
are also available. The 2015 edition of the MTMC contains 57’090 individuals, and
43’630 trip diaries. We use only the data corresponding to the residents of Lausanne, for
a total of 2’227 diaries.

4.1 Inputs
The required inputs (as defined in Section 3) are not necessarily available in traditional
travel surveys, including the MTMC. The challenge is thus to provide heuristics to obtain
estimators for the missing attributes.

Table 1 summarises the data requirements for the operational model, as well as two pos-
sible solutions to overcome the lack of information for each requirement. The heuristic
column describes methods that have been applied in this paper, with results presented in
section 4.3.

4.2 Utility specification
Allowing for the available inputs for this case study, the schedule utility function ex-
pressed in (5) has been simplified as follows:

3If time is modelled using a continuous variable, we solve a linear mixed integer optimisation problem.
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Table 1: Data requirements for operational model

Requirements Rigorous solution Heuristic

Considered activities A Activity choice set generation
algorithm for each individual

Description of actual schedule
from dataset

Considered modesM Mode choice set generation al-
gorithm for each individual

Consider all 5 main modes (driv-
ing, passenger, public transport,
walk, cycle)

Considered locations La Location set generation algo-
rithm for each individual

Description of actual schedule
from dataset

Desired start time and
duration ranges [x−a , x

+
a ]

and [τ−a , τ
+
a ],

Habit analysis and identifi-
cation of typical timings in
multi-day diaries

Ranges replaced by recorded val-
ues in dataset

Flexibility k Habit analysis in multi-day di-
aries — flexibility would be
the timing variability

Assign a discrete flexibility profile
to each activity based on literature
classification.

Penalty values (θ, β) Calibrated on data — n-
dependent

From literature, homogeneous
across all population

Feasible time windows
[γ−a`, γ

+
a`]

Data collection Out-of-sample distributions of
start and end times for each
activity, across the population

Minimum duration τmin
a Habit analysis in multi-day di-

aries
Set to 0
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1. The time-independent utilities (generic schedule utility U, activity participation U1s
and trip utility U4s) are set to 0.

2. The randomness is introduced by adding a random error term εs ∼ N
(
0, σ2

)
, with

variance σ2 set to 1.

3. The ranges of start time preferences [x−a , x
+
a ] are replaced by a punctual desired time

(i.e. x−a = x+a = x∗), and the associated utility V2s is therefore defined as:

V2s = θ
e
as,k

max(0, x∗as − xas) + θ
`
as,k

max(0, xas − x
∗
as
), (24)

The same assumption is made for the preferred durations and their associated utility
V3s , similarly defined as:

V3s = β
e
as,k

max(0, τ∗as,k − τas) + β
`
as,k

max(0, τas − τ
∗
as
), (25)

4. The flexibility in time k is modelled using a discrete indicator that can describe 3
possible behaviours (Figure 2):

(a) Flexible (F): deviations from preferences for activity a are relatively unimpor-
tant, thus are less penalised.

(b) Moderately flexible (MF): deviations from preferences are moderately unde-
sirable, and so are penalised more than in the flexible case.

(c) Not flexible (NF): deviations from preferences are strongly undesirable, and
are consequently highly penalised.

Each activity is associated with one level of flexibility, and each level is characterised by
specific values of the penalty parameters. The flexibility assignments for each activity are
summarised in Tables 2 and 3. For the sake of simplicity, we consider that the parameters
are deterministic instead of randomly distributed across the population. We have chosen
values based on results from the departure time choice literature (Small, 1982).

4.3 Results
We present four examples from the MTMC: two students, identified as Alice and Bryan; a
worker, Claire, and an unemployed person, Dylan. The set of considered activities, timing
preferences, activity locations and modes for each individual are reported in Table 4.
Certain activities were duplicated to offer different mode and location options. Figures 3-
6 show unique outputs produced by the model, for different draws of εs.

For Alice, all solutions show sequences where both of the education instances are sched-
uled. Regarding the leisure activity, only the second schedule (Fig. 3b) includes it with
timings consistent with her preferences. The other two solutions (Fig. 3a and 3c), this
activity is scheduled at a different time of day than the desired times (in the morning and
at lunch time, respectively).

For Bryan, the first two solutions both include shopping, but at different locations. In the
third solution (Fig. 4c), the shopping activity does not appear in the schedule, indicating
that staying at home has a higher overall utility.
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Table 2: Categories and flexibility profiles for activities in the MTMC.

Activity Category
Flexibility profilea

Start Duration

Work
Mandatoryb Early: NF

Late: MF
Short: NF
Long: NF

Education
Business trip

Errands, use of services
Maintenance

Early: MF Short: MF
Escort Late: MF Long: F

Homec

Discretionary
Early: F
Late: MF

Short: F
Long: F

Shopping
Leisure

a F = Flexible, MF = Moderately flexible, NF = Not flexible.
b In this example, we use the term mandatory to refer to non-flexible

activities with high utilities.
c Not including mandatory home stays dawn and dusk.

Table 3: Penalty values by flexibility, in units of utility

Deviation Flexibility Penalty θ

Early start
Flexible (F) 0
Moderately flexible (MF) -0.61
Not flexible (NF) -2.4

Late start
F 0
MF -2.4
NF -9.6

Short duration
F -0.61
MF -2.4
NF -9.6

Long duration
F -0.61
MF -2.4
NF -9.6
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Table 4: Considered activities and preferences for each individual.

Person Activity x∗a (hh:mm) τ∗a(hh:mm) Locationa Mode

Alice
Education (AM) 8:20 3:40 Campus Car
Education (PM) 13:30 2:45 Campus Car
Education (AM) 8:20 3:40 Campus PT
Education (PM) 13:30 2:45 Campus PT
Leisure 17:10 0:50 Campus Car

Bryan
Education 7:30 4:40 Campus Car
Shopping 16:30 2:00 Downtown Car
Shopping 16:30 2:00 Campus Car

Claire

Work (A) 14:25 4:25 Office Car
Work (B) 14:25 4:25 Office PT
Work (C) 14:25 4:25 Library Car
Errands 9:45 0:15 Chemist Car
Escort 14:10 0:01 Downtown Car
Leisure 8:00 1:00 Downtown Car
Shopping 13:00 2:00 Shop Car

Dylan

Escort (Afternoon) 15:10 0:50 School Car
Errands 16:40 1:50 Shop Car
Escort (Evening) 18:50 0:03 School Car
Leisure 19:20 1:30 Gym Car
Leisure 19:20 1:30 Gym Cycling

a Each location is assigned unique coordinates for which travel times are estimated.
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Figure 2: Utility associated with deviations from the preferred starting time of an
activity, and levels of flexibility

(a) Solution 1

(b) Solution 2

(c) Solution 3

Figure 3: Generated schedules for Alice

The solutions for Claire (shown in Fig. 5) are similar in that all include work, with timings
that do not diverge substantially from the preferences. On the other hand, the discretionary
activities (here, errands, escort, leisure and shopping) are not always scheduled, and when
they are, the scheduled timings can be far from the preferences (e.g. Fig. 5d). Figures 5b
and 5d show schedules where the second location for work is chosen.

Dylan differs from the other selected individuals in that his set of considered activities

15



(a) Solution 1

(b) Solution 2

(c) Solution 3

Figure 4: Generated schedules for Bryan

does not contain any highly constrained activity such as work or education. The leisure
activity is included in the three options, but with varying durations. When included, the
escort and errands activities stay relatively close to the preferences.

For the choice of transportation mode, none of the solutions include the public transport
option. This indicates a consistently higher attractiveness of the car mode for the given
parameters.

These results show that the variations in solutions affect mainly the discretionary activi-
ties, which have lower penalties for schedule deviations than less flexible activities. Note
that we have selected only a small number of unique solutions out of all the generated
solutions. The heterogeneity of the solution space (i.e. the distribution from which sched-
ules are drawn) is driven by the relative values of the parameters and the error terms.
More specifically, very high penalties (compared to the error variances) lead to semi de-
terministic problems where the scheduler will consistently output very similar (or the
same) schedules. On the other hand, error terms with very high variance (compared to
the penalties) will lead to a diverse set of solutions. An appropriate scale for the error
terms must therefore be determined such that the model can generate solutions that are
both varied and meaningful.

4.4 Schedule distribution
As mentioned in Section 3, the outcome of the framework is a series of realisations of
schedules. To illustrate this concept, we return to the example of Claire, presented in the
previous section.
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(a) Solution 1

(b) Solution 2

(c) Solution 3

(d) Solution 4

Figure 5: Generated schedules for Claire
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(a) Solution 1

(b) Solution 2

(c) Solution 3

Figure 6: Generated schedules for Dylan

The framework is designed to capture the interactions of the activities in the schedule,
leading to complex distributions of activity participation, start-time, and duration for each
considered activity. This is illustrated in Figures 7-11, that show the distribution of these
quantities across 1000 realisations of chosen schedules.

Regarding activity participation, we can note that 55.7% of the generated schedules con-
tain out-of-home activities (as opposed to a full day spent at home). Out of these solutions,
Work is among the most scheduled activities, and more than half the out-of home sched-
ules contain the discretionary activity shopping. The errands activity is the third most
scheduled activity, followed by leisure and escort. The latter has conflicting timings with
both work and shopping, which may offer higher utility gains depending on the value
error terms.

The simulation results are driven by the random quantities in the utility function, such
as the utility of participation U1s and the error term εS. Figure 8 shows the influence of
different values of the utility of participation of the work activity (U1s = {0, 10, 50, 100},
on the overall activity participation. The utility of participation for the other activities is
still set to 0. For higher utilities, the work activity is always scheduled. However, this
change has a limited effect on other activities, which are scheduled in similar proportions
in all cases.

Figure 9 illustrates the effect of the variance of the error term on the activity participa-
tion. For very high variances, there is no clear difference between activities in terms of
participation. This suggests that the magnitude of the error term overpowers the schedule
deviations terms, thus limiting the hierarchy between activities.
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Figure 7: Distribution of activity participation (1000 runs)

Figure 8: Distribution of activity participation, for different values of the participation
utility

Figure 9: Distribution of activity participation, for different variances of the random term

19



The distributions of start times (Fig. 10) appear to be complex, and most of the time
multimodal, with the noticeable exception of the “home" activity4. The distribution of
work is seemingly unimodal, centred around the desired start time with very low variance.
This is due to the high penalties associated with schedule deviations for this activity (cf.
§3). It is worth noting that the escort and shopping activities are not centred around the
desired time. Given that these are the two activities that had conflicting timings, this
result shows the trade-off made during the optimisation process: in most schedules, these
activities are started earlier to accommodate other activities for which the penalties for
schedule deviations are higher.

Figure 10: Distribution of start times per activity (1000 runs)
NB: The scale of the y-axis has been chosen for visibility.

Similar observations can be made for the distributions of durations (Fig. 11): the duration
assigned to work is almost deterministic, and centred around the desired duration, while
the durations allocated to flexible activities are multimodal. Again, when the desired
durations involve schedule conflicts, the distributions are not centred around around the
desired duration, and tend to have large spread (e.g. shopping, errands).

4Regarding the home activity, given the constraint that the day must start and end at home, we only show
the time of the last return home.
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Figure 11: Distribution of duration per activity (1000 runs)
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These distributions are also affected by the random terms. For instance, Figure 12 shows
the distribution of start times obtained by increasing the variance of the random term to
10. While the change does not significantly impact the distribution of start times for the
work activity, the escort, leisure and shopping activities are more spread in time, leading
to more variety in the generated solutions. However, all distributions still seem to have a
mode relatively close to, or centred around, the desired start time.

Figure 12: Distribution of start times per activity and variance of the random term

The experimental results show that the framework is able to generate different realisations
of chosen schedules for given sets of considered activities, locations, modes, and timing
preferences.

The multimodal distributions of the decision variables (start times and durations) highlight
the scheduling trade-offs that are made during the optimisation process. These variations
impact “flexible" activities in particular, which are characterised by lower penalties for
schedule deviations.

Furthermore, the distributions emphasise the influence of the parameters of the model on
its outputs, and consequently, the importance of selecting ranges of values that ensure
both varied and stable solutions.
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5 Conclusion and future work
This paper presents an integrated framework to model the trade-offs made by individuals
when scheduling activities. The main characteristics of our methodology are as follows:

• All choices pertaining to daily mobility (activity scheduling, mode choice, activity
location) can be considered simultaneously, and trade-offs between these choices
are easily modelled.

• The choice of a schedule is explicitly modelled as a mixed integer optimisation
problem solved by the decision maker.

• Due to the complexity of the choice model, there is no close form probability for-
mulation. Instead, the framework allows the empirical distribution of the choice
model to be estimated using simulation.

The proposed framework has been designed to deal with the complex interactions of all
the dimensions involved in activity-based models. Clearly, it comes with a cost. In par-
ticular, there are several challenges that will have to be addressed by future research,
including:

• Preparation of the input data,

• Estimation of the unknown parameters from data,

• Interactions among agents, and

• Decisions made at the household level.

In the above case study, we have assumed that the parameters of the model were not
known. It is usually not the case in practice: they must be estimated from data, using, for
instance, maximum likelihood estimation. One significant challenge for the application of
maximum likelihood estimation to the activity-based context is the combinatorial nature
of the choice set. As the alternatives, or possible schedules, cannot be enumerated, it
is necessary to rely on samples of alternatives to estimate the model. This method is
well documented in the literature (McFadden, 1978, Guevara and Ben-Akiva, 2013). The
choice set generation itself can be performed with Markov Chain Monte Carlo methods,
similarly to the method proposed by Flötteröd and Bierlaire (2013) in the context of route
choice.

Furthermore, the combination of the activity scheduling decisions of many travellers in
an area has an impact on the travel patterns of this area. As such, travel times are not
exogenous, in contrast to what is assumed by our framework. The framework should
therefore be coupled with mobility simulation tools, that take activity schedules as input,
and generate indicators such as travel time and level of congestion as output (e.g. MAT-
SIM (Axhausen et al., 2016), SUMO (Lopez et al., 2018), SimMobility (Adnan et al.,
2016)), etc.)

Finally, the coordination of the activity scheduling decisions among all members of the
same household is currently ignored by our framework. An extension that accounts for
intra-household interactions is also an interesting topic for future research.
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