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Abstract

Moving walkways are pedestrian dedicated hardware which generally decrease
pedestrian travel time. We propose the utilization of these devices to dynami-
cally control pedestrian flows in order to improve pedestrian dynamics. Three
variations of a control strategy which use moving walkways are proposed in the
context of a dynamic pedestrian management system. In this paper, we discuss
how a control strategy based upon either historical data, real-time data or pre-
dicted data can improve pedestrian dynamics. After analysing whether moving
walkways as a control strategy are beneficial for pedestrians, focus is given towards
the advantages of the predictive algorithm over the reactive (real-time) algorithm.
Next, we discuss which metrics are relevant for inclusion into the multi-objective
function of the optimization framework used by the predictive algorithm. The
simulation results show that the predictive algorithm is generally fairer across
different population groups and is better at preventing high congestion. Further-
more, the predictive algorithm can significantly decrease the travel time compared
to the reactive and reference scenarios. The results from the rolling horizon op-
timization emphasize the trade-off which must be made between travel time and
density. Finally, these results confirm the need for control strategies which are
tailored to pedestrian flow dynamics.

Keywords Dynamic pedestrian management, model predictive control, moving
walkways, pedestrian flow control.
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1 Introduction

Controlling and managing pedestrian flows is one approach for improving pedes-
trian dynamics and preventing hazardous congestion. Control strategies have been
applied for decades in road traffic but have only recently been considered for pedes-
trian traffic. Various combinations of hardware and algorithms ranging from static
offline measures all the way to simulation-based predictive management schemes
are used. The success of these methods relies upon calibration to the local con-
texts and exploiting the specific aspects of road traffic. Therefore, pedestrian
control strategies must also consider the specificities of walking dynamics. A suc-
cessful control strategy is not only some hardware installed in a pedestrian walk-
ing environment. These flow management schemes generally live inside a larger
framework: a dynamic pedestrian management system (DPMS). Such systems
are needed for implementations where operators must deal with data collection
or state estimation and prediction for example. An extensive discussion about
pedestrian management systems is presented in Molyneaux et al. (2019). The
authors concluded that transposing strategies from car traffic to pedestrian traffic
without addressing pedestrian traffic specificities leads to poor improvement of the
pedestrian dynamics. The development of strategies tailored to pedestrian traffic
is therefore required to observe substantial benefits.
Pedestrian traffic is challenging and complex since individuals are free to move in
any direction at any time. This freedom means that bidirectional flow occurs often.
Furthermore, complex interactions take place in junctions where pedestrians use
different sub-routes to reach their destination. Therefore, improving pedestrian
dynamics can be achieved by preventing, or reducing, bidirectional flow. Further
improvements can be expected if pedestrian density is kept low inside junctions
where pedestrians move in many different directions. By addressing these two el-
ements, a control strategy should have the potential to decrease pedestrian travel
time and improve walking speed.
In this paper, we propose the use of dynamically controlled moving walkways to
reduce congestion and decrease pedestrian travel time. One advantage of such
hardware is that pedestrians already use them in many different contexts. We
present different flavours of a control strategy which uses moving walkways to
improve the pedestrian dynamics. Three variations are proposed: one based upon
historical data, one reactive strategy, and one predictive strategy. These three
control algorithms are analysed and the effect of them upon pedestrian travel
time and density is discussed. We discuss three research questions. Firstly, we
investigate whether moving walkways can be used to improve pedestrian flows.
Secondly, we analyse the benefits of including short-term predictions into the con-
trol strategy, as opposed to schemes using only historical or real-time data. The
third and final hypothesis concerns the predictive scheme: we discuss whether
multi-objective optimization can be used inside pedestrian specific flow control
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schemes. The predictive algorithm relies upon an optimization framework to min-
imize a defined objective function by searching for the best speed profile of the
moving walkways in the short-term future. To achieve this, an objective function
relying on a combination of pedestrian centric metrics must be defined. The choice
of metrics included in the objective function is discussed, alongside their impact
on the pedestrian dynamics. This optimization procedure is computationally ex-
pensive, hence it’s added value must be evaluated.
The following section discusses the literature on dynamic control strategies for
pedestrians and the major contributions in road traffic control strategies. After
that, we present the three control algorithms and the required input data. Next,
we present the results from two case studies where we simulated the installation
of moving walkways. The three control algorithms are tested and their effects on
the pedestrian dynamics are discussed before concluding this article.

2 Literature review

The first element we discuss in the literature are the applications of moving walk-
ways linked with pedestrian flows. Then, we cover dynamic pedestrian control
strategies for pedestrian traffic in the literature. Following this, we cover ma-
jor contributions and elements in road traffic control strategies to summarize the
important paradigms which have been proposed in the literature.

Moving walkways Mechanical and geometric considerations for speed, acceler-
ation, capacity, etc. of moving walkways are provided in Scarinci et al. (2017).
The authors discuss the benefits of installing moving walkways to move pedes-
trians around at a city level. They propose accelerated moving walkways as a
transportation mode. An optimization framework which analyses the trade-off
between installation cost and benefit is used. Furthermore, many practical con-
siderations are discussed concerning the installation constraints.
Although moving walkways are common inside airports, few studies consider these
devices outside of their usual context as a transportation mode. Moving walkways
can be considered in the context of “Smart cities” to decarbonate individual trans-
port inside cities. Furthermore, a trend towards improving walkability of cities
means pedestrian demand might increase in the coming decades. (Fonseca et al.,
2020).

Pedestrian control strategies Managing pedestrian flows is important in many
different contexts. One area where pedestrians generally wish to move freely and
reach their destination as fast as possible is transportation hubs . Passenger flow
control is therefore important to achieve this goal (Shang et al., 2019). Pedestrian
flow through doors is analysed at a very small scale in Seriani and Fernandez
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(2015) where the authors simulated the movement of pedestrians in and out from
public transport vehicles. The authors focused on the static design of hardware like
handrails near the doors. In Wang et al. (2013), the authors show that simulation
tools can be used to prevent high congestion and hazardous situations. A feedback
control scheme based upon an aggregate pedestrian motion model is proposed
in Zhang and Jia (2021) where the authors control pedestrian flow to prevent
excessive congestion in corridors. The inflow into urban rail stations is controlled
in Jiang et al. (2018) by using buffer zones in front of the doors. In Xu et al.
(2016), the authors provide a general framework which can help operators decide
whether local passenger flow control should be applied. Nevertheless, no system-
wide short-term predictions are used to provide future state data. Passenger flow
control is considered at a train network level where the trade-off between train
usage and waiting passengers is explored (Liu et al., 2020a). Although control
strategies for pedestrian flows is getting more attention nowadays, most strategies
rely upon a reactive scheme and the added value of short-term predictions is yet
to be explored.
Pedestrian safety during large events is obviously critical. This question has also
been addressed with flow control measures. Pedestrian flow control is applied in
the Mecca (Saudi Arabia) during pilgrimage. A reactive policy is applied to reduce
inflow to prevent excessive congestion and hazardous situations. Again, no online
predictive control policy is applied (Abdelghany et al., 2016). The design of static
checkpoints for large events is explored in Aros-Vera et al. (2020). Pedestrian flow
is controlled in a reactive way in Zhang et al. (2016) where the authors use a
macroscopic model to simulate the movements of pedestrians. The assumptions
about homogeneity on the links are hard to satisfy in practice.
Although the analysis of pedestrian movements of boarding and alighting flows
around public transport vehicles and safety aspects during large events have been
studied, no predictive control strategy focusing on daily operations is available.
To the best of our knowledge, moving walkways have never been considered as a
control device for managing pedestrian flows in a predictive way.

Road traffic control strategies Without presenting all possible road traffic
control strategies, we will discuss the major paradigms which can be found in the
literature. Control strategies are adapted to the general context like freeways, ur-
ban networks, or route guidance for example (Papageorgiou et al., 2003). Maybe
the most common control strategy for freeways is ramp metering (Papageorgiou
et al., 1991). Today, many different flavours of the original control strategy are
available: reactive versions which exploit traffic flow measurements (Ben-Akiva
et al., 2003; Abuamer et al., 2016) or predictive versions which use short-term
predictions (Bellemans et al., 2006; Roncoli et al., 2016) are common in the liter-
ature.
The classical example of urban traffic control is signalized intersections. Two cat-
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egories of strategies exist: fixed-time strategies and traffic responsive strategies.
The first is calibrated offline based on historical data while the second adapts
the phases based upon traffic flow measurements. Similarly to ramp metering,
traffic responsive control strategies for lights can be reactive or predictive, and/or
isolated or coordinated (Papageorgiou et al., 2003). Recent work on signalized
intersections includes fuel consumption analysis and autonomous (or connected)
vehicle integration into the strategies (Zhou et al., 2020; Tang et al., 2018).
Through these few examples, we see that control strategies for road traffic are
firstly tailored to specific problems which occur in road traffic like intersections or
lane merging. Secondly, control strategies can be categorized into three groups:
fixed, reactive, and predictive. Fixed strategies are designed offline based upon
historical data. Reactive strategies adapt the control measures based upon real-
time traffic conditions. Predictive strategies exploit a model to gain insight into
the traffic conditions which are going to occur in the near future.

3 Moving walkways as a control strategy

In this paper, we discuss the feasibility of using moving walkways as a control
strategy. Moving walkways as control devices have the potential of influencing the
pedestrian flows since the speed and direction of these devices can change over
time. To the best of our knowledge, moving walkways (MW) have not yet been
used by a dynamic control strategy. We present and discuss the major elements
which are needed to design a control algorithm using these devices. We propose
three different flavours of the control algorithm: a fixed (or static), a reactive and
a predictive version. Although many implementation details must be considered
to use the control devices in practice, such considerations are beyond the scope
of this paper in which we analyse the benefits of using such devices on the pedes-
trian dynamics. Nevertheless, some assumptions must be made in order to design
control algorithms which are feasible in practice. We start by presenting and dis-
cussing these assumptions.
The walkable environment in which the moving walkways can be used as control
devices must be one where pedestrians wish to reduce their travel time and avoid
congestion. Train stations during the peak hours are a typical example. Pedes-
trians already use moving walkways in airports to travel long distances or inside
shopping malls to change floors for example. Therefore, an advantage of moving
walkways compared to other novel technologies is the user acceptance. Users will
not be exposed to a new technology, hence no learning phase is required. This
leads to the first assumption concerning compliance. We assume that the pedes-
trians respect the direction of the moving walkway. Secondly, we assume that
pedestrians walk while on the moving walkway.
The following assumptions concern the devices themselves. We assume that the
speed of a moving walkway must be selected from a discrete and predetermined
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set of speeds. Note that the speed may be signed, so that the walkway can be
operated in two directions. The speeds are considered discrete for safety and com-
fort reasons. Safety issues will arise if the speed of the MW changes continually.
Furthermore, a pedestrian who is standing on the MW will feel uncomfortable if
every few seconds the speed increases or decreases. If individuals don’t feel safe on
the devices, then user acceptance will be low and they will prefer to walk instead.
When a MW changes direction, a buffer time must be given to the pedestrians
to clear the device before it changes direction. This buffer time should be long
enough such that an individual who has just entered the MW can leave it before
the MW changes direction. Furthermore, during this buffer time, no pedestrians
should be allowed to enter the MW. Although the MW can change direction at
any time to move in the same direction as the larger pedestrian flow, the direction
should not change too often. The assumptions about the speed discretization and
buffer time will be formally defined in the following paragraphs.
At a tactical level, the installation of moving walkways adds another alternative
path pedestrians can choose from. Each individual must now choose from walking
or using the moving walkway to reach his next intermediate destination. There-
fore, two parallel flows of pedestrians between two locations can exist: one walking
and one using the MW.
The two assumptions regarding compliance raise challenging practical and safety
questions. User compliance towards the direction is generally respected in prac-
tice. On the other hand, the assumption where no pedestrians enter the moving
walkway during the clearing buffer time before a direction change is more delicate.
To prevent pedestrians from entering the MW, a clear means of information or
physical obstruction needs to be used. The use of a physical obstacle (such as a
gate) may raise safety issues, while the absence of such an obstacle may generate a
lack of compliance. These practical issues are not discussed further in this paper.
Before advancing to the input requirements of the control algorithm, we clarify
some terminology. A control strategy can be decomposed into three major ele-
ments:

Control devices: Hardware used to apply the control strategy, in this case mov-
ing walkways.

Control algorithm: Equation or function which defines the state of the control
devices based upon measured and simulated data.

Control configuration: Set of variables generated from the control algorithm
and applied using the control devices. In the present case, the speeds of the
moving walkways.

We define the following notation concerning the temporal and spatial representa-
tions. A specific moment in time (a snapshot) is denoted t, while a time interval
[tstart, tend] is denoted by τ. The walkable environment in which the pedestrians
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Figure 1: Schematic presentation of a moving walkway.

can move around is denoted L, while a specific sub-element (region or line) is
L ′ ⊂ L. The collection of moving walkways installed in the walkable environment
is W. Each moving walkway ω ∈ W has a static origin o and destination d. The
area near the origin of the MW is denoted φo and the area at the end is φd. The
speed of a given walkway ω during the time interval τ = [t, t + ∆ts], where ∆ts
is time interval length, is sω(τ). The speed of the MW cannot change during the
interval τ. It is positive if the direction of movement is going from φo to φd,
and negative if moving from φd to φo. The set of possible speeds is S, hence
sω(τ) ∈ S. The maximum speed of moving walkways is smax = 3m/s in practice
(Scarinci et al., 2017). An example of a MW installed in a corridor is shown in
Figure 1.

3.1 Control algorithm input

The control strategy, more specifically the different control algorithms, require in-
put data to generate the control configurations. The control strategy we propose
uses three different quantities: pedestrian flow, density and travel time.
The pedestrian flow k(L ′, τ) is the number of pedestrians who enter the area or
cross the line L ′ during time interval τ. For a given moving walkway ω, we define
two parallel flows (one per direction) as the pedestrian flows which are using ω or
that could use ω. Therefore, for each MW, we define kPω and kNω as the flows mov-
ing in the positive, respectively negative, direction of ω. Figure 1 presents both
parallel flows. All pedestrians crossing the grey dashed lines are those counted in
the “parallel flows”.
The pedestrian density inside area L ′ at a given time t is denoted by ρ(L ′, t). The
spatial context L ′ can be a corridor or junction linking corridors for example. The
density threshold above which we consider congestion takes place is ρc.
The travel time of individual n is denoted ttn. The travel time is defined as the
duration the pedestrian spent inside the spatial context L between when he enters
until when he leaves.
The different flavours of the control algorithms need different temporal contexts
of the quantities. The collection of quantities of interest (flow or density for ex-
ample) is denoted ∆. For any fundamental quantity of interest, we define the
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historical, real-time, and predicted counterparts. Historical versions are denoted
·H, real-time versions are denoted ·∗ while predicted values are denoted ·+. The
historical data is collected over the previous days, months or years. Real-time
data is collected using measurement devices in the very short-term past like the
previous few minutes or seconds. Predicted data covers the short-term future.
Since the predicted data is uncertain by nature, the predicted data is provided as
distributions of the quantities. This allows the control algorithm to exploit the
uncertainty of the forecast and potentially give more weight to predicted quanti-
ties with less variance.
In this paper, the empirical distributions are generated from R replications of the
short-term predictions accomplished using a simulator. We assume that the quan-
tities generated by the simulator are unbiased. Furthermore, we assume that the
variance in the quantities does not vary over the prediction horizon.
The different quantities of interest, for both the real-time and predicted time con-
texts, are provided by frameworks called dynamic pedestrian management systems
(DPMS). The systems use state estimation and state prediction to generate the
data. We assume that such a system is available to provide the data. A DPMS
is the pedestrian tailored counter part of road traffic DTMS (Molyneaux et al.,
2019). The details of the DPMS implementation are described in the case studies.

3.2 Control variables

For a collection of moving walkways installed in an infrastructure, the control
variables are the speeds of each moving walkway. For a time period T decomposed
into intervals of equal duration ∆ts, the control configuration is:

Cω(T) = {sω(τ)} ∀τ ∈ T, (1)

where sω(τ) is the speed of walkway ω over interval τ. The speed at the end
of interval τi = [ti, ti + ∆ts] can change to any value within S for the next in-
terval τi+1 = [ti + ∆ts, ti+1 + 2∆ts]. The speed transition phase (or accelera-
tion/deceleration phase) takes place at the beginning of τi+1. Therefore the new
speed is only applied after the transition time. The acceleration of moving walk-
ways is 0.25m/s2 (Scarinci et al., 2017). An example speed profile with the ac-
celeration phases is shown in Figure 2. The transition between the first interval
[0, 10] and the second interval [10, 20] lasts four seconds since the speed difference
is 1m/s and the acceleration is 0.25m/s2. The speed profile includes the accelera-
tion/deceleration phases such that the configuration is enforced at the end of each
interval.
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Time [s] Speed [m/s]

0-10 3.0
10-20 2.0
20-30 0.0
30-40 -2.0
40-50 -2.0
50-60 -1.0

(a) Control configuration

0 10 20 30 40 50 60

−3
−2
−1
0
1
2
3

Time [s]

Sp
ee
d
[m

/
s]

Speed profile

(b) Moving walkway speed profile example

Figure 2: Control configuration example for a moving walkway with the corre-
sponding speed profile.

4 Control algorithms

Maybe the most challenging aspect of designing a new control strategy is the
development and calibration of the control algorithms. The algorithm links the
fundamental data to the control configuration of the devices. With this paper, we
aim to investigate whether moving walkways are beneficial for pedestrians. Fur-
thermore, we discuss whether predictive control shows a significant improvement
over reactive control. To achieve this, we propose three variations of the control
algorithms. The first is a fixed (or static) approach, the second a reactive algo-
rithm and the third a predictive algorithm. These three control algorithm flavours
generate the control configuration based upon input data:

Cf = Ff
(
∆H

)
(2)

Cr = Fr (∆∗) (3)

Cp = Fp (∆∗, ∆+) (4)

where Cf, Cr and Cp are the fixed, reactive and predictive control configurations.
Ff, Fr and Fp are the fixed, reactive and predictive control algorithms. The fixed
algorithm exploits historical data. The reactive algorithm exploits real-time data
and the predictive algorithm exploits predicted data. The predictive algorithm
needs the real-time data to generate the predictive data. Figure 3 presents the
temporal notations for all three control algorithms. The algorithms which are
presented in the following sections exploit pedestrian flow and pedestrian density
to generate the control configurations.
All three algorithms share a common goal: they aim at moving pedestrians as fast
as possible to their destination. The total travel time of all pedestrians (system
optimum) is minimized, not the pedestrian specific travel times (user optimum).
This objective must be balanced with congestion since transporting many pedes-
trians into the same area of the infrastructure can lead to hazardous congestion.
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Therefore, a trade-off between minimizing travel time and minimizing congestion
must be addressed.

T T

d = 1 d = |H|

H

∆ts

T T

DTime

(a) Fixed control algorithm.

� � � �

t− t∗ t+

sω(t)

k(t)

ρ(t)

∆ts∆ts

Time

(b) Reactive control algo-
rithm.

� � � � ◦ ◦ ◦ ◦
t∗

sω(t)

k(t)

ρ(t)

∆tp

∆tu
∆ts

Time

(c) Predictive control algorithm.

Figure 3: Temporal contexts and notations for the three control algorithms.

4.1 Fixed control algorithm

A fixed control configuration is generated based upon the average observed flows
computed for short time intervals. The idea is to have the moving walkways carry-
ing pedestrians in the same direction as the maximum observed average pedestrian
flow in each time interval. The speed of the moving walkway is set to the fastest
value from S. For example, let’s consider the morning peak hour between 7:00 and
8:00 and one single moving walkway. We discretize this time period into 5-minute
intervals and compute, for each interval, the average over the historical data of
the pedestrian flow in each direction of the MW. Then, for each time interval, the
direction of the moving walkway is set to match the maximum average flow. This
example is formalized in the following paragraphs.
The input data consists of a historical data set H composed of data covering the
same time period T (the morning peak hour for example), indexed by d. The
control configuration, generated by the fixed control algorithm, will be used for
the set of days D. The time period under consideration T is divided into intervals
of length ∆ts. The temporal context for the fixed control algorithm is presented
in Figure 3a. The average observed parallel flows for each moving walkway is
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computed for each interval τ ∈ T :

kPω(τ) =
1

|H|
∑

d∈H
kH,Pω,d(τ), kNω(τ) =

1

|H|
∑

d∈H
kH,Nω,d (τ) ∀τ ∈ T,ω ∈ Ω (5)

where · represents the mean, kH,Pω,d(τ) is the observed pedestrian flow moving in the
positive direction of ω during interval τ of historical data d. The average parallel
flows for each time interval are kPω(τ) and kNω(τ) in the positive and negative direc-
tions. Algorithm 1 presents this fixed control algorithm. The “speed transitions”
insert acceleration and deceleration phases, when needed, to have a feasible speed
profile (as described in section 3.2).
Algorithm 1: Fixed control algorithm
Input:

time period of interest T

historical data: kH,Pω (T) and kH,Nω (T)

Control:

compute kPω(T) and kNω(T) using (5)

for τ ∈ T,ω ∈ Ω do

if kPω(τ) > kNω(τ) then
sω(τ) = +smax

else
sω(τ) = −smax

end

insert speed transitions
end

Output: fixed control configuration Cf

4.2 Reactive control algorithm

The second control scenario we propose is a reactive approach. We exploit pedes-
trian flow and density data collected inside the walkable space to update the
direction and speed of the moving walkways dynamically by defining Fr. This
control algorithm uses the data provided by the DPMS covering the recent passed
to first decide on the direction of the MW based upon pedestrian flow data, then
to set the speed according to density data. The direction is decided by considering
pedestrian inflow near the extremities of the moving walkway. The direction is set
such that pedestrians are carried away from the extremity into which the majority
of pedestrians are entering. Then, the speed is set using a proportional-integral
(PI) controller regulating density.
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The direction and speed of each MW are updated at regular intervals ∆ts. Con-
sidering the rapid changes in pedestrian dynamics which can occur, the update
interval should be short. This is specially true for the speed, while the direc-
tion could be updated less often. The time at which an update is computed (the
present time) is denoted t∗. The next update will occur at t+ = t∗ + ∆ts. The
previous update took place at t− = t∗ − ∆ts. Figure 3b summarizes the temporal
context. We recall that the MW speeds are considered constant over time inter-
vals, therefore we define the following notation: τ− is the interval [t−, t∗] and τ+

is the interval [t∗, t+], hence the MW speed during the previous interval is sω(τ−)
while the speed during the next interval is sω(τ+).
We propose the utilization of a rule based upon pedestrian flow. The direction of
the MW for the next interval is set using the following:

if sign (sω(τ−)) = +1→ sign (sω(τ+)) =

{
+1 if A · kφo(τ

−) < kφd
(τ−)

−1 otherwise
(6)

if sign (sω(τ−)) = −1→ sign (sω(τ+)) =

{
−1 if kφo(τ

−) < A · kφd
(τ−)

+1 otherwise
(7)

where sign(sω) indicates the direction of movement of ω, the parameter A reflects
how much the flows must change before the direction changes, kφo(τ

−) and kφd
(τ−)

are the inflows of pedestrians into areas φo and φd during τ−. This direction
update rule is applied only if a direction change is allowed to take place. To prevent
excessive direction changes, after a direction change has occurred, we prevent the
moving walkway from changing direction again for a given time. The duration
while the direction change is prohibited is denoted δdir. Assume a direction change
has taken place at t∗, then the next direction change cannot take place before
tdir = t

∗ + δdir.
The parameter A allows the operator to influence the balance between changing
direction to match the major flow and preventing excessive direction changes.
Changing direction as soon as the flow coming in the opposite direction to the
MW exceeds by 1% the flow in the same direction of the MW is likely to be
counterproductive. The parameter A represents by what fraction the flow coming
in the opposite direction must exceed the flow moving in the same direction before
changing direction.
Next, we define how the speed is updated at each interval. Similarly to many
traffic control methods (Baskar et al., 2011), we propose a speed update rule
using a PI controller. We regulate density by controlling the speed of the moving
walkway. The PI controller generates speeds which are continuous, hence the
speed is rounded to the nearest value found in the set of possible speeds S before
being enforced. Since we aim at preventing excessive congestion at either end of
the moving walkway, we provide the PI regulator with a set point: ρs. This is the
density the regulator targets. The error between the set point and measurement
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at time t, monitored in zone φ, is denoted eρφ(t) = ρs − ρ(φ, t). Similarly to
Tympakianaki et al. (2014), the PI regulator equation linking the speed of the
moving walkway ω to the density at the downstream exit is:

sω(τ
+) =

⌊
sω(τ

−) − eρφ(t
∗) [Kp + KI] + e

ρ
φ(t

−)KP
⌉S (8)

where b·eS represents to operation of rounding to the nearest value in S, KP and
KI are respectively the proportional and integral gains, eρφ(t

∗) = ρs − ρφ(t
∗) and

eρφ(t
−) = ρs − ρφ(t

−) are the density errors measured at t∗ and t−. The regulator
tries to drive the errors to 0. The density measurements are taken from the down-
stream exit. If the MW is moving in the positive direction, then measurements in
φ = φd are used, otherwise, if the MW is moving in the negative direction, then
measurements are taken in φ = φo. The complete control algorithm is presented
in Algorithm 2.
Algorithm 2: Reactive control algorithm.
Input:

parameters: A, δdir, KP, KI

flow and density data: ∆∗

Control:

for τ+ = [t∗, t∗ + ∆ts] do

for ω ∈ Ω do

if t∗ > tdir then
update direction using (6) and (7)

update tdir = t∗ + δdir
end

update sω(τ+) using (8)

end

insert speed transitions
end

Output: updated speed and direction for all MW

4.3 Predictive control algorithm

The final control algorithm we propose exploits short-term predictions of the
pedestrian dynamics. Therefore, we define Fp which exploits ∆∗ and ∆+ to gener-
ate the control configuration. The rolling horizon paradigm allows the specifica-
tion of a control configuration for the short-term future by exploiting predictions
of the demand and quantities of interest. The predictions are accomplished using
a pedestrian simulator. The current state data ∆∗ is collected thanks to mea-
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surement devices and completed using state estimation. Then, state prediction
generates the data for the near future ∆+. The duration of the prediction hori-
zon is denoted by ∆tp. The prediction horizon T+ = [t∗, t∗ + ∆tp] is discretized
into intervals of length ∆ts. The temporal context can be found in Figure 3c.
The speed of each MW for each interval in the prediction horizon is the control
configuration. The specification of the control configuration is accomplished by
minimizing an objective function computed from predictions of the quantities of
interest ∆+ by using an optimization algorithm. The key assumption under which
the optimization problem is relevant is that the quantities of interest (travel time,
density, flow) depend on the speed and direction of the moving walkways. The op-
timal control configuration is applied until it gets updated. The predicted control
configurations are updated at regular intervals ∆tu. This procedure is summarized
in Algorithm 3.
The decision variables of the optimization problem are the control configurations
of each moving walkway. We recall that the speeds are discretised in time and
magnitude. The decision variables are therefore the collection of all speeds of all
moving walkways:

s = {sω(τ)} ∀τ ∈ T+,ω ∈ W, (9)

with sω(τ) ∈ S since the speeds are discrete. The optimal control configuration is
denoted sopt. Two versions of the predictive algorithm are proposed which differ
by using different optimization algorithms. The first is a single objective variation
and the second is a multi-objective variation.
Algorithm 3: Predictive control algorithm.
Input:

flow, density and travel time data: ∆∗ and ∆+

optimization algorithm: O
Control:

for T+ = [t∗, t∗ + ∆tp] do
find optimal configuration sopt using O

end

apply sopt until update at tu = t∗ + ∆tu

Output: optimal control configuration over T+

4.3.1 Single objective predictive algorithm

The objective function is computed from the predicted state data ∆+. We consider
travel time as the objective to minimize. The mean travel time of all pedestrians
inside the simulation environment is used to take travel time into consideration:

χT
+

(s) =
1

|N|

∑

n∈N
ttn(s) (10)
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where ttn(s) is the travel time of pedestrian n which depends on the control
configuration s and N the collection of pedestrians inside the simulation. Since
the short-term predictions rely on a pedestrian simulation which is stochastic,
we perform R replications of the short-term prediction at each evaluation of the
objective function to build distributions of the indicator. We then compute the
mean value from these distributions to evaluate the objective function:

χT+(s) =
1

|R|

∑

r∈R
χT

+

r (s). (11)

The optimization problem which the predictive control algorithm must solve at
each iteration of the rolling horizon scheme can therefore be written as:

sopt = argmin
s

χT+(s) (12)

s.t. s ∈ S

The predictive control algorithm solves the optimization problem (12) each time
the configuration is updated. Considering the discrete nature of the decision vari-
ables and the simulation-based objective function, we propose the utilization of
the adaptive large neighbourhood search algorithm for solving (12). This algo-
rithm is flexible since it can handle single and multi-objective problems (Ropke
and Pisinger, 2006).

Adaptive large neighbourhood search Adaptive large neighbourhood search
(ALNS) is meta-heuristic optimization algorithm which uses a collection of heuris-
tics (operators) to generate new solutions from an existing one. The original al-
gorithm is adapted to include the acceptance criteria from simulated annealing
(Gendreau et al., 2010). This reduces the risk that the algorithm gets trapped in
local minima. Algorithm 4 shows the complete algorithm.

Operators A collection of operators O is used to generate new solutions from
the current solution. They have been developed specifically for the purpose of
optimizing the control configuration of moving walkways. One operator o ∈ O
is selected at each iteration. This operator is selected using the adaptive weights
method proposed in Ropke and Pisinger (2006). At iteration i, the current solution
xi is transformed using operator o to generate the next solution: xi+1 = o(xi). The
collection of operators is presented below. The operators are described assuming
only one MW is available for the sake of clarity. Each operator has a parameter,
denoted α, which controls the distance between xi and xi+1.

Increase speed A randomly sampled fraction α ∈ [0.2, 0.8] of the decision vari-
ables are increased. The fraction of decision variables to change is equal
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Algorithm 4: Single objective ALNS using the simulated annealing se-
lection criteria.
Input:
feasible solution: x
operator set: Θ
Initialization:
operator weights: g
iteration counter: i = 0
maximum number iterations: n
random number generator: r
temperature: T
best solution: xb = x
current solution: xi = x
Iterations:
while i < n do

select operator o ∈ Θ using g
xi+1 = o(xi)

if c(xi+1) < c(xb) then
xb = xi+1

else if exp(c(xi+1)−c(xb))
T

> r then
xb = xi+1

else
reject xi+1

end
update g
decrease T
i = i+ 1

end
Output: best solution xb
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to α. Then, the speed is increased to the next discrete value. For ex-
ample, for xi = [2, 2, 1, 0,−1,−2] and a fraction to change α = 0.5, then
xi+1 = [3, 3, 1, 0, 0,−2].

Decrease speed Analogous to the previous operator, except that the speeds are
decreased to the next discrete value. For example, for xi = [2, 2, 1, 0,−1,−2]

and a fraction to change α = 0.5, then xi+1 = [1, 1, 1, 0,−1,−3].

Accelerate A fraction α ∈ [0.2, 0.8] of the speeds is selected and their amplitude
is increased. The moving walkways are moving pedestrians faster after this
operator. For example, for xi = [2, 2, 1, 0,−1,−2] and the fraction to change
α = 0.5, the next solution becomes xi+1 = [3, 3, 1, 0,−2,−2].

Slow down Analogous to the previous operator, this operator slows down a frac-
tion of the control configuration. For example, for xi = [2, 2, 1, 0,−1,−2]

and the fraction to change α = 0.5, the next solution becomes xi+1 =

[1, 1, 1, 0, 0,−2].

Direction matches flow Each MW is selected with probability α = 0.5. For
each moving walkway which has been selected, the direction is set to be the
same as the largest predicted parallel flow of that MW. The magnitude of the
moving walkway speed is set to fastest value. This operator is combined with
the “Decrease speed” and “Increase speed” operators to induce variability in
the solution.

Change direction A randomly selected fraction α = [0.2, 0.8] of the control
configuration changes direction, but keeps the speed amplitude. For ex-
ample, for xi = [2, 2, 1, 0,−1,−2] and a fraction to change α = 0.5, then
xi+1 = [−2,−2, 1, 0, 1,−2].

Density comparison The direction of the moving walkway is set such that it
moves pedestrians from high density to low density. This way it tends to
reduce congestion in the more congested areas of the infrastructure. Each
moving walkway is selected with a probability α = 0.5.

Random speed Each MW is selected with a probability α = 0.5. For each se-
lected MW, set a randomly selected constant speed for all time intervals.
After that, the “Decrease speed” and “Increase speed” operators are applied
to induce variability in the solution.

Resample best solution This operator will add replications to the existing best
solution in order to increase confidence in the computed indicators.

Both the “accelerate” and “increase speed” operators help the ALNS algorithm
in the solution space exploration. The “accelerate” operator makes MW move
faster, hence positive speeds are more positive, while negative speeds are more
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negative. On the other hand, the “Increase speed” operator moves speeds closer
to the positive upper bound. The ”Accelerate“ operator is useful for exploring the
high speed solutions, while the “Increase speed” helps explore the intermediate
speed solutions. When moving walkway operators must be selected, the selection
probability is fixed to 50% (α = 0.5). This choice is made to guarantee that the
operator has a reasonable probability of changing the control configuration without
entirely changing the configuration. With a low MW selection probability, the
operator would often return the same control configuration, and for a high MW
selection probability, the operator would return a completely different control
configuration.

4.3.2 Multi-objective predictive algorithm

The single objective predictive control algorithm considers only travel time as an
objective. Monitoring only travel time can lead to unbalanced dynamics inside
the infrastructure. For example, one corridor intersection could present very high
congestion, hence acting as a barrier preventing some pedestrians from moving,
while giving the other users ample space to reach their destinations. To prevent
such unfair, and possibly dangerous situations, we propose a second variant of the
predictive control algorithm which uses a multi-objective optimization algorithm
(Alg. 5). We define two new objectives and keep travel time as well (eq. 10).
The first is average pedestrian congestion inside a collection of regions Φ within
the walkable environment. Congestion is incorporated by integrating over the
prediction horizon T+, for a given area φ ∈ Φ and draw r, density which exceeds
the congestion threshold:

ρT
+

φ,r =

∫ T+
max(0, ρ(φ, t)r − ρc)dt. (13)

The total congestion in all zones is the sum of the individual congestion in each
zone:

ρT
+

Φ,r =
∑

φ∈Φ
ρT

+

φ,r. (14)

Finally, the average congestion in each zone for draw r is:

ρT
+

Φ,r =
1

|Φ|
ρT

+

Φ,r (15)

We compute the mean across all draws to reduce the distribution to a scalar:

ρT
+

Φ (s) =
1

|R|

∑

r∈R
ρT

+

Φ,r (16)

Equation (16) is the second metric monitored. The third metric we include in
the multi-objective optimization algorithm is a measure of congestion variability
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across zones. We wish to measure the gap between the average congestion and
the largest congestion observed in the areas Φ. We achieve this by computing the
difference between the average congestion and the largest congestion:

ρT
+

∆ (s) =
1

|R|

∑

r

max
φ∈Φ

ρT
+

φ,r − ρ
T+

Φ,r. (17)

As for the average congestion in each zone, we compute the mean value across the
different simulation draws. For the sake of notational simplicity, the explicit de-
pendence on the control configuration s has been omitted in places. Nevertheless,
the three indicators naturally depend on s.
Including three different objectives in the optimization problem requires adapta-
tions to the minimization algorithm. Instead of using a linear combination of these
three indicators which require the definition of weights, we propose an adaption
of the ALNS algorithm which exploits the concept of a Pareto frontier. This ap-
proach not only circumvents the need for weights which are challenging to define,
but also broadens the search since a collection of solutions are maintained. In-
stead of having one single solution to use for generating the next candidate, the
algorithm now has a collection of solutions to use for generating candidates. From
this collection of solutions, one must be selected and implemented during the next
interval ∆tu. We suggest the selection of the control configuration which produced
to lowest travel time measure. This choice emphasise travel time over congestion.
The problem which is solved for the multi-objective predictive control algorithm
is the following:

sopt = argmin
s

χτ+(s), ρT+Φ (s), ρT+∆ (s) (18)

s.t. s ∈ S

The operators used for this multi-objective ALNS are the same as those used for
the single objective algorithm. Nevertheless, one new element is introduced: the
neighbourhood size α ∈ [0, 1] is controlled by the algorithm, and not drawn ran-
domly. The values of α are selected from a predefined list A, sorted in increasing
value. The neighbourhood size α is linked to the fate of the current solution. Each
time a solution is added to the Pareto frontier, the value of α is set to the first
value in A. Then, for each iteration, α is set to the next value from A, hence
α will increase at each iteration until a new solution is inserted into the Pareto
frontier. This procedure gradually increases the distance between the reference
solution xc and the generated solution xi+1.
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Algorithm 5: Multi-objective ALNS
Input:
feasible solution: x
operator set: Θ
Initialization:
operator weights: g
iteration counter: i = 0
maximum number iterations: n
reference solution: xc = x
pareto set: S = {}

dominated set: D = {}

Iterations:
while i < n do

select operator o and neighbourhood size α
update reference solution xc

generate new solution xi+1 = o(xc, α)
evaluate c(xi+1)
if xi+1 ∈ S then

solutions dominated by xi+1 : d
S = S ∪ {xi+1}

S = S \ d

D = D ∪ d
else
D = D ∪ {xi+1}

end
update g
i = i+ 1

end
Output: pareto optimal set S

In this section, we have proposed three variations of the control algorithm. The
fixed algorithm exploits only historical data, the reactive algorithm using real-time
data while the predictive algorithm which uses short-term predictions. The data
used by the control algorithms is provided by a DPMS. The implementation detail
and modelling assumptions made to build the simulation environment in which
these algorithms are tested are presented in the beginning of the following section
which presents the first case study.

5 Single corridor infrastructure

The three control algorithms we described in the previous section are tested in a
simulation environment. By doing so, we can evaluate whether moving walkways
are promising devices for controlling pedestrian flows and whether the predictive
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control algorithms are better than the reactive algorithm. The first case study is
a subset of a train station with one single corridor. The second setup is a more
complex infrastructure with two corridors. After describing the infrastructure con-
figuration of the first case study, we present the modelling decisions and DPMS
implementation details.
The first case study we present is a subset of the train station in Lausanne, Switzer-
land. This is the same physical walkable space used in Molyneaux et al. (2019).
A pedestrian tracking system was used in 2013 in the station to collect empiri-
cal data. This data set is used as the demand scenario for the simulations. We
simulated the installation of moving walkways along the most busy pedestrian
underpass of the station (Figure 4).
The three control algorithms described in section 4 are tested and their impacts
are analysed with regard to pedestrian travel time and density. Four different sets
of simulations have been performed. The first is the reference scenario without
any moving walkway installed. This setup is used as the reference scenario for
measuring the impact of the different moving walkway configurations. The second
scenario is the use of moving walkways with a fixed control algorithm built upon
historical data. The third scenario uses the reactive control algorithm. The fourth
and final scenario uses the predictive control algorithm. These four scenarios are
referred to as, in order, “no-mw”, “fixed”, “reactive” and “predictive”. For all sce-
narios, 100 replications of the simulations are performed to build a distribution
of the performance indicators. The time horizon is set to five minutes. A short
time period (five minutes) was chosen such that the predictive control strategy
can optimize the control configuration over the whole interval in one horizon.
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Figure 4: Single corridor infrastructure representation. MW-1 is on the left and
MW-2 is on the left.

DPMS specification The components needed to implement a DPMS are de-
tailed in Molyneaux et al. (2019), where definitions of spatial and temporal rep-
resentations, supply, demand, fundamental quantities and data, control, state es-
timation and prediction and finally control configuration generation are provided.
The first element we discuss is the spatial representation.
We use a bi-level approach for modelling the spatial environment, similarly to
Molyneaux et al. (2019). The walkable floor space is modelled as a continuous
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space in which pedestrians avoid obstacles and other pedestrians. This operational
model is taken from the NOMAD package (Campanella, 2016). The tactical model
relies on a graph which allows pedestrians to navigate the walkable space. We as-
sume pedestrians have full knowledge of the congestion inside the infrastructure
(Hoogendoorn and Bovy, 2004). This is modelled by updating each link travel
time every time a pedestrian leaves the link. The tactical route choice decisions
are modelled using the shortest path. All elements composing the infrastructure
L are static except for the collection of moving walkways W.
We model pedestrians individually, as in Molyneaux et al. (2019). The demand
is modelled such that each pedestrian n ∈ N has the following attributes: desired
walking speed sampled from a normal distribution (µ = 1.34m/s, truncated at
3.0m/s), origin and destination zones and generation time. Pedestrians are gener-
ated at a disaggregate level according to either empirical observations or a Poisson
process.
The computation of density used in this case study is based upon Voronoi tessel-
lations. This method generates pedestrian-specific density values inside a defined
area L ′. Therefore, Voronoi tessellations generate a density distribution inside a
given area. We compute the upper quartile (75% percentile) of this distribution
to obtain a scalar value for density inside L ′ at time t:

ρ(L ′, t) = Q3 [ρn(t) ∀n ∈ NL ′(t)] , (19)

where Q3 represents the upper quartile, ρn the density associated with individ-
ual n and NL ′(t) the pedestrians inside L ′ at time t. The utilization of Voronoi
tessellations decreases the dependency on the arbitrary area in which density is
computed (Nikolić et al., 2016). Since the individual density values show high
variability over time, we use the upper quartile, instead of the maximum, to re-
duce the density distribution to a scalar. This reduces sudden jumps in the density
computation over time. The density threshold above which we consider conges-
tion takes place is set to ρc = 1.08pax/m2. This threshold corresponds to the
level-of-service E defined in Fruin (1971).
For the reactive control algorithm, the calibration of the controller gains is ac-
complished empirically according to the “trial-and-error” procedure described in
Mulholland (2016). A sequence of steps to follow for estimating the regulator gains
is provided. They rely on observing the process output after applying changes in
the controller gains. The set point for PI controller is set to ρs = 1.08pax/m2.
The predictive control algorithm uses the single-objective optimization algorithm.
The short-term predictions are run with 150 iterations of the single-objective
ALNS algorithm and 12 replications of each control configuration evaluation. In
this paper, the short-term predictions are performed using the same simulator as
the main simulations. This means the predictive algorithm has access to “perfect”
information. Considering we design and test the moving walkways as a control
strategy in a simulation environment, state estimation is not needed. The simu-
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lator generates the required data.
Performing short-term predictions over the whole simulation period would not
be feasible in practice. Nevertheless, this provides valuable insight regarding the
capacity of the algorithm to improve the pedestrian dynamics. A rolling horizon
scheme will likely not achieve the same performance, hence this solution can be
considered an upper bound to the improvements we can expect from the predic-
tive control algorithm. The utilization of the same simulator for the short-term
predictions as for the main simulator is done for practical reasons. Firstly, it re-
moves the need to implement a second pedestrian simulator. Secondly, there is
no need for temporal synchronization and spatial aggregation/disaggregation be-
tween different models. Furthermore, we assume that the data collection process
is perfect and complete, hence state estimation is not required. In practice, such
assumptions cannot be made for multiple reasons. The main simulator replaces
real-life dynamics, hence one single pedestrian simulator used for the short-term
predictions is sufficient. Nevertheless, measurement devices are needed and gener-
ate data with errors and biases. Furthermore, collecting data covering the whole
infrastructure can be costly, hence measurement devices cover only certain areas of
the walkable space. With partial data coverage state estimation is needed, which
induces uncertainty into the data. Therefore, even though the usage of perfect
prediction information simplifies the problem at hand, investigating the different
algorithms in such a simulation environment will produce valuable information
regarding their effect on the pedestrian dynamics. The robustness of the control
algorithms to measurement errors and the state estimation process is left for fu-
ture work.
Next, we present the results from the different simulation scenarios and analyse
the impact of the different control strategies on the pedestrian dynamics. We start
by discussing aggregate indicators.

Aggregate indicators

We start by discussing the effect of the different control strategies on aggregate
indicators. Figure 5 shows boxplots for different aggregate indicators: mean travel
time (eq. 11) and congestion, based on eq. (16). One small alteration has been
made to eq (16). Instead of considering the mean congestion per zone, we consider
the total congestion in all zones. The mean travel time box plots (Figure 5a) show
the advantage of control algorithms which dynamically update the configuration
based on the measured KPI. The mean travel time decreases by approximately
9% when such control strategies are used. Secondly, the “fixed” control strategy
is poor at decreasing travel time compared to the “no-mw” scenario. The density
box plots (Figure 5b) show that the congestion experienced by pedestrians in
the corridor junctions is lower for dynamically controlled moving walkways. We
expected the “reactive” and “predictive” algorithms to improve travel time and
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Figure 5: Box plots of aggregate performance indicators for the different scenarios.

density compared to the “fixed” algorithm since they adapt to the demand (unlike
the “fixed” algorithm). Congestion is measured in each corridor intersection and
at both extremities of each moving walkway since these control devices tend to
attract pedestrians at their ends and create congestion. The difference between the
“reactive” and “predictive” strategies is negligible in terms of both travel time and
density. Since the moving walkways concentrate congestion in the intersections,
comparing the congestion in the intersections between the “no-amw” algorithm
and the control algorithms is not meaningful.

OD specific travel times

As shown previously, the dynamic control algorithms successfully improve travel
time but no difference between the “reactive” and “predictive” flavours has been ob-
served. Therefore, we discuss the impact of theses strategies at an origin/destination
level. Figure 6 presents the change in relative travel time for all origin and destina-
tion pairs. The Welsch T-Test (unequal variance and unequal sample size) is used
to test the null hypothesis that the mean travel times per origin/destination are
equal. The test is performed between the reference scenario and a given control
algorithm. The OD pairs are sorted based on the category of trip they represent
(Figure 6d). The different categories are based on the usage of moving walkways
and the length of the “walking legs”. Group A represents passengers changing
platform but don’t have any MW along their path, for example walking from zone
5 to zone 7 (Figure 4). Group B includes trips where one MW can be used and no
walking legs are required (zone 5 to 9 for example). Group C covers trips with one
MW and a walking leg (zone 1 to 9). Category D covers all trips with two MW
on their path. Finally, E covers the other OD trips (zone 11 to 14 for example).
Figure 6a shows, for each OD pair, the relative change in travel time between the
reference scenario and the fixed control algorithm. Each dot is one OD pair. The
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type of dot depends on the confidence one can give to its value. Black circles
mean that at least five pedestrians have used it per replication and that the value
is statistically significantly different from 0 (equal mean hypothesis). Grey circles
indicate that at least five people have used the OD, but the T-Test does not reject
the null hypothesis. Black crosses are OD pairs where less than five people have
used this OD pair (on average), and the null hypothesis is rejected. Finally, grey
crosses indicate that less than five people have used the OD pair and the null
hypothesis cannot be rejected. Figures 6b and 6c show the results for the reactive
and predictive control algorithms.
The “fixed” control algorithm decreases but also increases travel times for many
OD pairs. This is expected as the direction and speed of the walkways does not
change based on the occurring pedestrian dynamics. Therefore, the walkways will
not slow down if downstream congestion occurs, neither will they change direction
if the majority of pedestrians are moving in the other direction. OD pairs which
use one moving walkway sometimes benefit and are sometimes penalized by this
control algorithm (groups B and C). Most of the OD pairs from groups B and
C which are penalized by the walkways are those involving zones 7 and 8. The
explanation is found by considering the position of the left moving walkway. Since
it’s installed in the middle of the corridor, two narrow corridors are created either
side of it. This separation reduces the space available for the pedestrians walking
to/from zones 7 and 8. This situation is therefore more prone to congestion under
high demand. OD pairs which allow the usage of both moving walkways generally
benefit from the installation of moving walkways on the other hand.
The analysis of Figure 6b reveals the advantage of dynamically controlled moving
walkways: fewer OD pairs suffer from an increased travel time and the amplitude
of these negatively affected ODs is small. The pedestrians who suffer from the
moving walkways are found in the same group as those suffering from the “fixed”
control algorithm. Furthermore, they are also those entering or exiting the simu-
lation through zones 7 and 8. Finally, the overall changes in travel time are more
compact compared to the “fixed” algorithm, hence the change in travel time is
more consistent across OD pairs.
The predictive control algorithm further improves the overall travel times per OD.
The number of OD pairs which suffer from this control algorithm are further re-
duced compared to the reactive algorithm (sub-figure 6c). The pedestrians which
are negatively (statistically) significantly impacted are those moving from zone 8
to zones 13 and 14. The explanation provided before regarding the width of the
available corridor explains this increase. Pedestrians using two moving walkways
(group D) clearly benefit from the strategy, like with the reactive algorithm. The
second major difference between the predictive and reactive algorithms lies in the
consistency across OD pairs. The reductions in travel times are slightly smaller
than those with the reactive algorithm, but few OD pairs suffer from an increased
travel time. Hence the predictive algorithm is a scenario which can be considered
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fairer between pedestrians.
Finally, we should mention that pedestrians who don’t use any moving walkway
(group E) are not significantly impacted by the algorithm choice. The majority
of the change in travel times are not statistically significantly different from the
reference scenario.
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p-value<0.05, n > 5

p-value>0.05, n > 5

p-value<0.05, n < 5

p-value>0.05, n < 5

Label Description origin/destination IDs
A Neighbouring platform without moving walkway 5-6 ↔ 7-8 & 7-8 ↔ 9-10
B Single moving walkway without walking leg 5-6 ↔ 9-10 & 9-10 ↔ 11-14
C Single moving walkway and walking leg 1-4 ↔ 9-10 & 7-8 ↔ 11-14
D Two moving walkways 1-6 ↔ 11-14
E Other

(d) Origin-destination categorisation

Figure 6: Relative travel time comparison between the three moving walkway
control algorithms and the reference scenario without moving walkways.

Average moving walkway speeds and pedestrian density

Understanding and explaining the different impacts of the reactive and predictive
control algorithms requires in-depth analysis of the moving walkway speed profiles
and density measurements. Figure 7 presents the average speed profile of the
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three control scenarios. The dotted line represents the speed profile for the “fixed”
algorithm computed from historical data, hence it is the same for all replications.
Two bands, one for the reactive algorithm and one for the predictive algorithm,
represent the interquartile range of the MW speed based on the 100 replications
of the simulation scenario. The band with solid lines concerns the predictive
algorithm, while the band with the dashed line represents the MW speeds for the
reactive scenario.
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Figure 7: Moving walkway average speed profile for the three different control
algorithm scenarios.

The first observation we can make concerns the consistency of the “reactive” speed
profile over the first 60 seconds of the simulation for MW-2 and over the first 100
seconds for MW-1. This is the case as the density measured inside the junctions is
low for those time periods. When considering the density profiles from Figure 8,
we see that little congestion occurs before 7:41, this for all zones. Therefore, the
“reactive” moving walkways are always at maximum speed until congestion builds
up. This changes as soon as congestion appears in the junctions. The “reactive”
MW-2 slows down from 7:41 since congestion builds up in “junction 9-10”.
On the other hand, the large variance in moving walkway configuration for the
“predictive” version of MW-1 should be explained. We see that for the first minute
of the simulation period, no congestion occurs at either end of this moving walkway
(8b and 8c). Secondly, we also see that the pedestrian flows parallel to MW-1 are
low and approximately equal. The combination of these two observations indicate
that the predictive algorithm can choose either direction at high speeds as an
optimal solution, which explains the large variance in speed profiles.
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Later in the simulation, from 7:42, for both dynamic algorithms, MW-1 tends
to operate close to the maximum speed moving pedestrians from junction 9-10
towards junction 5-6 (i.e. backwards, hence the negative speed). This direction
is consistent with the pedestrian flows parallel to MW-1 shown in Figure 9. The
flow moving in the negative direction of MW-1 is larger over all the time period of
interest than the flow moving in the positive direction. Furthermore, the density
in junction 9-10 is larger than that in junction 5-6 over all the time period, hence
confirming that moving pedestrians away from junction 9-10 makes sense.
The direction of MW-2 over the first 150 seconds of the simulation can be explained
using the flows from Figure 9 as well. The flow moving in the negative direction
of MW-2 is larger than the flow moving in the positive direction. Nevertheless,
the amplitude of the speed of the “reactive” MW-2 is significantly lower than that
of the “predictive” MW-2. The density measured in junction 9-10 (sub-figure 8b)
explains the decreased speed of the “reactive” MW-2. Since the density is above
the target value of 1.08pax/m2, the reactive algorithm will reduce the speed of
the moving walkway to prevent downstream congestion.
The difference in pedestrian density during high demand (around 7:42) is different
for both dynamic algorithms. The density in junction 9-10 is lower for the reactive
algorithm compared to the predictive algorithm (8a). The opposite is observed
in junction 11-12-13-14. There, the density is lower for the predictive algorithm
(8b). The density levels are similar in both junctions for the predictive algorithm.
This conclusion is similar to the previous conclusion about the travel times. The
predictive control algorithm is fairer across users.
An unexpected peak in pedestrian density occurs, in junction 11-12-13-14, for
the “predictive” algorithm around 7:44. The pedestrian density reaches a plateau
higher with the predictive algorithm than it does for the other control algorithms.
This small congested period occurs at the same time that MW-2 changes direction
(Figure 7b) at 7:44. During a change in direction, the moving walkway must close
for a short period of time. Furthermore, we see a small peak in the demand curve
corresponding to the negative direction of MW-2. The congestion is therefore
induced by this peak in demand and the closed moving walkways. The “fixed” and
“reactive” algorithms, on average, are open during this small peak hence congestion
does not occur.

Detailed MW-2 analysis

Figure 10 shows the speed profile of the “reactive” MW-2 and the density mea-
surements in both junctions at either end of the moving walkway. This is a classic
example showing the limitations of the reactive algorithm. From 7:41 to 7:43, the
moving walkway is transporting pedestrians from junction 11-12-13-14 to junction
9-10 (negative speed). As soon as the density exceeds the congestion threshold
(1.08pax/m2), the reactive controller reduces the speed of MW-2 to prevent exces-
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Figure 8: Density evolution over time for all four junctions.
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Figure 9: Pedestrian flow along the main corridors parallel to the moving walkways
computed from the reference scenario “no-mw”. A negative flow corresponds to
pedestrians walking in the same direction as a moving walkway with negative
speed.
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(c) Density in jun. 9-10.

Figure 10: Speed profile and density measurements for a single realisation of the
reactive control algorithm.

sive congestion. The oscillating effects of the MW-2 speed are visible in Figure 10a,
and the corresponding oscillations can be observed in Figure 10c. Meanwhile, the
density inside junction 11-12-13-14 is increasing which implies that MW-2 should
accelerate to empty this junction. Therefore, a trade-off between the density levels
in both junctions should be made. The predictive strategy is capable of addressing
this trade-off since it monitors pedestrian travel time in the whole infrastructure
and is capable of anticipating pedestrian demand.

Through this first case study we have shown that the dynamic strategies are signif-
icantly better than a fixed precomputed control configuration. Nevertheless, the
“predictive” algorithm presents only little benefit over the “reactive” algorithm.
Therefore, the added value of the short-term predictions is not obvious at this
point. The next section presents a second, more complex case study.
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6 Double corridor infrastructure

The previous case study highlighted the advantage of dynamic control strategies,
but the short-term predictions did not provide a substantial benefit. To under-
stand whether a predictive control algorithm for controlling moving walkways can
positively impact pedestrian dynamics in a larger environment, we have anal-
ysed a more complex infrastructure. The walkable space is a simplification of the
whole station of Lausanne, Switzerland. We have two corridors linking three plat-
forms. A representation of the infrastructure is found in Figure 11. We simulate
pedestrian movements along the platforms since individuals can walk along the
platforms and choose which corridor to use. Four moving walkways are used in
this infrastructure, two in each corridor. Route choice now becomes significant as
pedestrians can change corridors to reach their destination. The time period of
interest is 15 minutes long.
We use the same simulation environment as described at the beginning of the pre-
vious section, except for the tactical route choice model. Route choice is modelled
using the path-size logit model (Prato, 2009; Ben-Akiva and Bierlaire, 2003). The
parameters are taken from Liu et al. (2020b). The route is updated each time a
pedestrian reaches a vertex in the graph. Given the poor benefits of the “fixed”
control algorithm for the previous case study, we do not use this algorithm in this
case study. We keep both dynamic control algorithms. The “reactive” algorithm
is the same as previously presented. The “predictive” algorithm is applied in a
true rolling horizon approach this time since we work on a longer time period.
Furthermore, we use the multi-objective predictive control algorithm. The refer-
ence scenario and reactive control algorithm simulations were replicated at least
100 times. The predictive simulation was replicated twelve times due to computa-
tional time. The short-term prediction horizon is 3 minutes long and is updated
every 1.5 minutes. 150 iterations of the multi-objective ALNS were performed
at each prediction update, with 32 replications of the objective function at each
iteration. We recall that the multi-objective control algorithms returns the Pareto
optimal set of solutions, hence one particular solution must be selected from this
set. The control configuration which is applied for the horizon is the one with the
lowest travel time.
By monitoring congestion alongside travel time, we gain further insight into the
trade-off taking place between the different metrics. The previous case study
showed that the reactive and predictive algorithms had similar effects on pedes-
trian dynamics. Therefore, by explicitly including congestion into the optimization
algorithm, and not only analysing it a posteriori, we emphasize how the different
algorithms impact pedestrian flows. Another reason for explicitly monitoring the
spread in congestion in the different intersections (eq. 17) is to prevent a significant
unbalance in congestion throughout the walkable environment.
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MW-1 MW-4

MW-2 MW-3

Figure 11: Three platforms infrastructure representation. The moving walkways
are numbered counter clockwise: MW-1 top left, MW-2 bottom left, MW-3 bottom
right, MW-4 top right.

Aggregate indicators

The aggregate travel time and congestion data plotted in Figure 12 tells a different
story than the previous case study. Here, the predictive control algorithm is sig-
nificantly better than the reactive algorithm. The mean travel time is reduced by
approximately 25%. The congestion experienced by pedestrians at the extremities
of the moving walkways is also lower for the predictive control algorithm. The re-
active algorithm only improves the travel time by 5%. In the following paragraphs
we will discuss the results in more detail to understand why the predictive and
reactive algorithms induce different results for this case study.

OD specific travel times

The OD specific travel times are presented in Figure 13. Similarly to Figure 6,
we present the OD specific relative change in travel time. The categorisation is
different though. Three main groups are used based upon the number of MW
along the route between the origin and destination. The second group (one MW)
is split into two subgroups: towards platforms (B1) and leaving platforms (B2).
The reactive algorithm decreases but also increases travel time for many OD pairs.
The group of ODs which do not use any moving walkway show a large dispersion in
relative travel time change. No clear pattern stands out concerning the direction
of pedestrian flow for these OD pairs. The travel times of pedestrians who could
use one moving walkway can be slit into two groups: those moving from platforms
towards the main corridors, and those moving from the corridors towards the plat-
forms. On one hand, when pedestrians move to platforms (group B1), they are
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Figure 12: Box plots of aggregate performance indicators for the different scenar-
ios.

generally penalized by the reactive control algorithm. Three ODs pairs do not
follow this rule (the three black circles below zero in group B1). On the other
hand, when pedestrians move from the platforms into the corridors (group B2)
they all benefit from the reactive algorithm. The groups of pedestrians which have
two moving walkways along their path all benefit from the reactive algorithm.
The predictive algorithm boasts more consistent results in terms of travel times.
Except for one OD pair, all statistically significant differences are improvements.
Furthermore, all OD pairs with moving walkways along their paths benefit from
the control algorithm. Another difference is visible when comparing the ampli-
tude of the improvements between both graphs: the predictive algorithm shows
larger improvements than the reactive algorithm. This observation is the opposite
compared to the previous case study (Figure 6). Finally, the pedestrians which
can use one moving walkway and are walking towards the platforms are those who
benefit the most in terms of travel time. This is the opposite to the reactive algo-
rithm. In general, the predictive algorithm is fairer across ODs than the reactive
algorithm since nearly all ODs pair benefit from the control strategy.
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Figure 13: Relative travel time change for the reactive and predictive algorithms
compared to the reference scenario without moving walkways.

Pedestrian walking speed

The mean pedestrian walking speed computed over time is presented in Figure 14.
The pedestrians have been grouped into intervals based on their entry time into
the system. Both dynamic control algorithms improve the pedestrian walking
speed compared to the reference scenario. Nevertheless, no clear advantage of
one dynamic algorithm over the other is apparent. The walking speed decreases
as demand increases. This is clearly visible between 7:41 and 7:42 where many
pedestrians enter the system. During this high demand period the walking speed
decreases due to congestion inside the infrastructure.
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Figure 14: Pedestrian walking speed and pedestrian inflow into the infrastructure
over time.
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Moving walkway speed and pedestrian dynamics

The moving walkway speed profiles, pedestrian density at both extremities and
parallel flows for all four moving walkways are presented in Figures 15, 16, 17
and 18. In the following paragraphs, we discuss how the reactive and predictive
control algorithms influence the pedestrian densities.
The reactive algorithms behave similarly for MW-1 and MW-2. During most of the
simulation period they operate at maximum speed, moving pedestrians from their
“end” to their “start” (negative speed). Few pedestrians are using this sub-route
(Figures 15b and 16b) and the density is higher at their “end” areas. Therefore
the reactive algorithm is moving pedestrians from the high density area to the low
density area.
The predictive algorithms behave differently than the reactive algorithms. MW-1
shows positive speeds for the first half of the time period (until 7:41), then a shift
towards negative speeds happens. Nevertheless a large variance in speeds is visible.
Similarly to the reactive algorithm, congestion vary rarely takes place (Figure 15c).
The consistent positive speeds is a consequence of the absence of congestion and
the slightly larger pedestrian flow moving in the positive direction. Since the
predictive strategy minimizes travel time, the larger pedestrian flow contributes
more to the mean travel time decrease than the smaller flow. Concerning the
predictive MW-2, a large variation is observed in the speed profile except around
7:41 and for the last 2 minutes of the simulation. MW-2 moves people in the
negative direction just after 7:41 to decrease density. The predictive algorithm
successfully prevents congestion taking place at 7:42, which the reactive algorithm
does not. During the last few minutes of the simulation, MW-2 systematically
moves pedestrians from the “end” to the “start” to decrease density. Although
the reactive MW-2 is moving in the same direction, the density is larger for the
reactive algorithm, hence the explanation for this must be found elsewhere.
The speed profile for MW-3 differs significantly for the reactive and predictive
algorithms. We first discuss the predictive algorithm, in light of the density at the
“end” zone of MW-2, which is also the “start” zone of MW-3. We previously saw
that the pedestrian density is significantly higher for the reactive control algorithm
near 7:48. In Figure 17a, near 7:48, we see that the reactive and predictive algo-
rithms have different behaviours. The reactive algorithm produces positive speeds,
while the predictive algorithm produces negative speeds. The reactive algorithm
behaves “as expected” since it moves people away from the high density at the
“start”. The predictive algorithm, on the other hand, is moving pedestrians into
the higher density area but at reduced speed. By forcing the pedestrians moving
in the positive direction to walk, the predictive algorithm spreads the demand in
space, hence exploiting the full walkable space. This prevents congestion building
up at the exit of the moving walkway, which is what happens for the reactive
algorithm. The pedestrians moving in the opposite direction can use the moving
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Figure 15: Speed, density and flow data for MW-1.
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Figure 16: Speed, density and flow data for MW-2.
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walkway. This counter intuitive result shows the added value of an optimization-
based predictive algorithm.
The fourth and last moving walkway emphasizes the “slower is faster” effect. Dur-
ing the peak in demand around 7:43, the reactive algorithm consistently reduced
the speed of MW-4 to prevent congestion building up in the “start” area. Strong
congestion takes place at the “end” and the moving walkway is moving the pedes-
trians away from this area (negative speed). Nevertheless, congestion also starts
to build at the other end, hence the speed reduces to prevent congestion. The pre-
dictive algorithm behaves in a similar way. MW-4 operates at high negative speed
to move the pedestrians away from the congestion during the first few minutes
of the time period. This is confirmed by the negative pedestrian flow in Figure
18b. Then, from 7:41 the moving walkways consistently reduce their speed to low
speeds, sometimes even closing it. By doing so, pedestrians must walk along both
sides of the moving walkway and don’t aggregate near the entrance of the moving
walkway. By reducing the moving speed of pedestrians, the predictive algorithm
is able to spread the congestion in time and space.
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Figure 17: Speed, density and flow data for MW-3.
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Figure 18: Speed, density and flow data for MW-4.

Through the analysis of the behaviour of the reactive and predictive control al-
gorithms in this second case study, we showed in which situations the predictive
algorithm can reduce pedestrian congestion inside the infrastructure. We have seen
that the predictive algorithm can generate solutions which are significantly differ-
ent from the ones generated by the reactive algorithm. The predictive algorithm
makes large pedestrian flows walk to prevent excessive congestion in the junctions.
By doing so, the predictive algorithm balances travel time and congestion.
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Pareto frontier analysis

The predictive algorithm relies on solving the optimization problem where the
moving walkway speeds are the decision variables, and the objective function is a
collection of indicators which summarize the pedestrian dynamics. The following
paragraphs discuss the results from multi-objective ALNS algorithm presented in
section 3 for two cases: low and high pedestrian demand. We recall that the
predictive algorithm for this second case study relies on a multi-objective Pareto
front optimization. We recall the three objectives which are used mean travel time
χT+ (eq. 11), mean congestion ρT+Φ (eq 16) and congestion variability ρT+∆ (eq. 17).
Furthermore, we recall that during one optimization horizon, the moving walkway
speeds are split into intervals of 30 seconds.

Low demand Figure 19 contains the pareto front for the three variables and the
visualization of the control configurations for each point on the pareto front for
a prediction horizon with low density (7:37 - 7:40). The first conclusion we can
make concerns the strong correlation between two indicators: ρT+Φ and ρT+∆ (Figure
19c). This is also visible in the pareto front comparing travel time to both mea-
sures of density (Figures 19a and 19b) where the Pareto fronts are nearly identical.
Therefore, one of the density indicators is redundant for low density scenarios.
The control configurations for each point on the Pareto front provide us with in-
sight into the trade-off between travel time and density which must be made. This
is most visible in Figure 19g (MW-3) where the three solutions with the highest
mean travel time stand out from the other solutions. On one hand these solutions
present the lowest congestion, but on the other they present the highest travel
time. The control configurations for these three solutions are different from the
rest of the solutions. Most of the solutions have speeds between -2 and -3 during
the whole optimization procedure, whereas for these three solutions which stand
out their speeds are either positive or changing direction during the horizon.
The differences in objective function values can be explained when considering
the pedestrian demand in the corridor where MW-3 is installed. The pedestrian
flow in the negative direction along the corridor where MW-3 is installed is signif-
icantly larger the demand in the positive direction (Figure 17b). Therefore, two
situations appear. In the first case, most of the solutions are moving the larger
group of pedestrians with a higher speed thanks to the moving walkway, hence
the lower travel time but creating some congestion in the process. For the second
case, the three solutions with lower density but higher travel time are moving the
smaller group of pedestrians, hence having less impact on travel time, but also
preventing congestion from appearing.
One other solution stands out in these other graphs as well: the solution with the
lowest travel time. This solution is particularly visible in 19e. A similar analysis
can be made as with the three high travel time solutions. The pedestrian demand
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parallel to MW-4 is larger in the negative direction than the positive one. This
particular solution is favouring travel time over density since this solution also
boasts the highest density values.
These two examples of different categories of solutions, hence of control configura-
tions, emphasize the added value of considering a multi-objective approach when
searching optimal control configurations. Since the set of pareto-optimal solutions
contains the trade-off, the control strategy has the potential to give priority to
different aspects of the pedestrian dynamics.

High demand The results for the high demand prediction are presented in Fig-
ure 20. The correlation we observed between both density indicators is not as clear
in this context. On one hand, when one density indicator is low, so is the second
one. On the other hand, when the mean density increases, the variance in ρT+∆
(17) becomes large. Therefore, if the objective is to minimize density, then one
density indicator is sufficient. But when a trade-off is explored between density
and travel time, both density metrics are needed to distinguish the solutions. The
lowest values of travel time are found with intermediate values of congestion (dark
points in Figure 20c), again emphasizing the need to carefully study the trade-off
between congestion and travel time.
For MW-3 (20g), we see that two solutions are identical (the two dark lines). The
speed is -3 for the whole interval for these solutions. This gives us insight into the
variance of the system. They are very close in terms of travel time and average
density, but the ρτ+∆ indicator differs for both solutions.
The solutions on the pareto front can be grouped into three categories based upon
the three indicators: high travel time and low density (light lines), low travel time
and high density (dark lines), intermediate travel time and density (intermediate
lines). These three groups can be found in the control configurations of MW-1
(20d) and MW-3 (20g). For MW-2 and MW-4 these groups are not visible (20f
and 20e).
We can distinguish the three groups when considering the speeds in MW-3 (20g).
The group with high travel time (light lines) contains speeds which peak to +3m/s

for the third decision variable while the other decision variables are close to 0 or -1.
The group with intermediate travel time and density values are solutions where
the speed is generally between 0 and −1m/s. The two solutions with low travel
time and high density have speeds fixed to −3m/s. Similarly, when considering
the speeds profiles for MW-1 (20d), we can also distinguish the three groups of
solutions. These three groups of control configurations show that different speed
profiles will give priority to different objectives (travel time or density).
On the other hand, when looking at the control configurations for MW-2 and MW-
4, the speed profiles do not allow us to differentiate the three groups of solutions.
They operate between +1m/s and −1m/s in general. We can therefore conclude
that the pareto front is governed by MW-1 and MW-3 since for the other two
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walkways the indicators are not directly affected by the different control configu-
rations.
A final remark concerning the variance of the indicators with respect to the control
configuration consistency must be made. In Figures 19g and 20e the control con-
figurations are generally consistent with each other although the indicators vary.
This phenomenon has two potential origins: simulation-based stochastic variation
and exogenous influence. Identifying the cause of the variation is challenging since
both causes impact the same metrics. Considering the fact that changes in mov-
ing walkway speed between −3m/s and −2m/s have a very small impact on the
indicators the discretization of the walking speeds can certainly be made less fine
without loosing the advantages of a predictive control algorithm. Longer intervals
would also simplify the optimization procedure and make the results more robust
to stochastic variations.

By analysing the solutions on the pareto front for two different demand contexts,
we have emphasized the added value of a multi-objective optimization framework
for predictive control configuration generation. Even when demand is low, differ-
ent control configurations can impact the overall travel time of the pedestrians.
This effect is emphasized for high demand cases. Different control configurations
will lead to different dynamics where travel time or congestion are low. Further-
more, not all control devices have the same impact on the system. Some moving
walkways significantly impact the indicators while others only have minimal im-
pact.
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Figure 19: Pareto frontier and AMW speed profiles for a low demand period (7:37
- 7:40).
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Figure 20: Pareto frontier and AMW speed profiles for a high demand period
(7:41:30 - 7:44:30).
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7 Conclusion

With this paper, we addressed the question of dynamic control strategies for pedes-
trians. We proposed several variations of a control strategy which exploits existing
pedestrian dedicated infrastructure. The usage of moving walkways as a control
strategy is interesting since pedestrians have the habit of using them, hence there
is no technology barrier to address. Furthermore, moving walkways address the
problem of compliance since pedestrians cannot feasibly use them in the wrong
direction.
The first hypothesis regarding the effectiveness of moving walkways to manage
pedestrian flows has clearly been shown through both case studies. Although the
fixed control algorithm produced poor results, the dynamic strategies effectively
reduced pedestrian travel time and prevented excessive congestion in both case
studies considered in this paper. Next, we have shown that a predictive algo-
rithm can significantly improve pedestrian dynamics in more complex scenarios.
Furthermore, the predictive flavour is generally fairer across different categories
of pedestrians than the reactive algorithm. Finally, the advantages of considering
multiple objectives (third hypothesis) in the optimization algorithm used by the
predictive algorithm are emphasized when analysing the pareto set of solutions.
The trade-off between travel time and congestion stands out and provides insight
to the operator when decisions must be made.
The different responses to the dynamic control strategies of each case study em-
phasize the need for in depth analysis of the demand scenario and infrastructure
configuration. Considering the challenge of integrating short term predictions into
control strategies, effort should be invested in reactive strategies to develop more
advanced control algorithms which could possibly reach similar benefits as the
predictive algorithms. Identification of the scenario and contexts where reactive
and predictive algorithms produce similar results should be done to better under-
stand when short term predictions are needed.
Consolidation of these results with applications to different environments would
provide further insights into the conditions where predictive algorithms are better
than reactive ones. Exploring different demand structures and different walkable
environments can help achieve this objective. The development of control strate-
gies which are robust to measurement errors and biases is critical for real world
applications. This should first be addressed in a simulation environment by using
a different simulator for the ground truth and prediction simulators. In such a
context, measurement errors, detector defects or biases can be simulated to de-
velop a robust control strategy. Furthermore, the computational time of the short
term predictions must be addressed. Practical considerations regarding compli-
ance and safety should also be investigated prior to any full scale installations
inside existing pedestrian infrastructure.
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