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Abstract

We consider a family of mixed-integer linear programming (MILP) prob-
lems that explicitly includes choice models using the random utiity paradigm.
In order to use behavioral models published in the literature, the specifi-
cation relies on a simulation-based approximation to linearize the choice
model. The price to pay is the large size of the approximation. To en-
hance the tractability of the problem, we propose a Lagrangian decomposi-
tion methodology inspired by scenario decomposition and scenario grouping
in the stochastic programming framework. In addition, we develop an algo-
rithm that exploits the properties of choice-based optimization in order to
generate feasible solutions to the original problem from the solution of the
Lagrangian problem. Hence, at each iteration of the subgradient method,
we provide both an upper and a lower bound to the original problem. This
enables the calculation of the duality gap to assess the quality of the gener-
ated solutions. Computational results show that the decomposition method
provides solutions with optimality gaps below 0.5% and restricted duality
gaps within low computational times. We show that scenario grouping leads
to high quality feasible solutions and lower duality gaps.

Keywords: choice-based optimization, discrete choice models, combinato-
rial optimization, Lagrangian decomposition, scenario decomposition, sce-
nario grouping

1 Introduction

Choice-based optimization problems enable planners to make decisions while tak-
ing into account individual’s choice behavior. They are receiving increasing atten-
tion because they allow to explicitly capture the interplay between these decisions
and the expected demand provided that the decisions are explanatory variables of
the discrete choice model. In this paper, we focus on parametric choice models
rooted in the random utility theory. They assume that each individual associates
a utility with every alternative and chooses the alternative with the highest util-
ity. Optimization problems that consider these models can be found in facility
location (e.g., Benati, 1999, Haase and Müller, 2013), revenue management (e.g.,
Talluri and Van Ryzin, 2004, Shen and Su, 2007), network pricing (e.g., de Palma
et al., 2005, Gilbert et al., 2014b) and routing and pricing for same-day deliveries
(e.g., Prokhorchuk et al., 2019, Ulmer, 2020), to name a few.

As utilities are random variables, the expected demand of each alternative is
derived from the associated probability functions. These probabilities are highly
non-convex and non-linear in the explanatory variables of the choice model, and

1



they are not always available in closed form. Furthermore, choice-based optimiza-
tion problems come with the computational burden associated with the individual
representation of demand from a planning viewpoint (e.g., capacity allocation).
This makes only small to moderate size problems solvable to optimality (e.g.,
Andersson, 1998, Benati and Hansen, 2002).

This is also the case in Pacheco Paneque et al. (2021), where a mixed-integer
linear formulation of choice models is proposed. To overcome the stochastic na-
ture of the choice model, we simulate realizations of the probability distribution
associated with its random components, called scenarios. The individual choice
probabilities, and therefore the expected demand, are approximated by means of
the sample-average approximation principle on the scenarios. This comes at the
cost of large mixed-integer linear programming (MILP) formulations. Although
small to medium-size instances can be optimally solved with general-purpose
MILP solvers, practically relevant problems might involve a larger number of
individuals and a considerable number of scenarios to enhance precision.

Each scenario can be seen as an independent behavioral situation where indi-
viduals consider to make a choice. These scenarios provide the problem with a
decomposable structure that can be exploited to address the computational com-
plexity of the exact method. In this paper, we propose a heuristic method inspired
by scenario decomposition in the stochastic programming (SP) framework for
the general choice-based optimization problem introduced in Pacheco Paneque
et al. (2021). In scenario decomposition, copies of the first-stage decisions of
multi-stage SP problems are introduced for each scenario. The so-called non-
anticipativity constraints, which impose that these copies should be the same
across scenarios, are dualized. Then, the subproblems associated with each sce-
nario are independently solved (i.e., Lagrangian decomposition or variable split-
ting in combinatorial optimization). The main advantage of this approach is that
the interplay between the decisions and the expected demand is preserved in the
subproblems. The bound yielded by scenario decomposition can be improved by
grouping scenarios at the expense of solving larger subproblems. To this end, we
test different strategies based on similarity measures (i.e., Euclidean distance).

We enhance the proposed method with an algorithm that solves a restricted
MILP formulation of the original problem. This formulation uses information
from the solutions of the subproblems at each iteration of the subgradient method
applied to solve the Lagrangian dual. The algorithm exploits the properties of
the choice-based optimization problem and allows to efficiently generate feasi-
ble solutions. Computational experiments show that the proposed methodology
outperforms the considered commercial solver with respect to the best feasible
solution found for a given time budget. At the same time, the generation of fea-
sible solutions at each iteration of the subgradient method enables the calculation
of the duality gap. This gap allows to assess the quality of the generated solu-
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tions, and therefore the performance of the method, as optimal solutions cannot
be obtained for large instances.

This paper is organized as follows. Section 2 reviews the related work and
discusses our main contributions. Section 3 introduces the general problem and
its MILP formulation. Section 4 explains how the problem is decomposed via
scenario decomposition and outlines the algorithm to generate feasible solutions.
Section 5 describes the revenue maximization problem upon which the proposed
methodology is tested and includes the numerical experiments. Finally, Section 6
concludes with some final remarks and future research avenues.

2 Related work

Because of the probabilistic nature of choice models, the formulations resulting
from their integration in optimization models are typically non-linear and non-
convex. Researchers have therefore focused on the development of reformulations
and efficient algorithms to solve practical problems. In Section 2.1, we provide
an overview of solution methodologies in various contexts. Recent literature on
scenario decomposition and scenario grouping is reviewed in Section 2.2. To con-
clude, Section 2.3 outlines the main contributions and discusses the positioning of
the paper.

2.1 Solution methodologies

Benati and Hansen (2002) introduce a logit-based model for the optimal location
of new facilities. The resulting formulation is a hyperbolic sum integer program-
ming (IP) model. They develop a branch-and-bound algorithm with a concave
relaxation of the problem as a dual bound. Computational results show that only
problems of moderate size (50 nodes) can be solved to optimality. For the same
problem, Freire et al. (2016) propose a branch-and-bound algorithm that embeds
a greedy algorithm to solve a relaxation of the original problem. Outer approx-

imation and submodular cuts for maximum capture facility location problems

with random utilities (2018) propose a branch-and-cut algorithm based on outer-
approximation and submodular cuts. This approach has been recently enhanced in
Mai and Lodi (2020) with a cutting-plane algorithm that requires less cuts thanks
to the clustering of demand points. The last three algorithms are tested on a real
instance for the location of park-and-ride facilities in New York City, with 59 can-
didate locations and more than 82000 customers. In general, the branch-and-cut
algorithm is better in terms of number of solved instances but the cutting-plane
algorithm is remarkably faster.
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Gilbert et al. (2014a) consider the toll setting problem on a transportation net-
work where users are assigned to paths according to the logit model. The resulting
optimization model is non-linear and non-convex, and may have several local op-
tima. An exhaustive algorithmic study of this problem is carried out in Gilbert
et al. (2015). To solve the problem, a mixed-integer approximation scheme that
provides starting points from which a local search converges to near-optimal so-
lutions is implemented. Numerical experiments on dense circular networks (20
nodes, 90 arcs, 10 origin-destination pairs and up to 10 toll arcs) show that near-
optimal solutions can be obtained. In Gilbert et al. (2014b), the path assignment
is performed according to a mixed logit model, whose probabilities do not have a
closed form. A similar solution method is considered to solve the problem. The
large duality gaps obtained for some of the tested instances (for a given time bud-
get) confirm the fact that the combinatorial approximations of the problems are
hard to solve.

Other works consider linear reformulations of the original non-linear models.
Three of such reformulations for the problem on the optimal location of new fa-
cilities are compared in Haase and Müller (2014). Numerical experiments with up
to 400 customer zones and 50 candidate locations show that the linearization by
Haase (2009) outperforms the other two. This formulation is later strengthened in
Freire et al. (2016). Outer approximation and submodular cuts for maximum cap-

ture facility location problems with random utilities (2018) show that the proposed
branch-and-cut algorithm outperforms the existing exact approaches, including
the discussed linear reformulations. In the context of school location, Haase and
Müller (2013) propose a linear IP formulation under a mixed logit model. The
performed experiments show that real instances (up to 113000 students and 26
candidate locations) are solved (close) to optimality within a few minutes. Lin
et al. (2020) formulate the optimal location of self-service lockers as a multi-ratio
linear-fractional 0–1 programming model and provide two solution methodolo-
gies: an MILP reformulation for small-scale problems (networks with up to 100
nodes) and a quadratic transform with linear alternating algorithm for large-scale
problems that outperforms the MILP approach.

Gallego et al. (2004) introduce a dynamic programming (DP) model for a
choice-based general network revenue management problem. They show that its
optimal value can be closely approximated by the optimal solution of an appropri-
ately constructed linear programming (LP) model. Since then, researchers have
focused on various approximations of the underpinning DP formulation, offering
provable bounds on the optimal expected revenue instead of performance guar-
antees on the optimality gap (Strauss et al. (2018)). Yan et al. (2008) address
the problem on fleet routing and flight scheduling with both stochastic market
demands (via scenarios) and market shares (via a logit model). To solve the two-
stage SP model, they propose two heuristic algorithms that fix a market demand
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scenario and approximate the resulting mixed-integer non-linear programming
(MINLP) model by fixing the decisions that are explanatory variables of the logit
model.

2.2 Scenario decomposition and scenario grouping

Scenario decomposition is applied to the deterministic equivalent formulation that
results from considering a finite number of scenarios of a multi-stage SP problem.
Carøe and Schultz (1999) developed an algorithm for multi-stage SP problems
with mixed-integer variables in all stages. They introduce copies of the first-stage
variables (which do not depend on the random data) for each scenario and relax
the non-anticipativity constraints in a Lagrangian manner. This method is incor-
porated as a bounding procedure within a branch-and-bound algorithm to achieve
convergence. Numerical experiments with up to 10 scenarios show that the La-
grangian dual provides considerably better lower bounds than the LP relaxation
and that feasible solutions within 0.2% of the optimum are found.

Scenarios can be gathered into groups such that a copy of the first-stage vari-
ables is introduced for each group. Escudero et al. (2013) are the first to explore
such an idea. They propose a cluster-based Lagrangian decomposition proce-
dure for the two-stage SP mixed 0-1 problem. Each cluster is a set of scenarios
built at random where the non-anticipativity constraints are implicitly considered.
Computational experiments on instances with up to 500 scenarios show that this
technique outperforms traditional Lagrangian decomposition for single scenarios
both in the quality of the bounds and computational effort. This idea has been
extended to the multi-stage SP problem (Escudero et al., 2016 for the binary case,
Gade et al., 2016 for the integer case). Scenario grouping has also been consid-
ered together with scenario reduction techniques in van Ackooij et al. (2018) to
dynamically update the groups during the iterative solution process.

Crainic et al. (2014) evaluate multiple grouping strategies for the two-stage
network design problem. They are defined by the type of splitting (cover or parti-
tion), grouping (at random or based on a similarity/dissimilarity measure inspired
by the k-means clustering algorithm), and scenario characteristics according to
which the similarity/dissimilarity is measured. Numerical experiments for up to
32 scenarios on instances with 10 nodes, up to 83 arcs and up to 50 commodities
show that the covering strategy is the one reporting the highest quality solutions.
More recently, Ryan et al. (2020) introduce an optimization problem for grouping
scenarios to maximize the bound improvement. This technique provides stronger
initial relaxation bounds when compared with random and k-means clustering (at
the cost of an increase in computational time). The main advantage is that it can
be incorporated into any general scenario decomposition algorithm as a prepro-
cessing step.
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2.3 Contributions

The works analyzed in Section 2.1 illustrate the complexity of solving choice-
based optimization problems, especially for large instances. In this paper, we rely
on the mixed-integer linear formulation of choice models introduced in Pacheco Paneque
et al. (2021). The resulting MILP model is sensitive from a computational point
of view. Indeed, the exact method fails at solving instances with a large number
of scenarios, alternatives and/or individuals, which usually arise in real-life prob-
lems. To tackle such instances, we introduce a heuristic solution method that takes
advantage of the simulation-based linearization in the MILP model by exploiting
the principles of scenario decomposition and scenario grouping.

The proposed approach solves a general choice-based optimization problem.
This problem aims at deciding on (some of) the characteristics (e.g., price) of a
given set of alternatives such that an objective function determined by the planner
(e.g., revenue) is optimized (see Section 3). Notice that these decisions are the
same across scenarios. As seen in Section 2.2, they play the role of first-stage
variables in multi-stage SP problems. To the best of our knowledge, this is the
first time that a scenario-based decomposition method is used to solve a choice-
based optimization problem.

Our method is also general with respect to the choice model. This is an impor-
tant feature because we observe that, in most cases, the proposed methods are spe-
cific to the assumed choice model, which is typically the logit model because of
the simplicity of its closed-form probability formula. However, advanced choice
models like the mixed logit model overcome the main limitations of the logit
model and have shown a better prediction power. We numerically test our method
on a revenue maximization problem under a mixed logit model. The results show
that it outperforms by a considerable margin a general-purpose MILP solver for a
given time budget and that the duality gaps are as well restricted.

3 Problem definition and mathematical model

The optimization problem considered in this paper embeds a discrete choice model
whose parameters have been exogenously estimated to represent the expected
demand. Let N be the number of individuals in the sample (population) and J

the number of alternatives that can be chosen by the individuals according to the
choice model. For each alternative i, we assume a capacity denoted by ci ≥ 1,
which indicates the maximum number of individuals who can choose it. We de-
note the number of scenarios by R. These scenarios are generated outside of the
optimization problem (known as exterior approach in the SP framework).

In a choice model, Uin represents the utility that individual n obtains from
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choosing alternative i. It consists of a systematic component and a random com-
ponent that captures everything that has not been explicitly included. The behav-
ioral assumption is that each individual wants to maximize their own utility. For
each scenario r, we introduce a deterministic utility Uinr that has the same sys-
tematic component as Uin but replaces the random component by a realization of
its probability distribution (scenario).

To formulate the problem, we denote the K decisions associated with alter-
native i and individual n by xin1, . . . , xinK. These variables are assumed to be
bounded, i.e., xink ∈ [aink, bink],∀i, n, k, and might be binary. The binary vari-
ables yinr represent the availability of alternatives, i.e., they are equal to 1 if the
capacity of alternative i has not been reached for individual n in scenario r. The
auxiliary variables zinr prevent an unavailable alternative from obtaining the high-
est utility. They take value Uinr if alternative i is available to individual n in
scenario r, and a given low value otherwise. The behavioral assumption of the
choice model is expressed in terms of zinr, i.e., individual n chooses alternative i

in scenario r if i = argmax1≤j≤J zjnr. The variables Unr = max1≤j≤J zjnr capture
the highest utility for individual n in scenario r, and the binary variables winr

indicate the choice, i.e., they are equal to 1 if Unr is achieved at alternative i. The
expected demand of alternative i is then obtained by

DR
i =

1

R

N∑

n=1

R∑

r=1

winr. (1)

The objective function relates the planner’s decisions to the expected demand.
We denote it by f(x,DR), where x is the J×N×K-dimensional vector containing
the variables xink and DR is the J-vector that contains the demands DR

i . We assume
it is linear in x and the choice variables. Without loss of generality, we assume
f(x,DR) is to be maximized. We define Model 2 for the general choice-based
optimization problem considered in this paper.
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zMILP = max f(x,DR) (2a)

s.t. Uinr =

K∑

k=1

βinkxink + dinr ∀i, n, r

(2b)

ℓnr ≤ zinr ∀i, n, r
(2c)

zinr ≤ ℓnr +Minryinr ∀i, n, r
(2d)

Uinr −Minr(1− yinr) ≤ zinr ∀i, n, r
(2e)

zinr ≤ Uinr ∀i, n, r
(2f)

zinr ≤ Unr ∀i, n, r
(2g)

Unr ≤ zinr +Mnr(1−winr) ∀i, n, r
(2h)

∑

i

winr = 1 ∀n, r

(2i)

winr ≤ yinr ∀i, n, r
(2j)

n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i, n > ci, r

(2k)

ci(1− yinr) ≤
n∑

m=1

wimr ∀i, n > 1, r

(2l)

h(x) ≤ 0 (2m)

aink ≤ xink ≤ bink ∀i, n, k
(2n)

yinr, winr ∈ {0, 1} ∀i, n, r
(2o)

Equations (2b) define Uinr as the sum of the systematic component that de-
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pends on the planner’s decisions and a constant term denoted by dinr. This
term includes the r-th scenario associated with alternative i and individual n

and other elements of the systematic component that are constant to the opti-
mization problem. As xink,∀i, n, k, is bounded and dinr,∀i, n, r, is constant,
we can derive bounds on Uinr: ℓinr ≤ Uinr ≤ minr. Constraints (2c)–(2f) pro-
vide the linear formulation of the variables zinr, where ℓnr = min1≤j≤J ℓjnr and
Minr = minr − ℓnr. Constraints (2g)–(2h) provide the linear formulation of Unr,
where mnr = max1≤j≤J mjnr and Mnr = mnr − ℓnr. Constraints (2i) ensure that
one and only one alternative is chosen per individual and scenario. Constraints (2j)
prevent an unavailable alternative from being chosen. Constraints (2k)–(2l) handle
capacity constraints on the alternatives. We assume that the access of individuals
to the alternatives for each scenario is modeled by an exogenously given priority
list. This list determines the access order of individuals, i.e., if individual n does
not have access to the alternative in that scenario, neither does individual n + 1,
and consequently the upcoming individuals. Constraints (2k) forbid the access
to an alternative for a scenario when its capacity has been reached, whereas con-
straints (2l) ensure its availability otherwise. Constraint (2m) represents the set of
linear constraints that identify the requirements of x.

This mathematical model lacks efficiency for solving large instances with a
general-purpose MILP solver, as showed in the numerical experiments performed
in Pacheco Paneque et al. (2021). Indeed, the individual representation of the ex-
pected demand and the simulation-based linearization of the choice model, which
involves the presence of the so-called big-M constraints, i.e., (2c)–(2f) and (2g)–
(2h), contribute to the complexity of the formulation.

4 Scenario decomposition method

We introduce a heuristic solution method that exploits the properties of the choice-
based optimization problem described in Section 3. It involves a subgradient pro-
cedure (see Section 4.3) that generates an upper bound and a feasible solution
(lower bound) to Model 2 at each iteration. Section 4.1 describes the decomposi-
tion based on scenario groups and outlines the scenario grouping strategies. Sec-
tion 4.2 presents the algorithm to generate feasible solutions from the Lagrangian
solution.

4.1 Decomposition by scenario groups

Let S be the number of scenario groups (indexed by s) and Rs the set that contains
the scenarios belonging to group s. Notice that the scenarios are partitioned into
groups, i.e., each scenario belongs to one and only one group. Both S and Rs,∀s,
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are determined according to one of the grouping strategies described below. The
copy of xink associated with group s is denoted by xsink. Constraints (3) represent
the non-anticipativity constraints imposing that the copied variables xsink must be
equal across groups. Constraints (3b) are redundant, but allow to obtain tighter up-
per bounds, as shown by preliminary experiments performed on the instances de-
scribed in Section 5.2. Note that other characterizations of the non-anticipativity
constraints are possible, such as relating all copies with each other (e.g., Escudero
et al., 2013).

xsink − xs+1
ink = 0, ∀i, n, k, s < S, (3a)

xsink − x1ink = 0, ∀i, n, k, s = S. (3b)

The Lagrangian relaxation of constraints (3) with associated multipliers αs
ink ∈

R,∀i, n, k, s, yields independent subproblems for each group s. As the objective
function f(x,DR) is linear, it can be split into the functions denoted by fs(xs, DR,s)

such that f(x,DR) =
∑S

s=1 f
s(xs, DR,s), where xs is the J × N × K-vector con-

taining the variables xsink, DR =
∑S

s=1D
R,s and DR,s is the J-vector containing the

demands DR,s
i :

DR,s
i =

1

R

N∑

n=1

∑

r∈Rs

winr. (4)

The subproblem associated with group s is formulated in Model 5. It is essen-
tially Model 2 for a reduced number of scenarios whose objective function is
modified. As shown in Pacheco Paneque et al. (2021), the computational com-
plexity of Model 2 grows exponentially with respect to R. Hence, for a given
number of individuals, it is usually more efficient to solve multiple problems with
a small number of scenarios each rather than a single problem containing multiple
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scenarios. This trade-off is analyzed in Section 5.4.

zUB
s (αs, αs−1) = max fs(xs, DR,s) +

∑

i∈C

N∑

n=1

K∑

k=1

(αs
ink − αs−1

ink )x
s
ink (5a)

s.t. Uinr =

K∑

k=1

βinkx
s
ink + dinr ∀i, n, r ∈ Rs

(5b)

ℓnr ≤ zinr ∀i, n, r ∈ Rs

(5c)

zinr ≤ ℓnr +Minryinr ∀i, n, r ∈ Rs

(5d)

Uinr −Minr(1− yinr) ≤ zinr ∀i, n, r ∈ Rs

(5e)

zinr ≤ Uinr ∀i, n, r ∈ Rs

(5f)

zinr ≤ Unr ∀i, n, r ∈ Rs

(5g)

Unr ≤ zinr +Mnr(1−winr) ∀i, n, r ∈ Rs

(5h)
∑

i∈C

winr = 1 ∀n, r ∈ Rs

(5i)

winr ≤ yinr ∀i, n, r ∈ Rs

(5j)
n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i, n > ci, r ∈ Rs

(5k)

ci(1− yinr) ≤

n∑

m=1

wimr ∀i, n > 1, r ∈ Rs

(5l)

h(xs) ≤ 0 (5m)

yinr, winr ∈ {0, 1} ∀i, n, r ∈ Rs

(5n)
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The Lagrangian problem associated with Model 2 is defined as follows:

zUB(α) =

S∑

s=1

zUB
s (αs, αs−1). (6)

It provides an upper bound on zMILP for any values of α. Notice that α0
ink (ob-

tained when s = 1) refers to αS
ink,∀i, n, k. We consider various scenario group-

ing strategies that are inspired by the strategies introduced in Crainic et al. (2014).
In our case, the descriptive statistics for each scenario r are given by the J × N-
dimensional vector that contains the realizations associated with r.

Random (RAN) This strategy serves as a benchmark to evaluate the more re-
fined strategies described below. To balance the number of scenarios per group,
we define σ groups with ⌈R/S⌉ scenarios and S−σ groups with ⌊S/R⌋ scenarios,
where σ is the remainder in the Euclidean division of R by S.

Similar (SIM) This approach is inspired by the k-means clustering algorithm.
In this case, the distance between scenarios is defined by the Euclidean distance
between the associated descriptive vectors. In addition to creating the scenario
groups, this strategy determines the number of groups by assuming a lower (S)
and an upper bound (S) on S and selecting S ∈ {S, . . . , S} such that the difference
between the error associated with S and S − 1 is maximized. Since this strategy
might generate very unbalanced groups with respect to the number of scenarios,
we set ⌈R/S⌉ as the maximum number of scenarios in a group. As soon as this
value is reached, the group is no longer updated. The scenarios are assigned to
groups according to the difference between their distance to the nearest and the
farthest group. Algorithm 1 outlines the pseudocode of this strategy.

Similar without dissimilar scenarios (SIM-D) This strategy first creates simi-

lar groups using SIM and generates additional dissimilar groups that contain one
scenario from each similar group. The selected scenario is the one that is closest
to its mean. To balance the number of scenarios, we also set a maximum of ⌈R/S⌉
scenarios per group. As soon as this value is reached, a new dissimilar group is
created.

Dissimilar (DIS) As opposed to SIM, scenarios are assigned to the groups that
are the farthest away from the mean. They are ranked in increasing order of the
difference between the distance to the nearest and to the farthest group. The se-
lected number of groups S ∈ {S, . . . , S} is the one with the largest average of the
distances between each group mean and the scenario closest to that mean.
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Algorithm 1: Similar grouping

1 Initialize error_diff = −∞, max_error_diff = error_diff, S∗ = S;
2 for S ∈ {S, . . . , S} do

3 Initialize one group with a randomly chosen scenario r1: g1 = {r1},
mean(g1) = r1;

4 for s = 2 . . . S do

5 Initialize gs = {rs}, rs selected at random with a higher probability
for distant scenarios with respect to rs−1, mean(gs) = rs;

6 for r /∈ ∪S
s=1gs do

7 Assign r to the group with the closest mean;

8 while groups change do

9 Update mean(gs) = rs,∀s;
10 for r = 1 . . . R according to distance difference do

11 Assign r to the group with the closest mean;
12 if |gs| ≥ ⌈R/S⌉ then

13 gs becomes unavailable;

14 Calculate error(S) =
∑R

r=1 dist(r,mean(gs)|r ∈ gs);
15 if S > S then

16 error_diff = error(S) − error(S− 1);

17 if error_diff > max_error_diff then

18 max_error_diff = error_diff;
19 Update S∗ = S and store the associated scenario groups

gs,∀s = 1 . . . S∗;

20 Return S∗ and the associated scenario groups gs,∀s = 1 . . . S∗;

4.2 Generation of feasible solutions

The decomposition technique described in Section 4.1 does not necessarily yield
a feasible solution to Model 2. A feasible solution provides a lower bound to the
optimal solution of Model 2. It allows to compute the duality gap at each iteration
of the subgradient method. This gap is defined according to the relative difference
between the decomposition’s upper bound and the generated lower bound.

To efficiently generate a feasible solution, we solve the restricted MILP for-
mulation to Model 2 that fixes the x-variables to the values these variables obtain
in the Lagrangian solution. When the x-variables are fixed, the resulting problem
can be iteratively solved with Algorithm 2. It iterates over the scenarios and the
individuals in the order provided by the priority list. For each individual and sce-
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nario, it generates the associated choice according to the discounted utility and
updates the occupancy level of the chosen alternative.

Notice that S values from the Lagrangian solution are available to each vari-
able xink. Let x̄sink,∀i, n,
k, s, be the value associated with the copied variable xsink. We evaluate all combi-
nations that can be characterized from x̄sink,∀i, n, k, s, as shown in Algorithm 3.
This results into SJ×N×K combinations, where J represents the number of alter-
natives, N the number of individuals and K the number of decisions. For each
combination, Algorithm 2 is performed, and the feasible solution with the largest
objective function value is selected. Despite Algorithm 3 being efficient (see Sec-
tion 5.3), evaluating all combinations might prompt a considerable computational
burden. In this case, Algorithm 3 can be simplified by only evaluating one com-
bination per group, which generates S feasible solutions.

Algorithm 2: Solution method for Model 2 with xink = x̄ink,∀i, n, k.

1 for r = 1 . . . R do

2 Initialize occupancy level oir = 0,∀i, and availability variables
yinr = 1,∀i, n;

3 for n = 1 . . .N do

4 for i = 1 . . . J do

5 if oir < ci then

6 Calculate Uinr =
∑K

k=1 βinkx̄ink + dinr and set
zinr = Uinr;

7 else

8 Set the alternative unavailable: yinr = 0;
9 Set the discounted utility to the corresponding lower

bound: zinr = ℓnr;

10 Determine Unr = max{1≤i≤J|yinr=1} zinr and j = argmaxUnr;
11 Set wjnr = 1 and winr = 0,∀i 6= {j};
12 Update the occupancy level ojr = ojr + 1;

13 Obtain DR by calculating DR
i = 1

R

∑N
n=1

∑R
r=1winr,∀i;

14 Obtain the objective function f(x̄, DR);
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Algorithm 3: Method to generate feasible solutions to Model 2 with
x̄sink,∀i, n, k, s.

1 Initialize the best lower bound zLB = −∞;
2 for all SJ×K×N combinations from x̄sink,∀i, n, k, s do

3 Solve Model 2 with xink,∀i, n, k fixed to the corresponding
combination (x̄) with Algorithm 2 and obtain zLB

current = f(x̄, DR);
4 if zLB

current > zLB then

5 Update zLB = zLB
current and keep the associated feasible solution;

6 Return the best lower bound zLB and the associated feasible solution;

4.3 Subgradient method

To obtain the best possible upper bound to Model 2, we need to solve the La-
grangian dual

zLD = min
α∈RJ×N×K×S

zUB(α). (7)

The Lagrangian function zUB(α) is non-differentiable. However, subgradient di-
rections can be easily generated. The subgradient method constructs a sequence
{αν}ν using

αν+1 = αν + γνdν, ∀ν, (8)

where ν denotes the iteration, γν is a positive scalar called step size and dν is a
vector representing the direction of motion called step direction.

The step direction dν can be directly defined as the subgradient direction. The
J×N×K×S-dimensional vector v defined by vsink = xsink−xs+1

ink ,∀i, n, k, s, and
evaluated at the Lagrangian solution, is a subgradient of zUB(α) at any value of
α. Nevertheless, preliminary experiments showed that the angle between vν and
vν−1 is obtuse in multiple occasions. This leads to a next Lagrangian multiplier
αν+1 that is close to the previous one, which slows down the convergence of the
procedure. This effect is known as zigzagging of kind I, and can be overcome by
deflecting the step direction (Camerini et al., 1975):

dν = −(vν + ζνdν−1), (9)

where ζν ∈ R≥0 is a suitable scalar called deflection parameter (notice the neg-
ative sign because the Lagrangian dual is to be minimized). By defining this
parameter as

ζν =

{
−τ vνdν−1

‖dν−1‖2
if vνdν−1 < 0,

0 otherwise,
(10)
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with 1 ≤ τ < 2, the step direction is forced to always form an acute angle with the
preceding direction, which eliminates the zigzagging of kind I. Notice that in the
absence of zigzagging of kind I (i.e., vνdν−1 ≥ 0), the step direction dν is equal
to −vν (the negative subgradient). We consider the step size most commonly used
in practice (Held et al., 1974):

γν = λν z
UB(αν) − zLB,best

‖dν‖2
, (11)

where ‖dν‖2 is the norm of the step direction, i.e., ‖dν‖2 =
∑J

i=1

∑N
n=1

∑K
k=1

∑S
s=1(d

s,ν
ink)

2,
and λν is a step size decreasing parameter satisfying 0 < λν ≤ 2. Fisher (1973)
suggests to halve this value whenever zUB(αν) has failed to decrease in a given
number θ of consecutive iterations.

Algorithm 4 presents the pseudocode of the subgradient method. Notice that
unlike the ordinary gradient method, the subgradient method is not a descent
method. This is why we keep track of the best upper and lower bounds found
throughout the process. We set a time budget as stopping criterion.

Algorithm 4: Deflected subgradient method.

1 Initialize ν = 0, zUB,best = +∞, zLB,best = −∞, α0, λ0 and d0 = 0;
2 while stopping criterion do

3 for s = 1 . . . S do

4 Solve Model 5;

5 Obtain x̄sink,∀i, n, k, s, and zUB(αν);
6 if zUB(αν) < zUB,best then

7 Update zUB,best = zUB(αν);

8 Run Algorithm 3 and obtain zLB;
9 if zLB > zLB,best then

10 Update zLB,best = zLB;

11 if zUB(α
ν) has not improved in the last θ consecutive iterations then

12 Set λν ← λν/2;

13 Calculate γν according to (11);
14 Update αs,ν+1

ink = αs,ν
ink + γνds,ν

ink,∀i, n, k, s, where
ds,ν
ink = −(vs,νink + ζνds,ν−1

ink ) and ζν is calculated according to (10);
15 Set ν← ν+ 1;
16 Check stopping criterion;
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5 Computational experiments

The goal of the experiments carried out in this section is threefold. First, we
evaluate the performance of the decomposition method against a general-purpose
MILP solver for a given time budget and compare the different scenario group-
ing strategies against each other (Section 5.3). Second, we assess the trade-off
between the solution quality and duality gap and the number of scenarios per
group (Section 5.4). Third, we analyze the impact in the algorithm’s performance
of scaling up the problem size by increasing the dimensions not involved in the
decomposition (Section 5.5 for an increase in the number of alternatives and Sec-
tion 5.6 for an increase in the number of individuals). Before that, Section 5.1
characterizes the revenue maximization problem. This choice-based optimization
problem yields a concrete MILP formulation that we use to run the experiments.
Section 5.2 describes the case study and the calibration of parameters for the sub-
gradient method.

5.1 Revenue maximization problem

The planner aims at finding the best pricing strategy in order to maximize its
revenue by offering services to a market. Each service in the set of services C
has a given associated capacity. The market is composed of N individuals, which
are assumed to be heterogeneous and price elastic. In a revenue maximization
context, we need to model competition so that individuals are not captive. To
this end, we incorporate an opt-out option into the model to capture individuals
leaving the market, either because they choose a competitor’s service or because
they do not choose anything at all. The opt-out option is denoted by i = 0 and is
always available to all individuals.

We assume that the price is the only planner’s decision. We define pi ∈ [ai, bi]

as the price to be paid to access service i ∈ C. The expected revenue obtained from
the services in C is calculated as

f(p,DR) =
∑

i∈C

piD
R
i =

1

R

∑

i∈C

N∑

n=1

R∑

r=1

piwinr. (12)

Model 13 comprises the MILP formulation of the revenue maximization problem.
Notice that the product of the price (continuous variable) and the choice (binary
variable) can be linearized because bounds on the former are assumed. We intro-
duce the variables ηinr = piwinr to capture the product of the two, with linearizing
constraints (13o)–(13r). We denote by C̄ = C ∪ {0} the set containing all services
and the opt-out option. The utilities associated with the opt-out option for each
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individual and scenario are included in (13b), and since the opt-out option is al-
ways available, we add constraints (13h) to enforce the availability variables yinr
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to be equal to 1 when i = 0.

zMILP = max
1

R

∑

i∈C

N∑

n=1

R∑

r=1

ηinr (13a)

s.t. U0nr = d0nr ∀n, r
(13b)

Uinr = βinpi + dinr ∀i ∈ C, n, r
(13c)

ℓnr ≤ zinr ∀i ∈ C̄, n, r
(13d)

zinr ≤ ℓnr +Minryinr ∀i ∈ C̄, n, r
(13e)

Uinr −Minr(1− yinr) ≤ zinr ∀i ∈ C̄, n, r
(13f)

zinr ≤ Uinr ∀i ∈ C̄, n, r
(13g)

y0nr = 1 ∀n, r
(13h)

zinr ≤ Unr ∀i ∈ C̄, n, r
(13i)

Unr ≤ zinr +Mnr(1−winr) ∀i ∈ C̄, n, r
(13j)

∑

i∈C̄

winr = 1 ∀n, r

(13k)

winr ≤ yinr ∀i ∈ C̄, n, r
(13l)

n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i ∈ C, n > ci, r

(13m)

ci(1− yinr) ≤

n∑

m=1

wimr ∀i ∈ C, n > 1, r

(13n)

ainwinr ≤ ηinr, ∀i ∈ C, n, r,
(13o)

ηinr ≤ binwinr, ∀i ∈ C, n, r,
(13p)

pi − (1−winr)bin ≤ ηinr, ∀i ∈ C, n, r,
(13q)

ηinr ≤ pi − (1−winr)ain, ∀i ∈ C, n, r,
(13r)

yinr, winr ∈ {0, 1} ∀i ∈ C̄, n, r
(13s)
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5.2 Experimental setting

We consider the case study on parking services in a park-and-ride context used
in Pacheco Paneque et al. (2021). The choice model for parking choices (mixed
logit model) is specified and estimated in Ibeas et al. (2014). They interview
197 individuals to model their preferences with respect to three parking services:
paid on-street parking (PSP), paid parking in an underground car park (PUP) and
free on-street parking (FSP). We assume that FSP represents the opt-out option
because it does not provide any revenue to the parking manager.

For the integration of the choice model in Model 13, we replace βin,∀i ∈
C̄, n, with their estimates, and we compute dinr,∀i ∈ C̄, n, r, with the values of
the other explanatory variables of the choice model in the data and the scenario
ξinr. We determine the capacity associated with PSP and PUP (the opt-out option,
FSP, is assumed to have unlimited capacity) according to the number of individu-
als in the instance, so that it is appropriate for the sample under consideration but
restrictive enough so that some users are forced to choose FSP because PSP and/or
PUP become unavailable. For the sake of simplicity, we assume cPSP = cPUP, and
denote it simply by c. We assume lower price bounds for PSP than PUP, i.e.,
pPSP ∈ [0.5, 0.65] and pPUP ∈ [0.7, 0.85].

The instances used in the upcoming sections are characterized from the avail-
able data by setting specific values for N, R and J = |C̄|. More precisely, for
each configuration of these parameters, we generate various instances by ran-
domly selecting N individuals from the whole dataset, together with the asso-
ciated R scenarios for the J parking services. The configurations are labeled as
NX_RY_JZ_cT, where X indicate the number of individuals, Y the number of
scenarios, Z the number of services and T the capacity. After performing some
tests on different settings for the subgradient method, we resolve to initialize the
Lagrangian multipliers to 0, and we consider λ0 = 0.5, θ = 5 and τ = 1.5. The
code is implemented in C++ using ILOG Concert Technology to access CPLEX
12.8, and all the instances were run using 12 threads in a 3.33 GHz Intel Xeon
X5680 server running a 64-bit Ubuntu 16.04.2.

5.3 Performance and scenario grouping strategies

In this experiment, we compare the results obtained with the decomposition method
for a given time budget against the exact approach while evaluating the differ-
ent grouping strategies. We consider two configurations: N50_R100_J3_c20 and
N50_R200_J3_c20. As shown in Pacheco Paneque et al. (2021), very large val-
ues of R are not required to ensure stability of the obtained quantities (e.g., rev-
enue, prices). Furthermore, we need to restrict the number of scenarios to be able
to solve to optimality Model 13 with CPLEX. Nevertheless, the decomposition
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method can be applied for larger values of R. Note that in this case a larger time
budget might be considered to ensure that the algorithm runs for a few iterations.

To increase statistical significance, we allow for 10 instances of each config-
uration (see Table 1 for computational details). Furthermore, we determine 10%
and 25% of the average computational time (reported by CPLEX) as two time
budget values to evaluate the performance of the algorithm at different stages of
the search. Notice that the computational time of an iteration of the subgradi-
ent method is unknown before being executed. At every iteration, we compute
an average computational time per iteration to avoid exceeding the time budget.
The subgradient method is then terminated as soon as the expected computational
time, i.e., the sum of the current computational time and the average time per
iteration, is larger than the time budget.

Table 1: Computational details on the tested configurations (10 instances per con-
figuration)

CPLEX time (min) Time budget (min)
Configuration N R J c Average Lowest Highest 10% 25%
N50_R100_J3_c20 50 100 3 20 191.4 112.8 318.2 19.1 47.9

N50_R200_J3_c20 50 200 3 20 1038.8 725.2 1508.0 103.9 259.7

Given the size of the instances, we consider scenario groups that have approx-
imately five scenarios each. We could consider a larger number of scenarios per
group while still being able to solve the subproblems within the given time budget
at the expense of performing a smaller number of iterations. In the case of random
grouping, we define S such that the number of scenarios per group does not ex-
ceed five, i.e., S = ⌈R/5⌉. For the other strategies, we define the lower and upper
bound on S as S = ⌈R/5⌉− 2 and S = ⌈R/5⌉+ 2, respectively (see Section 4.1).
For example, when R = 100, S ∈ {18, 19, 20, 21, 22}. Table 2 summarizes the
computational results obtained for the four grouping strategies and the two time
budget values. We report the average, lowest and highest values of the duality and
optimality gaps over the 10 instances, which are calculated as follows:

gapopt =
zMILP − zLB,best

zRM
, (14a)

gapdual =
zUB,best − zLB,best

zLB,best
. (14b)

Furthermore, we include the results on the best feasible solution found by CPLEX
for the given time budget. Note that in this case the duality gap is replaced by the
gap reported by CPLEX, which is computed as the relative difference between the
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Table 2: Performance by scenario grouping strategies and comparison with the
best feasible solution provided by CPLEX for a given time budget (10 instances
per configuration)

10% time budget 25% time budget
RAN SIM SIM-D DIS CPLEX RAN SIM SIM-D DIS CPLEX

N50_R100_J3_c20

Avg. time (min) 15.26 17.81 17.84 16.02 19.16 45.77 42.84 44.99 44.73 47.90
Avg. UB time per iter. (min) 7.61 7.60 5.05 6.79 - 7.75 7.90 4.75 6.55 -
Avg. LB time per iter. (s) 0.09 0.10 0.14 0.11 - 0.09 0.10 0.14 0.11 -

Avg. num. iter. 2.1 2.4 3.6 2.4 - 6.0 5.6 9.8 7.1 -
Avg. iter. best UB is reached 2.1 2.4 2.9 2.3 - 5.1 5 6.6 5.7 -
Avg. iter. best LB is reached 1.6 2 1.9 1.7 - 3.4 3.1 4.7 3.1 -

Avg. S 20 20.3 24.6 21.9 - 20 20.3 24.6 21.9 -
gapopt (%)

Average 0.08 0.07 0.05 0.10 5.77 0.05 0.05 0.04 0.08 0.10
Lowest 0.00 0.00 0.00 0.05 2.35 0.00 0.00 0.00 0.02 0.25
Highest 0.16 0.12 0.10 0.16 8.78 0.12 0.12 0.08 0.13 3.91

gapdual (%)
Average 1.88 1.85 1.93 2.03 25.691 1.62 1.65 1.74 1.73 16.481

Lowest 1.52 1.55 1.47 1.63 20.251 1.29 1.25 1.42 1.42 11.461

Highest 2.25 2.10 2.30 2.31 30.261 1.97 1.98 2.03 2.03 20.161

N50_R200_J3_c20

Avg. time (min) 98.47 99.35 100.4 94.79 103.9 251.0 253.7 256.3 249.1 259.6
Avg. UB time (min) 16.35 16.79 11.67 18.90 - 15.02 16.12 8.69 16.32 -
Avg. LB time (s) 0.79 0.80 1.18 0.78 - 0.77 0.77 1.10 0.73 -

Avg. num. iter. 6.1 6.0 8.7 5.3 - 16.9 15.9 29.9 15.7 -
Avg. iter. best UB is reached 5.6 5.6 7.8 4.3 - 15.3 14 28.7 13.8 -
Avg. iter. best LB is reached 2.6 4.6 4.5 3.2 - 6.5 6.2 8.7 7.8 -

Avg. S 40 40.2 48.4 39.5 - 40 40.2 48.4 39.5 -
gapopt (%)

Average 0.03 0.03 0.03 0.03 1.46 0.02 0.02 0.02 0.03 0.54
Lowest 0.01 0.00 0.01 0.02 0.22 0.00 0.00 0.01 0.02 0.08
Highest 0.05 0.06 0.04 0.05 4.16 0.04 0.03 0.04 0.04 1.83

gapdual (%)
Average 1.82 1.82 2.03 1.84 19.051 1.62 1.64 1.73 1.64 16.711

Lowest 1.53 1.57 1.54 1.62 17.431 1.36 1.38 1.38 1.46 13.051

Highest 2.07 2.13 2.39 2.13 22.571 1.85 1.90 2.00 1.83 19.021

1 In this case, gapdual corresponds to the gap reported by CPLEX (i.e., relative difference between the best
integer solution and the solution associated with the best node of the branch-and-bound tree).
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best integer solution and the solution associated with the best node of the branch-
and-bound tree.

We observe that the average computational time for any grouping strategy is
lower than the time budget because of the above-mentioned stopping criterion.
The average number of scenario groups S is larger in SIM-D because more sce-
nario groups are created in addition to the ones generated by SIM. Even though
more subproblems are solved, each of them has in average less scenarios, which
results in a lower average UB time per iteration. This has also an impact on the
average LB time, as more price combinations are evaluated. In any case, the
algorithm to generate feasible solutions is much faster compared to solving the
Lagrangian subproblem. Notice that more iterations are performed for R = 200

than R = 100 within each time budget. This is due to the fact that the time budget
values are obtained from the average computational time of the exact method, that
does not increase linearly with respect to R (see Table 1). In the case of R = 200,
we observe a decrease both in the average UB time and LB time per iteration
from 10% to 25% time budget. These results indicate that the subproblems and
the restricted MILP formulations are more rapidly solved in the long run. We also
notice that the best LB is reached earlier than the best UB. This means that the
method is able to find high-quality feasible solutions at a relatively early stage
whereas the best UB gets refined throughout the iterations. Thus, as long as the
duality gap is low, the subgradient method can be terminated after a small number
of iterations without improvement of the best LB.

The optimality gaps are very low for any strategy (below 0.16% in all cases),
and they decrease as the time budget increases. We notice that they are lower on
average for R = 200 than R = 100 because of the larger time budget values. On
the contrary, the optimality gaps with respect to the best feasible solutions pro-
vided by CPLEX are much higher and more dispersed. This is especially the case
for R = 100 and a 10% time budget, where the optimality gap fluctuates between
2.35% and 8.78% with an average value equal to 5.77%. The duality gaps are
larger and of the same order of magnitude across grouping strategies (they are be-
low 2.31% in all cases). As expected, the average duality gaps decrease as the time
budget increases by a relatively low margin. For instance, for N50_R200_J3_c20
and RAN, it decreases from 1.82% for a 10% time budget to 1.62% for a 25% time
budget. This reveals the slow convergence behavior of the subgradient method.

Regarding the grouping strategies, we observe an impact on the obtained re-
sults but we do not identify a clear winner. This is statistically supported by the
ANOVA test, that evaluates whether optimality and duality gap means are equal
across strategies. This is indeed the case, and post hoc tests to evaluate these
means for each pair of strategies show that there is no significant difference be-
tween them. In general, DIS (dissimilar) reports the largest optimality and duality
gaps. As opposed to Crainic et al. (2014), the obtained results are not superior to
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RAN (random). They also show that SIM-D (similar without dissimilar scenar-
ios) often leads to higher quality solutions at the expense of longer computational
times. In our case, this strategy provides the smallest optimality gaps for R = 100

but not for R = 200. With respect to the duality gap, other strategies yield lower
values. As analyzed in Section 5.4, this has to do with the fact that the subprob-
lems have on average less scenarios, and despite the method is able to perform
more iterations, it does not contribute to reducing the duality gap. RAN and
SIM (similar) report reasonable duality gaps for both values of R. SIM reports
a lower average optimality gap for the 10% time budget, whereas RAN reports
lower values for the 25% time budget. Therefore, we cannot conclude that any of
the refined grouping strategies outperforms random grouping. RAN is easier to
implement and shows slightly faster solution times with relatively lower duality
gaps.

5.4 Size of the scenario groups

To analyze the trade-off between the size of the scenario groups and the perfor-
mance of the method, we consider various values of S and run the configuration
N50_R200_J3_c20 (5 instances) for a 2-hour time budget. Table 3 includes the
obtained results for groups with 1-5, 10, 15, 20 and 25 scenarios each. As ex-
pected, the larger the number of scenarios per group, the larger the average UB
time per iteration, resulting in a lower average number of iterations within the
time budget.

Concerning the optimality gap, we notice an increasing trend in the obtained
values as S decreases. Indeed, as the number of scenarios per group increases, the
number of subproblems to solve decreases, and thus less price combinations are
evaluated. Nevertheless, the average optimality gaps remain below 0.06% in all
cases. The decrease in S has a more noticeable impact on the duality gaps, which
decrease as S decreases. Figure 1 shows for each instance the evolution of the
best UB obtained with respect to the number of scenarios per group. Indeed, we
observe a decrease in their values as the number of scenarios per group increases.

In the case of S = 200 (1 scenario per group), even though the method per-
forms on average 101.2 iterations, it can only reach an average duality gap of
3.67%. For larger groups (i.e., 15, 20 and 25 scenarios per group), the algorithm
runs for a very limited number of iterations, but the resulting duality gaps are be-
low 1.02% in average. We observe that despite the lower number of iterations
and combinations for the generation of feasible solutions, it is beneficial to define
subproblems with a large number of scenarios per group as long as they can be
efficiently solved within the considered time budget. Notice that we might need
to consider groups of lower size in other settings that involve more individuals,
more scenarios, a lower time budget, etc.
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Table 3: Impact of the size of scenario groups for the configuration
N50_R200_J3_c20 with a 2-hour time budget (5 instances)

Number of scenario groups (S)
200 100 66 50 40 20 13 10 8

Number of scenarios per group 1 2 31 4 5 10 152 20 25
Avg. time (min) 119.2 118.6 116.9 116.1 110.7 109.5 96.0 85.8 72.1

Avg. UB time per iter. (min) 0.86 2.78 4.60 7.83 12.41 32.62 43.97 56.05 72.14
Avg. LB time per iter. (s) 19.13 4.75 2.05 1.15 0.75 0.18 0.08 0.05 0.03

Avg. num. iter. 101.2 41.6 25.8 15 9 3.4 2.2 1.6 1
Avg. iter. best UB is reached 100 41.2 24.2 14.2 8.2 3 3 1.4 1
Avg. iter. best LB is reached 7.8 7.4 8.8 8.4 3.6 1 1 1 1

gapopt (%)
Average 0.02 0.01 0.02 0.03 0.03 0.04 0.04 0.06 0.06
Lowest 0.00 0.00 0.00 0.02 0.01 0.03 0.00 0.03 0.03
Highest 0.04 0.03 0.04 0.05 0.05 0.06 0.08 0.08 0.09

gapdual (%)
Average 3.67 2.80 2.30 2.02 1.83 1.31 0.99 0.90 0.78
Lowest 3.56 2.68 2.12 1.85 1.73 1.22 0.87 0.83 0.61
Highest 3.84 2.97 2.38 2.18 1.96 1.38 1.09 1.02 0.98

1 2 groups have 4 scenarios.
2 5 groups have 16 scenarios.
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Figure 1: Best upper bounds (zUB,best) across the scenario groups (each shape
represents a different instance)

25



5.5 Impact of the number of alternatives

We now evaluate the performance of the method when the problem is scaled up by
increasing the number of services J. To do so, we segment the prices associated
with PSP and PUP by residency, which is one of the explanatory variables of the
choice model. This means that different prices are proposed to the residents in
the study area and to non-residents. It can be seen as extending C̄ from J = 3 to
J = 5 services where residents have only access to PSP and PUP associated with
the resident price (and the opt-out option FSP) and analogously for non-residents.
Since non-residents are willing to pay larger prices than residents, we modify the
price bounds as follows: pres

PSP, p
non-res
PSP ∈ [0.5, 0.75] and pres

PUP, p
non-res
PUP ∈ [0.75, 1.0].

Table 4 shows the results for three configurations (5 instances) for a 2-hour
time budget. Due to the complexity induced by the increase in J, solely the MILP
formulation for N50_R25_J5_c20 could be solved to optimality in a reasonable
time (18.72 h on average). We therefore consider 3 scenarios per group in the
decomposition method. The average UB time per iteration is much larger for
J = 5. For instance, it increases from 7.8 min for N50_R100_J3_c20 to 34.4
min for N50_R100_J5_c20. The average LB time per iteration is also higher but
remains below 0.3 s for all configurations. The optimality gaps are larger than the
ones obtained for J = 3 in Section 5.3 but they remain below 0.5%. As expected,
the duality gaps are also larger and they increase as R increases for the given time
budget.

Table 4: Impact of the size of scenario groups for the configuration
N50_R200_J3_c20 with a 2-hour time budget (5 instances)

N50_R25_J5_c20 N50_R50_J5_c20 N50_R100_J5_c20
Avg. time (min) 116.8 110.9 114.9

Avg. UB time per iter. (min) 7.61 20.03 34.38
Avg. LB time per iter. (s) 0.00 0.03 0.28

Avg. num. iter. 16.2 5.8 3.4
Avg. iter. best UB is reached 13.8 4.8 1
Avg. iter. best LB is reached 4.2 3.4 1.4

S 8 16 33
gapopt (%)

Average 0.38 N/A1 N/A1

Lowest 0.21 N/A1 N/A1

Highest 0.49 N/A1 N/A1

gapdual (%)
Average 3.34 4.57 5.19
Lowest 2.79 3.72 4.69
Highest 3.91 5.09 5.59

1 Instances could not be solved to optimality with CPLEX in a reasonable time.
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5.6 Impact of the number of individuals

In this experiment we test the method on configurations with larger values of N,
i.e., N ∈ {50, 100,

150, 197}, with capacities c ∈ {20, 40, 60, 80}, respectively. Table 5 shows the
results for these four configurations (5 instances) with R = 100 and J = 3 for
a 2-hour time budget. We consider scenario groups of 2 scenarios each. The
average UB time per iteration grows exponentially. In the case of N = 197, it
even exceeds the 2-hour time budget (the first iteration is always performed). The
average number of iterations follows the opposite trend, as it decreases in average
from 98.2 iterations for N = 50 to a single iteration for N = 197. Interestingly,
we observe that the duality gaps decrease as N increases.

Table 5: Impact of an increase in the number of individuals for a 2-hour time
budget (5 instances per configuration)

N50_R100_J3_c20 N100_R100_J3_c40 N150_R100_J3_c60 N197_R100_J3_c80
Avg. time (min) 119.5 110.2 98.2 193.21

Avg. UB time per iter. (min) 1.21 15.11 61.58 193.18
Avg. LB time per iter. (s) 0.59 1.21 1.80 2.89

Avg. num. iter. 98.2 7.4 1.6 1
Avg. iter. best UB is reached 96.6 6 1.6 1
Avg. iter. best LB is reached 18.2 3.6 1.2 1

S 50 50 50 50
gapopt (%)

Average 0.03 N/A2 N/A2 N/A2

Lowest 0.00 N/A2 N/A2 N/A2

Highest 0.07 N/A2 N/A2 N/A2

gapdual (%)
Average 2.38 1.98 1.91 1.56
Lowest 2.05 1.91 1.75 1.49
Highest 2.63 2.05 2.25 1.63

1 The first iteration of the solution method is always performed (even if it exceeds the given time budget).
2 Instances could not be solved to optimality with CPLEX in a reasonable time.

6 Conclusions

In this work, we introduce a tailored heuristic solution approach for choice-based
optimization based on scenario decomposition and scenario grouping. It is built
upon the choice-based optimization model introduced in Pacheco Paneque et al.
(2021). This decomposition strategy allows to preserve the supply-demand in-
terplay that is explicitly captured by the model because all the constraints from
the original optimization problem are also included in the Lagrangian subprob-
lem. We also develop an algorithm to efficiently generate feasible solutions to
the original problem from the solution of the Lagrangian subproblem. To gather
the scenarios into groups, we adapt several strategies from Crainic et al. (2014).
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The grouping strategies are implemented as a preprocessing step of the subgradi-
ent method, which iteratively generates upper bounds (by solving the Lagrangian
subproblem) and lower bounds (by generating feasible solutions) to the optimiza-
tion problem.

To experimentally test the Lagrangian decomposition scheme, we characterize
a revenue maximization problem for a case study on parking choices. We show
that near-optimal solutions can be obtained for all scenario grouping strategies
and various values of R in a much lower computational time in comparison with
the exact method. Such solutions are usually generated at an early stage of the
subgradient method, which allows to promptly terminate the algorithm if the best
feasible solution has not improved after a certain number of consecutive itera-
tions (provided that the duality gap is below an acceptable threshold). We cannot
identify a scenario grouping strategy that outperforms the others, so we resolve
to rely on the random partition for the performed experiments. As long as the
Lagrangian subproblems are computationally manageable, a large number of sce-
narios per group is recommended, as it leads to smaller duality gaps for a given
computational time. We also observe low duality gaps for configurations with a
larger number of alternatives and individuals.

In conclusion, Lagrangian decomposition provides a relevant scheme to ad-
dress the tractability of choice-based optimization problems. Additionally, the
proposed method could be combined with other decomposition techniques ac-
cording to the model requirements. For instance, if the capacity of the alternatives
is included as a decision variable (that is formulated with a reduced set of bi-
nary variables), Benders decomposition could be as well explored. Furthermore,
parallelization routines that allow to solve multiple subproblems simultaneously
could be implemented within the subgradient method in order to reduce the total
computational time. These approaches allow to further enhance and expand the
applicability of the method to the application areas discussed in Section 1, such
as facility location, revenue management and transportation-related problems.
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