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Abstract

We propose a probabilistic modeling approach to represent the speed-

density relationship of pedestrian tra�c. The approach is data-driven,

and it is motivated by the presence of high scatter in the raw data that

we have analyzed. We show the validity of the proposed approach, and

its superiority compared to deterministic approaches from the literature

using a dataset collected from a real scene and another from a controlled

experiment.

Keywords: speed-density relationship, probabilistic model, individual

trajectories, Voronoi tessellations, statistical validation

1 Introduction

Understanding, reproducing and forecasting phenomena that characterize

pedestrian tra�c is necessary in order to provide services related to pedes-

trian safety and convenience. This becomes of utmost importance in ar-

eas of high congestion, which is a growing problem of many public spaces

(transportation hubs, shopping malls, large sports and cultural events, etc.)

Congestion in pedestrian-oriented facilities represents a phenomenon with

a negative impact on pedestrian dynamics. It prevents pedestrians from

achieving e�cient movements and may lead to an increase in travel time,

delays and potential collisions among pedestrians. Because of the complex

and heterogeneous patterns in pedestrian �ows, a simple application of a

particular policy may lead to ine�cient and costly trial-and-error solutions.

Data collection for pedestrian �ow and behavior analysis used to be par-

ticularly cumbersome. Typically, manual counting methods (on-site or on

videos) and surveys distributed to randomly selected individuals were the

main sources of data. Nowadays, automatic pedestrian detection and track-

ing methods have evolved tremendously, allowing for more comprehensive

analyses to be conducted as well (Bauer et al., 2009).

Using a direct analogy with vehicular tra�c, the main stream of the lit-

erature characterizes pedestrian tra�c with three fundamental quantities,

that is density (k), speed (v) and �ow (q), as well as deterministic rela-

tionships among them. Density (in ped/m2) is the number of pedestrians

present in an area at a given moment in time; speed (in m/s) is the mean

speed of pedestrians which may be averaged over space or over time; and

1



�ow (in ped/ms) refers to the number of pedestrians passing a cross sec-

tion of an area per unit of time (Daamen, 2004). The relationships between

density and �ow, density and speed, and �ow and speed is referred to as

the fundamental diagram (see Weidmann, 1993; Daamen, 2004).

In this paper, we exploit data collected from the train station in Lau-

sanne, Switzerland, as well as data collected from a controlled experiment

by the Technical University of Delft (Daamen and Hoogendoorn, 2003).

The empirical analysis of these pieces of data rules out the use of a unique

deterministic fundamental diagram, due to a high scatter in the data. This

scatter may be explained by the behavioral heterogeneity of pedestrians,

as documented in the literature. Individuals with di�erent ages, health

conditions, trip purposes, with or without luggage, or walking in a group

or alone, may behave di�erently.

A possible approach to capture this complex phenomenon consists in

modeling explicitly each type of behavior at the disaggregate level. It

would allow to test various behavioral hypotheses, at the expense of the

collection of a great deal of disaggregate behavioral data. We propose in

this paper an alternative approach, based on an aggregate representation of

the pedestrian tra�c (consistently with the fundamental diagram approach

mentioned above), and directly derived from the data. The observed scatter

is captured by preferring probabilistic models instead of deterministic ones.

The structure of the paper is as follows. A review of related research

from the literature is provided in Section 2. Section 3 describes the two case

studies from Lausanne and Delft mentioned above. In Section 4, we for-

mally de�ne the variables involved in the model, that is density and speed

indicators for pedestrian tra�c. Section 5 presents the empirical analysis

of the two case studies and emphasizes the limitations of the state of the

art approaches on these concrete examples. In Section 6, we introduce the

speci�cation of the probabilistic speed-density model. Section 7 and Sec-

tion 8 illustrate the model on the two case studies. Parameter estimation,

model validation and comparisons with the existing models are discussed

in details. Finally, Section 9 summarizes the outcomes of the proposed

methodology and determines future research directions.
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2 Literature review

This section is organized into two parts. The �rst focuses on models from

the vehicular tra�c theory, that are relevant for pedestrian as well. The

seconds deals with models for the pedestrian tra�c.

2.1 Vehicular tra�c

The fundamental relation between spacing (the inverse of density) and

speed was �rst introduced by Greenshields et al. (1935) in a form of a simple

linear equation. Since then there have been many studies that were aimed

at improving this relationship. A comprehensive review of the models pro-

posed in this �eld is given in Wang et al. (2009). Some of the established

deterministic empirical relationships are listed in Table 1, where vf is the

free-�ow speed, v0 is the average travel speed in stop-and-go conditions, kj
is the jam density, kc is the critical density, and λ, θ, θ1 and θ2 are the

parameters.

Source Speci�cation Parameters

Greenshields et al. (1935) v(k) = vf

(
1− k

kj

)
vf, kj

Underwood (1961) v(k) = vf exp
(
− k
kc

)
vf, kc

Newell (1961) v(k) = vf(1− exp(− λ
vf
( 1
k
− 1
kj
))) vf, kj, λ

Drake et al. (1967) v(k) = vf exp
(
−θk2

)
vf, θ

Wang et al. (2009) v(k) = v0 +
vf−v0

(1+exp(k−kc
θ1

))θ2
v0, vf, kc, θ1, θ2

Units: k[veh/km ], v[ km/h ]

Table 1: Deterministic fundamental relationships - vehicular tra�c

In several recent studies, it has been recognized that plots of speed-

density data are usually widely scattered. Researchers addressed this scat-

ter through the modeling of macroscopic �ow characteristics dependent on

drivers' characteristics (Jabari et al., 2014), through the implementation

of multiple driver and vehicle classes (van Wageningen-Kessels, 2013) or

through the probabilistic extension of the existing macroscopic relations

(Wang et al., 2009). These models explain the data better at the macro-

scopic level (Jabari et al., 2014).
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2.2 Pedestrian tra�c

In the context of pedestrian tra�c, both linear and nonlinear speed-density

models have been proposed, as reported in Table 2, where vf is the free �ow

speed, kj the jam density, and θ and γ are parameters. The linearity of

the speed-density relationship has long been questioned for both vehic-

ular and pedestrian �ows (Daamen, 2004). An alternative speci�cation

has been proposed by Tregenza (1976) where speed decreases exponen-

tially with the increase in density, whereas Weidmann (1993) proposed the

so-called Kladek-formula, with a double S-form. The exponential speci�ca-

tions of the relationship appeared to be better for describing the behavior

of pedestrian walking speed (Cheah and Smith, 1994). In comparison to

fundamental relationships from vehicular tra�c, the relationship proposed

by Weidmann (1993) corresponds to the model proposed by Newell (1961),

while the relationship proposed by Tregenza (1976) can be regarded as the

generalization of the model proposed by Underwood (1961). Rastogi et al.

(2013) have shown that the speed-density relationship of pedestrian �ow

on sidewalks also follows the model presented in Underwood (1961).

The proposed relationships clearly di�er in terms of functional form,

but also in terms of the values of their parameters and supports. For

instance, jam density (the maximum density achieved under congestion)

goes from 3.8 ped/m2 to 10 ped/m2, the reported critical density (the

maximum density achievable under free �ow) ranges from 1.7 ped/m2 to

7 ped/m2 (Seyfried et al., 2010) and the mean of the free-�ow speed es-

timated in di�erent studies is 1.34 m/s while its standard deviation is

0.37 m/s (Daamen, 2004). The researchers have suggested several explana-

tions for these deviations some of which can be attributed to the cultural

di�erences, the di�erences between pedestrian facilities and the e�ects of

the environment, �ow composition, measurement methods, etc. (Seyfried

et al., 2010).

The �ndings from several studies (Cheung and Lam, 1998; Daamen

et al., 2005; Ste�en and Seyfried, 2010), question the deterministic ap-

proach. They indeed report a signi�cant scatter in the empirical speed-

density relationship. The observed scatter is not possible to predict by the

proposed deterministic models. Cheung and Lam (1998) have reported dif-

ferent distributions of the speed data observed for various ranges of density.

In this study, speeds are less evenly distributed for lighter tra�c conditions,
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Source Speci�cation Parameters

Older (1968)
Navin and Wheeler (1969)
Fruin (1971)
Tanaboriboon et al. (1986)
Lam et al. (1995)

v(k) = vf − θk vf, θ

DiNenno (2002) v(k) = vf − vfθk vf, θ

Tregenza (1976) v(k) = vf exp
(
−(k
θ
)γ
)

vf, γ, θ

Weidmann (1993) v(k) = vf

{
1− exp

(
−γ
(
1
k
− 1
kj

))}
vf, kj, γ

Rastogi et al. (2013) v(k) = vf exp(−kθ ) vf, θ

Units: k[ped/m2 ], v[m/s ]

Table 2: Deterministic fundamental relationships - pedestrian tra�c

which is explained by higher freedom that pedestrians have in controlling

their movements. This indicates that in addition to density, other factors

are likely to in�uence the speed of pedestrians. Weidmann (1993) has em-

pirically shown that the trip purpose of pedestrians represents one of the

relevant factors. According to this study free-�ow speed of shopping pedes-

trians is 1.04 m/s, it is 1.45 m/s for commuters and 0.99 m/s for tourists.

The speed of pedestrians appears to be a�ected by the age and the gen-

der as well. According to Bowman and Vecellio (1994), the walking speed

of pedestrians who are 60 years old and older is signi�cantly lower than

for the rest of the adult population. Weidmann (1993) has reported that

children (under 12 years) are not capable of attaining the same speed as

adults. According to the same study, walking speed of men is found to be

1.41 m/s, whereas for women it is lower (1.27 m/s).

Existing models are not designed to capture these complex aspects. This

is where our study makes a contribution. We propose a probabilistic speed-

density relationship that is able to implicitly account for the heterogeneity

of pedestrian �ows.

3 Case studies

The motivation of this research comes from the analysis of two real datasets,

that we use below to illustrate and validate our approach.
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3.1 Lausanne train station

The �rst dataset is collected in a pedestrian underpass of the train station

of Lausanne, Switzerland. Figure 1 shows the layout of the studied area. It

covers approximately 685 m2. The underpass is frequently used especially

during the morning and afternoon peak hours since it connects the exterior

of the train station to the main platforms. It also acts as a connection

between mostly residential south and the center of the city in the north.

Figure 1: Lausanne train station - pedestrian underpass West

To collect the raw data, a large-scale network of smart sensors has been

deployed in the station. The underlying technology is based on infrared

and depth sensors that detect silhouettes and track each pedestrian in the

scene covered by the network. The tracking engine uses a sparsity driven

framework (Alahi et al., 2011; Alahi et al., 2014) to link detected pedestri-

ans over the network of sensors.

It results in a dataset of 25,603 trajectories, collected in a time period

between 07:00 and 08:00 on February 12, 13, 14, 15 and 18 of 2013. The

temporal resolution of every trajectory is 10 to 25 points per second and it

has been processed to obtain the position of every pedestrian in the scene

every second. The average length of the trajectories is 78 meters and the

duration of pedestrians' stay in the underpass ranges from 15 seconds to

2.2 minutes.

Note that we have selected only trajectories collected in the shaded area

shown in Figure 1, referring to a corridor. The trajectories from the ramps

and stairs (denoted as P1-P9) are not considered in this study. Indeed, as

explained by Daamen (2004) and Weidmann (1993), the walking behav-

ior and, therefore, the speed-density relationship, varies with the type of

infrastructure.
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In the rest of the paper, we refer to this case study as the Lausanne case

study.

3.2 Controlled experiment

The second set of data has been collected during a controlled experiment at

the Technical University of Delft in the Netherlands (Daamen and Hoogen-

doorn, 2003). The individuals participating in the experiment were in-

structed to walk along a corridor that is 10 meters long and 4 meters wide,

at a normal speed, and to pass through a bottleneck of 1 meter in width

(see Figure 2, where individuals walk from right to left).

Figure 2: Narrow bottleneck experiment (Daamen and Hoogendoorn, 2003)

The scene was �lmed from top by digital cameras. The individual tra-

jectories were extracted from the digital video sequences.

The experiment lasted about 15 minutes. A total of 1,123 trajectories

were collected, where the position of each individual is available every 0.1s.

The average length of the trajectories is similar inside and upstream of the

bottleneck and it is approximately 5 meters. The average travel time of

the trajectories upstream of the bottleneck is 10 seconds, whereas inside

the bottleneck it is lower (approximately 5 seconds).

Note that we have selected trajectories collected in the rectangular area

(5 meters long and 4 meters wide) upstream of the bottleneck (Figure 2).
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As explained by Duives et al. (2014, Figure 4), this is where the variability

is observed.

In the rest of the paper, we refer to this case study as the Delft case

study.

4 Density and speed indicators

We present here the assumptions related to the quantities involved in our

analysis. The trajectory of pedestrian i is a curve in space and time, that

is

pi(t) = (xi(t), yi(t), t), (1)

where time t spans the horizon of the analysis [t0, tf], and xi(t) and yi(t)

are the coordinates of the position of pedestrian i at time t in a given

system of coordinates (typically, we express time in seconds, and use an

orthonormal basis for the spatial dimensions).

In practice, the pedestrian trajectory data is collected through an ap-

propriate tracking technology (e.g. Daamen and Hoogendoorn, 2003; Alahi

et al., 2011). In this case, the time is discretized and the trajectory is

described as a �nite collection of triples

pis = (xis, yis, ts), (2)

where ts = (t0, t1, . . . , tf) corresponds to the available sample. We assume

that the position of each pedestrian is known at each time ts of the dis-

cretization.

Di�erent measurement methods have been proposed in the literature

in order to obtain density and speed indicators from pedestrian trajecto-

ries. For a comprehensive analysis of several measurement methods and

their in�uence on the fundamental diagram we refer to Zhang (2012). The

measurement methods usually rely on a discretization scheme chosen arbi-

trarily, in both space and time (Seyfried et al., 2010; Daamen and Hoogen-

doorn, 2003). This may generate noise in the data, and the results may be

highly sensitive to minor changes of discretization (Openshaw, 1983; Liddle

et al., 2011). In order to be as much independent from the aggregation level

as possible, we rely on a data-driven measurement method inspired by the

one proposed by Ste�en and Seyfried (2010). This method is based on the
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spatial discretization that is adjusted to the data itself through the use of

Voronoi diagrams (Okabe et al., 2000).

The Voronoi space decomposition (Okabe et al., 2000) assigns a personal

region Vi(t) to each pedestrian i, in such a way that each point in the

personal region is closer to i than to any other pedestrian, with respect of

the Euclidean distance

Vi(t) =

{(
x

y

)∣∣∣∣
∥∥∥∥∥
(
x

y

)
−

(
xi(t)

yi(t)

)∥∥∥∥∥
2

≤

∥∥∥∥∥
(
x

y

)
−

(
xj(t)

yj(t)

)∥∥∥∥∥
2

, ∀j

}
.

(3)

In the presence of sampled data de�ned by (2), we have, for each s =

0, . . . , f and each pedestrian i

Vis =

{(
x

y

)∣∣∣∣
∥∥∥∥∥
(
x

y

)
−

(
xis
yis

)∥∥∥∥∥
2

≤

∥∥∥∥∥
(
x

y

)
−

(
xjs
yjs

)∥∥∥∥∥
2

,∀j

}
. (4)

We assume that each point (x, y) in space is associated with a unique

Voronoi region at time ts, corresponding to the region associated with

pedestrian i, that is V(x, y, ts) = Vis. Note that if (x, y) is exactly on

the border between two or more regions, the unique region associated to it

has to be arbitrarily de�ned.

Given the space discretization speci�ed above, the density of pedestrians

at position (x, y) at time ts is

k(x, y, ts) =
1

|V(x, y, ts)|
, (5)

where V(x, y, ts) is the unique Voronoi region that contains (x, y) at time

ts, and |V(x, y, ts)| is the area of V(x, y, ts). The unit is the number of

pedestrians per surface unit (typically, square meter).

We refer to Ste�en and Seyfried (2010) and Nikoli¢ et al. (2014) for

detailed discussions of this approach.

The velocity of pedestrian i at time t is given by

~vi(t) = vi(t)~di(t), (6)

where ~di(t) is the (normalized) direction of pedestrian i at time t and vi(t)

is the magnitude of the velocity vector, or speed. If the functions xi(t) and

yi(t) in (1) are di�erentiable in t, it is de�ned as

vi(t) =

√(
dxi(t)

dt

)2
+

(
dyi(t)

dt

)2
. (7)
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Note that this de�nition assumes that the direction of the �ow is unique

at each point in time and space. It may therefore not be appropriate for

the analysis of multidirectional �ow. In the presence of discretized data,

the speed is approximated using �nite di�erences, that is

vis =

√(
∆xis

∆t

)2
+

(
∆yis

∆t

)2
, (8)

where ∆xis = xi,s+1 − xi,s−1, ∆yis = yi,s+1 − yi,s−1, and ∆t = ts+1 − ts−1.

5 Empirical analysis

The speed-density pro�les corresponding to the Lausanne and the Delft

case studies are obtained from the measurement method presented in Sec-

tion 4. In Figure 3, each circle corresponds to one observation, that is,

one pedestrian at one speci�c time in the horizon. The x coordinate of the

circle corresponds to the density, calculated from (5), and its y coordinate

corresponds to the speed calculated from (8).

Figure 3a plots 270,291 observations corresponding to the peak hour

of February 12, 2013 for the Lausanne case study. The same pattern was

observed on any weekday. Figure 3b plots 119,156 observations for the

Delft case study.

(a) Lausanne case study (b) Delft case study

Figure 3: Speed-density pro�les

A high scattering is observed in both cases (Figure 3). The density

ranges from 0 to approximately 7 pedestrians per square meter. In the
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Lausanne case, the speed ranges from 0 to 5.72 meters per second (that

is about 21 km/h), and 99% of the observations are between 0 and 2.42

meters per second (that is about 9 km/h). In the Delft case, the speed

ranges from 0 to 2.87 meters per second (that is about 10 km/h). The

di�erence in the speed distribution is attributed to the controlled nature

of the experiment in Delft, where individuals where instructed to walk at

normal speed, resulting to a lower variance compared to Lausanne, where no

instruction was given. For the same reason, low speeds where not observed

at low density in Delft, contrarily to Lausanne.

To investigate this data in more details, the speed distributions at var-

ious density levels are presented in Figures 4 and 5 for the Lausanne and

Delft case study, respectively. In both cases, a higher level of variability

is noticeable at lower densities, compared to higher densities where the

distribution of speed is less spread and shifted towards lower values.

The deterministic models for the speed-density relationship proposed

in the literature (Section 2.2) appear to be inadequate for representing

the observed patterns. Clearly, density is not the only factor in�uencing

pedestrians' speed.

In order to take the nature of the data into account and to characterize

the observed phenomena, we propose next a probabilistic model for the

speed-density relationship.

6 Modeling framework

We assume that there are two subpopulations of pedestrians, associated

with two di�erent (unspeci�ed) types of behavior: fast and slow pedes-

trians. These subpopulations are further assumed to be characterized by

corresponding components in the overall speed distribution. This assump-

tion is in line with the pattern observed and discussed in Section 5 and will

be validated in Section 7 and Section 8.

6.1 Model speci�cation

Consistently with the assumption of two subpopulations, the probabilistic

speed-density relationship is speci�ed by using a mixture of models. The

velocities are modeled as random variables. We denote by fslow(ξ|k; θslow)
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the probability density function of the speed of slow pedestrians, condi-

tional to the density k, and by ffast(ξ|k; θfast) the probability density func-

tion of the speed of fast pedestrians. We consider a pedestrian to be �fast�

when her speed is beyond a threshold denoted vm(k), that varies with the

density level. We assume that it is a random variable with a symmetric

triangular distribution de�ned on the interval [	vm(k)−σ, 	vm(k)+σ], where

	vm(k) is a parameter representing the mean, and 0 ≤ σ ≤ 	vm(k)

fvm(k)(ξ; 	vm(k), σ) =


ξ−	vm(k)+σ

σ2
, 	vm(k) − σ ≤ ξ ≤ 	vm(k)

	vm(k)+σ−ξ
σ2

, 	vm(k) < ξ ≤ 	vm(k) + σ

0, ξ < 	vm(k) − σ or ξ > 	vm(k) + σ.

(9)

The speci�cation of 	vm(k) is typically a deterministic speed-density re-

lationship, as those listed in Table 2. For instance, in the case studies

presented below, we have adopted

	vm(k) = vf − kγ, (10)

which is inspired by Older (1968), Navin and Wheeler (1969), Fruin (1971),

Tanaboriboon et al. (1986) and Lam et al. (1995), and

	vm(k) = vf exp

(
−(
k

θ
)γ
)
, (11)

inspired by Tregenza (1976). But any other relevant speci�cation can be

accommodated by the framework.

The probability density function of the speed for the entire population

is then de�ned as

fv(ξ|vm(k), αk, βk, λ) = fslow(ξ|vm(k), αk, βk)Pr(ξ ≤ vm(k))
+ ffast(ξ|vm(k), βk, λ)Pr(ξ ≥ vm(k)),

(12)

where Pr(ξ ≤ vm(k)) and Pr(ξ ≥ vm(k)) are the probabilities that we

are dealing with a slow, respectively fast, pedestrian. We adopt a simple

speci�cation for the parameters αk, βk. We assume that they depend on

the density k in the following way

αk(aα, bα) = aαk+ bα, (13)

and

βk(aβ, bβ) = aβk+ bβ. (14)
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The assumptions regarding the distribution of the mixture components

are based on the pattern exhibited by the data itself (Section 5). The

empirical distribution of the speed values with respect to density (Figure 4

and Figure 5) suggests the following models. We propose a linear model

for the distribution of the speed of slow pedestrians

fslow(ξ|k) =
βk − αk
vm(k)

ξ+ αk, (15)

where vm(k) ≥ 0 is the transition speed at the level of density k, that is the

speed threshold between being �slow� and �fast�, and αk ≥ 0 and βk ≥ 0
are parameters depending on k. They are such that fslow(0|k) = αk and

fslow(vm(k)|k) = βk. We propose an exponential model for the speed of fast

pedestrians

ffast(ξ|k) = exp(−λξ+ log(βk) + λvm(k)), (16)

where vm(k) and βk are de�ned as above, and λ ≥ 0 is a additional pa-

rameter, de�ning the rate of the exponential distribution. Note that, if

ξ = vm(k), the two values coincide, and are both equal to βk.

The parameters characterizing the distribution of each component are

illustrated in Figure 6.

Putting everything together, the probability density function of the

speed is

fv(ξ|k;αk(aα, bα), βk(aβ, bβ), λ, 	vm(k), σ) =∫∞
t=0

fv(ξ|t;αk(aα, bα), βk(aβ, bβ), λ)fvm(k)(t; 	vm(k), σ)dt, (17)

where fvm(k)(t; 	vm(k), σ) is de�ned by (9) and fv(ξ|t;αk(aα, bα), βk(aβ, bβ), λ)

is de�ned by (12).

The parameters aα, bα, aβ, bβ, λ, 	vm(k), and σ are parameters to be

estimated, for instance by maximum likelihood estimation. In the follow-

ing, the model is called PedMixFD, for Pedestrian Mixture Fundamental

Diagram.

7 Case study: Lausanne

We illustrate and validate now the model on the Lausanne dataset, intro-

duced in Section 3.1.
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The dataset used for estimation consists of 1,269,393 pairwise speed-

density observations corresponding to the peak hour of February 12, 13,

14, 15 and 18, 2013.

The descriptive statistics of the estimation dataset are presented in

Table 3. The dataset is categorized according to six levels of service (LOS)

proposed by Fruin (1971) for pedestrian facilities, labeled from A to F.

Table 3 shows that the largest part of the observations falls below the LOS

F. Actually, 99% of the observations are below 2.06 ped/m2.

Level Of Service Number of observations

A (k ≤ 0.31 ped/m2) 644546

B (k ∈ (0.31 - 0.43 ped/m2]) 174116

C (k ∈ (0.43 - 0.71 ped/m2]) 229808

D (k ∈ (0.71 - 1.11 ped/m2]) 133812

E (k ∈ (1.11 - 2.17 ped/m2]) 76725

F (k > 2.17 ped/m2) 10386

Table 3: Estimation data classi�ed according to LOS (Fruin, 1971) - Lau-

sanne case study

The estimation results for the model presented in the previous section

are shown in Table 4. The parameter 	vm(k) is speci�ed in the model (10)

by Older (1968), Navin and Wheeler (1969), Fruin (1971), Tanaboriboon

et al. (1986) and Lam et al. (1995). All estimates have the expected sign

and value, indicating the good model speci�cation. The results also show

the low standard errors of all parameters. Note that the panel nature of

the data (Baltagi, 2008) has been ignored here.

The positive sign of the parameter aα shows that αk, that is the likeli-

hood of low speeds, increases with density. Similarly, the positive sign of

the parameter aβ shows that βk, that is the likelihood of the mode of the

speed distribution, also increases with density.

The signs and the estimated values of the parameters vf and γ are

consistent with the ones reported in the literature (see Section 2) and with

the trend observed in the data.

Note that various speci�cations of the model have been investigated, but

not all of them are reported in this paper. For instance, we tried for 	vm the

speci�cation proposed by Weidmann (1993) (Table 2) but obtained a poorer

�t. Indeed, the Bayesian information criterion - BIC (Wasserman, 2000)
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Parameter Value Std err

aα 0.0393 7.57e−07

bα 0.00699 1.07e−06

aβ 0.00490 7.96e−07

bβ 0.142 1.75e−06

λ 3.53 1.12e−06

vf 1.29 2.40e−06

γ 0.0512 5.17e−07

σ 0.0383 3.77e−06

logL -783933.016

Number of parameters 8

Number of observations 1269393

Table 4: Estimation results - Lausanne case study

was 1690285.550, as opposed to 1567978.464 for PedMixFD.

7.1 Comparison with deterministic models

The performance of the proposed probabilistic model at the aggregate level

is compared with the deterministic models proposed in the literature (Ta-

ble 2). We have estimated the parameters of these models using linear

regression on our dataset.

For PedMixFD, the average speed is given by

	vPedMixFD(k) =

∫∞
0

ξfv(ξ|k;αk(aα, bα), βk(aβ, bβ), λ, 	vm(k), σ)dξ. (18)

In (18) fv(ξ|k;αk(aα, bα), βk(aβ, bβ), λ, 	vm(k), σ) refers to mixture distribu-

tion given by (17), with the parameters described in Table 4.

Figure 7 shows a comparison among four deterministic models, the ag-

gregate speed calculated from PedMixFD, and the observed values. The

analysis is performed for density levels ranging from 0 to 2.06 ped/m2, cor-

responding to 99% of the observed values. The goodness of �t is reported

in Table 5, where

MSE =
1

m

m∑
`=1

(	vmodel(k`) − 	vdata(k`))
2, (19)
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where m = 22 and k` = 2.06(` − 1)/(m − 1). The value 	vdata(k`) is the

average of the observed speeds corresponding to densities ranging from

(k`+k`−1)/2 and (k`+k`+1)/2. Although the PedMixFD has been calibrated

at the disaggregate level, it is interesting to observe that it achieves the best

�t at the aggregate level.

Model Weidmann (1993) Tregenza (1976) Rastogi et al. (2013) Linear PedMixFD

MSE 6.69e−03 1.82e−03 1.90e−03 1.87e−03 1.27e−03

Table 5: Goodness of Fit (MSE) - Lausanne case study

7.2 Kolmogorov-Smirnov validation

The validation is performed by comparing the distribution functions of the

estimated model, and the empirical distributions from the dataset. The

analysis is carried out at di�erent density levels. Figure 8 shows the prob-

ability density functions of the model (model pdf) and the data (empir-

ical histogram) at the same density level. The corresponding cumulative

density functions (model cdf and empirical cdf) are plotted in Figure 9.

Qualitatively, the match between the two is pretty satisfactory.

For the quantitative analysis, we use the Kolmogorov-Smirnov proba-

bility distance metric (Massey, 1951)

Dk = max
v

∣∣Fmodel(v|k) − Fdata(v|k)∣∣, (20)

where Fmodel(v|k) corresponds to the model cdf and Fdata(v|k) to the empir-

ical cdf. This metric represents the maximum value of the absolute vertical

di�erence between the two cumulative distribution functions. It is reported

in Figure 10a.

We calculate the p-value of the Kolmogorov-Smirnov statistic using sim-

ulation (Ross, 2013a, p. 257), with 50 simulation runs. The model (17) is

simulated using the rejection method (Ross, 2013b, Section 5.2) on draws

from a Rayleigh distribution. The results are shown in Figure 10b. They

suggest that there is no evidence in the data to reject PedMixFD at sig-

ni�cance level 0.05 for all levels of density except maybe for the one corre-

sponding to densities close to zero.
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7.3 Speci�cation test

In order to test the robustness of the proposed speci�cation, we have per-

formed the validation that consists in splitting the dataset into two subsets.

The model is re-estimated on one subset and the remaining data, unused

for estimation, is used for validation purposes. The procedure consisting

of the following steps is repeated 100 times:

1. A sample of 80% of pairwise speed-density observations is selected

using simple random selection.

2. The parameters of the model are estimated using the generated sam-

ple.

3. The Kolmogorov-Smirnov statistic Dk (20) is calculated to compare

the estimated model and the data on the remaining 20% of the dataset.

In Figure 11a, we compare the value of Dk calculated on the full dataset

(in dashed line) with the values calculated with the above mentioned pro-

cedure. The 100 values are summarized using a box plot at each level of

density. These results are satisfactory. The speci�cation is robust and no

over�tting is detected.

To be more precise, we also calculate the p-value for each value of Dk

calculated with the above mentioned procedure. For this purpose we use

simulation (Ross, 2013a, p. 252), with 100 simulation runs. The box plot

of the estimated p-values are shown in Figure 11b. The results do not

allow to reject the hypothesis that the data and the model follow the same

distribution, at a usual level of signi�cance.

8 Case study: Delft

In this section we illustrate and validate the model on the Delft dataset,

described in Section 3.2.

The dataset used for estimation consist of 119,156 pairwise speed-density

values observed upstream of the bottleneck. The data has been classi�ed

according to the LOS standard of Fruin (1971), showing that now the ma-

jority of the observations corresponds to the LOS C, D, E and F (Table 6).

Consequently 99% of the data is below the density value of 3.9 ped/m2.
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This is as expected, given the existence of �ow constraint (in the form of

a narrow bottleneck) that in this case causes congestion upstream of the

bottleneck.

Level Of Service Number of observations

A (k ≤ 0.31 ped/m2) 9288

B (k ∈ (0.31 - 0.43 ped/m2]) 6967

C (k ∈ (0.43 - 0.71 ped/m2]) 20497

D (k ∈ (0.71 - 1.11 ped/m2]) 21540

E (k ∈ (1.11 - 2.17 ped/m2]) 37114

F (k > 2.17 ped/m2) 23750

Table 6: Estimation data classi�ed according to LOS (Fruin, 1971) - Delft

case study

The parameters of the model (17) have been estimated, where 	vm(k)

is speci�ed by the model (11) by Tregenza (1976). The estimation results

are shown in Table 7. The sign and the magnitude of the parameters are

as expected. The results also indicate a high signi�cance of the estimated

values.

Parameter Value Std err

aα 0.164 1.47e−04

bα 0.244 1.96e−04

aβ 0.166 2.17e−04

bβ 0.965 1.62e−05

λ 6.89 1.13e−05

vf 1.87 1.20e−04

θ 1.13 2.93e−04

γ 0.545 8.62e−05

σ 0.0357 9.77e−05

logL -3768.931

Number of parameters 9

Number of observations 119156

Table 7: Estimation results - Delft case study

The positive sign of the parameter aα shows that αk, that is the likeli-

hood of low speeds, increases with density. Similarly, the positive sign of
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the parameter aβ shows that βk, that is the likelihood of the mode of the

speed distribution, also increases with density.

The signs and the estimated values of the parameters vf, θ and γ of

the model inspired by Tregenza (1976) are in accordance with the trend

observed in the data.

The value of the parameter λ is higher than the one for the Lausanne

case study, which is consistent with the reduced range of speed values in

the data. Finally, the value of the parameter σ indicates that variability of

the mode of the speed distribution is slightly lower than that of Lausanne

case study.

8.1 Comparison with deterministic models

The performance of the proposed model is compared with the deterministic

models proposed in the literature (Table 2), using the same procedure as

for the Lausanne case study. The models are compared in Figure 12, and

the goodness of �t measures are reported in Table 8. Again, PedMixFD

exhibits the best �t.

Model Weidmann (1993) Tregenza (1976) Rastogi et al. (2013) Linear PedMixFD

MSE 3.79e−02 1.93e−02 3.37e−02 4.56e−02 1.69e−02

Table 8: Goodness of Fit (MSE) - Delft case study

8.2 Kolmogorov-Smirnov validation

The agreement between the model predictions and the observations from

the estimation dataset is illustrated in Figure 13 and Figure 14. The

Kolmogorov-Smirnov distances (20) between the model cdf and the em-

pirical cdf are illustrated in the Figure 15a.

The agreement between the model predictions with data appears to

be less satisfactory for lower density levels, as we have fewer data with

low speed at low density levels. This is an artefact of the experimental

nature of the data (see discussion in Section 5). The quality of the �t for

higher density levels (which is of greater interest for applications anyway)

is satisfactory. Figure 15a shows that the smallest Kolmogorov-Smirnov

distances correspond to the density levels which are characterized by the

largest number of observations (Table 6).
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The p-values are estimated using the procedure described in Section 7.2

and shown in Figure 15b. Again, there is no evidence in the data to reject

PedMixFD at signi�cance level 0.05 for most of the density levels. The

p-values less than 0.05 are observed for lower density levels, up to 0.3

ped/m2, and for density levels greater than 3.5 ped/m2. In the former

case low p-values are caused by the experimental nature of the data (as

discussed above), while in the latter a low number of observations (0.02%

of the data) is insu�cient to reach any conclusion.

8.3 Speci�cation test

We test the robustness of the model speci�cation by performing the val-

idation using 80% of the data for estimation and the remaining 20% for

validation (see Section 7.3). The Kolmogorov-Smirnov statistics for dif-

ferent density levels from 100 simulation runs and corresponding p-values

are shown using box plot representation in Figure 16a and Figure 16b, re-

spectively. The above results validate the model also for the Delft case

study.

9 Conclusion and future work

In this paper a novel speed-density relationship for pedestrian tra�c is

proposed. Di�erent from the deterministic approaches in the literature, it

is a probabilistic model designed to account for the heterogeneity of speed

at a given density level, as observed in the data.

Various tests on two di�erent case studies validate the speci�cation

of the model. Moreover, the model is shown to outperform traditional

deterministic models at the aggregate level as well.

The presented work has both theoretical and practical implications. It

can be combined with a conservation principle in dynamic continuum and

discrete models Hughes, 2002; Hänseler et al., 2014), leading to probabilistic

conservation laws for the representation of the pedestrian dynamics. This

would allow the detailed analysis of the e�ects of heterogeneity on pedes-

trian �ows. The suggested model may be utilized as such by practitioners

for the evaluation and optimization of the level of service of pedestrian

facilities. Contrasted with existing approaches, it yields a more realistic

representation of the empirically observed phenomena.
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Nonetheless, some aspects require further investigation. First, the panel

nature of the data should be exploited. Second, the described framework

as such is insu�cient to explain the multi-directional nature of pedestrian

�ows. As further steps we will explore the possibility of addressing this

issue by adapting the existing de�nitions of pedestrian tra�c characteris-

tics through a stream-based approach and a data-driven spatio-temporal

discretization framework (Nikoli¢ and Bierlaire, 2014).

Finally, we plan to combine this data driven approach with a behavioral

approach, where the heterogeneity of speeds is explicitly explained, using

variables such as trip purpose, age, walking in group, walking with luggages,

etc.
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Figure 4: Speed distributions for di�erent density levels - Lausanne case

study
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Figure 5: Speed distributions for di�erent density levels - Delft case study
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Figure 6: Illustration of the model - one density level
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(h) k = 1.5 ped/m2
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Figure 9: Comparison between model predictions (cumulative density) and

empirical observations - Lausanne case study
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(a) Kolmogorov-Smirnov distance
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Figure 10: Kolmogorov-Smirnov validation - Lausanne case study
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Figure 11: Speci�cation test - Lausanne case study
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Figure 12: Comparison between deterministic models predictions and the

aggregated probabilistic model predictions - Delft case study
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(f) k = 2.6 ped/m2

(4,377 observations)
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Figure 13: Comparison between model predictions (probability density)

and empirical observations - Delft case study
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(i) k = 3.5 ped/m2

(737 observations)

Figure 14: Comparison between model predictions (cumulative density)

and empirical observations - Delft case study
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(a) Kolmogorov-Smirnov distance
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Figure 15: Kolmogorov-Smirnov validation - Delft case study
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Figure 16: Speci�cation test - Delft case study
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